Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness
Abstract
:1. Introduction
2. Molecular Structure of the Polyphenols in Cacao Feedstock
3. Green Chemistry and the Eco-Scale
4. Polyphenols Extraction Methods
4.1. Pre-Treatment of the Samples
4.2. Extraction Procedures
4.3. Optimization of the Extraction Procedure
5. Polyphenol Identification and Quantification Procedures
5.1. Spectrophotometric Methods
5.2. Chromatographic Methods
Liquid Chromatography
6. Polyphenol Yield Comparison
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.M.M.; Ismail, A. Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health? Molecules 2008, 13, 2190–2219. [Google Scholar] [CrossRef] [PubMed]
- Kothe, L.; Zimmermann, B.F.; Galensa, R. Temperature Influences Epimerization and Composition of Flavanol Monomers, Dimers and Trimers during Cocoa Bean Roasting. Food Chem. 2013, 141, 3656–3663. [Google Scholar] [CrossRef] [PubMed]
- Misnawi; Jinap, S.; Jamilah, B.; Nazamid, S. Effects of Incubation and Polyphenol Oxidase Enrichment on Colour, Fermentation Index, Procyanidins and Astringency of Unfermented and Partly Fermented Cocoa Beans. Int. J. Food Sci. Technol. 2003, 38, 285–295. [Google Scholar] [CrossRef]
- Albertini, B.; Schoubben, A.; Guarnaccia, D.; Pinelli, F.; Della Vecchia, M.; Ricci, M.; Di Renzo, G.C.; Blasi, P. Effect of Fermentation and Drying on Cocoa Polyphenols. J. Agric. Food Chem. 2015, 63, 9948–9953. [Google Scholar] [CrossRef]
- Trognitz, B.; Cros, E.; Assemat, S.; Davrieux, F.; Forestier-Chiron, N.; Ayestas, E.; Kuant, A.; Scheldeman, X.; Hermann, M. Diversity of Cacao Trees in Waslala, Nicaragua: Associations between Genotype Spectra, Product Quality and Yield Potential. PLoS ONE 2013, 8, e54079. [Google Scholar] [CrossRef] [PubMed]
- Hurst, W.J.; Krake, S.H.; Bergmeier, S.C.; Payne, M.J.; Miller, K.B.; Stuart, D.A. Impact of Fermentation, Drying, Roasting and Dutch Processing on Flavan-3-Ol Stereochemistry in Cacao Beans and Cocoa Ingredients. Chem. Cent. J. 2011, 5, 53. [Google Scholar] [CrossRef]
- Cienfuegos-Jovellanos, E.; Del Mar Quiñones, M.; Muguerza, B.; Moulay, L.; Miguel, M.; Aleixandre, A. Antihypertensive Effect of a Polyphenol-Rich Cocoa Powder Industrially Processed to Preserve the Original Flavonoids of the Cocoa Beans. J. Agric. Food Chem. 2009, 57, 6156–6162. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. Trend Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and Tannin-like Compounds - Nature, Occurrence, Dietary Intake and Effects on Nutrition and Health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of Resveratrol. Compr. Rev. Food Sci. Food Saf. 2006, 5, 65–70. [Google Scholar] [CrossRef]
- Hu, S.J.; Kim, B.Y.; Baik, M.Y. Physicochemical Properties and Antioxidant Capacity of Raw, Roasted and Puffed Cacao Beans. Food Chem. 2016, 194, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Nicod, N.M. Biomarkers of Cocoa Consumption. In Chocolate and Health; Paoletti, R., Poli, A., Conti, A., Visioli, F., Eds.; Springer Science & Business Media: Berlin, Germany, 2012; pp. 33–40. [Google Scholar]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Sanbongi, C.; Osakabe, N.; Natsume, M.; Takizawa, T.; Gomi, S.; Osawa, T. Antioxidative Polyphenols Isolated from Theobroma cacao. J. Agric. Food Chem. 1998, 46, 454–457. [Google Scholar] [CrossRef]
- Tomás-Barbéran, F.; Borges, G.; Crozier, A. Phytochemicals in Cocoa and Flavan-3-Ol Bioavailability. In Teas, Cocoa and Coffee: Plant Secondary Metabolites and Health; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 193–217. ISBN 9781444334418. [Google Scholar]
- Fayeulle, N.; Vallverdu-Queralt, A.; Meudec, E.; Hue, C.; Boulanger, R.; Cheynier, V.; Sommerer, N. Characterization of New Flavan-3-Ol Derivatives in Fermented Cocoa Beans. Food Chem. 2018, 259, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Zyzelewicz, D.; Nebesny, E. The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1176–1192. [Google Scholar] [CrossRef] [PubMed]
- Niemenak, N.; Rohsius, C.; Elwers, S.; Omokolo Ndoumou, D.; Lieberei, R. Comparative Study of Different Cocoa (Theobroma cacao L.) Clones in Terms of Their Phenolics and Anthocyanins Contents. J. Food Compos. Anal. 2006, 19, 612–619. [Google Scholar] [CrossRef]
- Calderón, A.I.; Wright, B.J.; Hurst, W.J.; Van Breemen, R.B. Screening Antioxidants Using LC-MS: Case Study with Cocoa. J. Agric. Food Chem. 2009, 57, 5693–5699. [Google Scholar] [CrossRef] [PubMed]
- Pedan, V.; Fischer, N.; Rohn, S. Extraction of Cocoa Proanthocyanidins and Their Fractionation by Sequential Centrifugal Partition Chromatography and Gel Permeation Chromatography. Anal. Bioanal. Chem. 2016, 408, 5905–5914. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V. Polyphenols in Foods Are More Complex than Often Thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef] [PubMed]
- Ortega, N.; Romero, M.P.; Macià, A.; Reguant, J.; Anglès, N.; Morelló, J.R.; Motilva, M.J. Comparative Study of UPLC-MS/MS and HPLC-MS/MS to Determine Procyanidins and Alkaloids in Cocoa Samples. J. Food Compos. Anal. 2010, 23, 298–305. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Morales-Sillero, A.; Fernández-Bolaños, J.; Bermúdez-Oria, A.; Morales, A.A.; Rodríguez-Gutiérrez, G. Cocoa Bean Husk: Industrial Source of Antioxidant Phenolic Extract. J. Sci. Food Agric. 2019, 99, 325–333. [Google Scholar] [CrossRef]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Coïsson, J.D.; Arlorio, M. Cocoa Hulls Polyphenols Stabilized by Microencapsulation as Functional Ingredient for Bakery Applications. Food Res. Int. 2019, 115, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioproc. Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- De Taeye, C.; Eyamo Evina, V.J.; Caullet, G.; Niemenak, N.; Collin, S. Fate of Anthocyanins through Cocoa Fermentation. Emergence of New Polyphenolic Dimers. J. Agric. Food Chem. 2016, 64, 8876–8885. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Barberán, F.A.; Cienfuegos-Jovellanos, E.; Marín, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerdá, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. A New Process to Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. J. Agric. Food Chem. 2007, 55, 3926–3935. [Google Scholar] [CrossRef] [PubMed]
- Jonfia-Essien, W.A.; Navarro, N. Effect of Storage Management on Free Fatty Acid Content in Dry Cocoa Beans. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June 2008. [Google Scholar]
- Mazor Jolić, S.; Radojčic Redovnikovic, I.; Marković, K.; Ivanec Šipušić, D.; Delonga, K. Changes of Phenolic Compounds and Antioxidant Capacity in Cocoa Beans Processing. Int. J. Food Sci. Technol. 2011, 46, 1793–1800. [Google Scholar] [CrossRef]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the Significance: Mnemonic of Green Analytical Practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Bordiga, M.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Mazza, G.; Arlorio, M. Evaluation of the Effect of Processing on Cocoa Polyphenols: Antiradical Activity, Anthocyanins and Procyanidins Profiling from Raw Beans to Chocolate. Int. J. Food Sci. Technol. 2015, 50, 840–848. [Google Scholar] [CrossRef]
- Camu, N.; De Winter, T.; Addo, S.K.; Takrama, J.S.; Bernaert, H.; De Vuyst, L. Fermentation of Cocoa Beans: Influence of Microbial Activities and Polyphenol Concentrations on the Flavour of Chocolate. J. Sci. Food Agric. 2008, 88, 2288–2297. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Analytical Dataset of Ecuadorian Cocoa Shells and Beans. Data Brief. 2019, 22, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Vriesmann, L.C.; de Mello Castanho Amboni, R.D.; De Oliveira Petkowicz, C.L. Cacao Pod Husks (Theobroma cacao L.): Composition and Hot-Water-Soluble Pectins. Ind. Crops Prod. 2011, 34, 1173–1181. [Google Scholar] [CrossRef]
- Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, Proanthocyanidins and Antioxidant Activity Changes during Cocoa (Theobroma cacao L.) Roasting as Affected by Temperature and Time of Processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A.; Amin, I.; Hashim, P.; Abdullah, N.A. Antioxidant Properties of Cocoa Pods and Shells. Malays. Cocoa J. 2014, 8, 49–56. [Google Scholar]
- D’Souza, R.N.; Grimbs, S.; Behrends, B.; Bernaert, H.; Ullrich, M.S.; Kuhnert, N. Origin-Based Polyphenolic Fingerprinting of Theobroma cacao in Unfermented and Fermented Beans. Food Res. Int. 2017, 99, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, L.C.; Londoño, J.; Gil, A. Comparison of Polyphenol, Methylxanthines and Antioxidant Activity in Theobroma cacao Beans from Different Cocoa-Growing Areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Teboukeu, G.B.; Djikeng, F.T.; Klang, M.J.; Ndomou, S.H.; Karuna, M.S.L.; Womeni, H.M. Polyphenol Antioxidants from Cocoa Pods: Extraction Optimization, Effect of the Optimized Extract, and Storage Time on the Stability of Palm Olein during Thermoxidation. J. Food Process Preserv. 2018, 42, 1–11. [Google Scholar] [CrossRef]
- Dávila, J.A.; Hernandez, V.; Rosenberg, M.; Cardona, C.A. Design of Processes for Supercritical Extraction and Microencapsulation of Antioxidants from Fruits. In Handbook of Supercritical Fluids, Fundamentals, Properties and Applications; Osborne, J., Ed.; Nova Science Publisher: New Dehli, India, 2014; pp. 229–256. [Google Scholar]
- Manzano, P.; Hernández, J.; Quijano-Avilés, M.; Barragán, A.; Chóez-Guaranda, I.; Viteri, R.; Valle, O. Polyphenols Extracted from Theobroma cacao Waste and Its Utility as Antioxidant. Emir. J. Food Agric. 2017, 29, 45–50. [Google Scholar] [CrossRef]
- Yusof, A.H.M.; Gani, S.S.A.; Zaidan, U.H.; Halmi, M.I.E.; Zainudin, B.H. Optimization of an Ultrasound-Assisted Extraction Condition for Flavonoid Compounds from Cocoa Shells (Theobroma cacao) Using Response Surface Methodology. Molecules 2019, 24, 711. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.J.; Hurst, W.J.; Stuart, D.A.; Ou, B.; Fan, E.; Ji, H.; Kou, Y. Determination of Total Procyanidins in Selected Chocolate and Confectionery Products Using DMAC. J. AOAC Int. 2010, 93, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Valadez-Carmona, L.; Plazola-Jacinto, C.P.; Hernández-Ortega, M.; Hernández-Navarro, M.D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of Microwaves, Hot Air and Freeze-Drying on the Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma cacao L.). Innov. Food Sci. Emer. Technol. 2017, 41, 378–386. [Google Scholar] [CrossRef]
- Plaza, M.; Oliveira, D.; Nilsson, A.; Turner, C. Green and Efficient Extraction Method to Determine Polyphenols in Cocoa and Cocoa Products. Food Anal. Methods 2017, 10, 2677–2691. [Google Scholar] [CrossRef]
- Zhong, J.L.; Muhammad, N.; Gu, Y.C.; Yan, W.D. A Simple and Efficient Method for Enrichment of Cocoa Polyphenols from Cocoa Bean Husks with Macroporous Resins Following a Scale-up Separation. J. Food Eng. 2019, 243, 82–88. [Google Scholar] [CrossRef]
- Kobori, K.; Maruta, Y.; Mineo, S.; Shigematsu, T.; Hirayama, M. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity. Foods 2013, 2, 462–477. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ovando, A.; Molina-Freaner, F.; Nuñez-Farfán, J.; Betancur-Ancona, D.; Salvador-Figueroa, M. Classification of Cacao Beans (Theobroma cacao L.) of Southern Mexico Based on Chemometric Analysis with Multivariate Approach. Eur. Food Res. Technol. 2015, 240, 1117–1128. [Google Scholar] [CrossRef]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Scheirlinck, I.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of Fermentation and Drying on Procyanidins, Antiradical Activity and Reducing Properties of Cocoa Beans. Food Bioproc. Technol. 2013, 6, 3420–3432. [Google Scholar] [CrossRef]
- Quiroz-Reyes, C.N.; Aguilar-Mendez, M.A.; Ramırez-Ortız, M.E.; Ronquillo-De Jesus, E. Comparative Study of Ultrasound and Maceration Techniques for the Extraction of the Polyphenols from Cocoa Beans. Rev. Mex. Ing. Quim. 2013, 12, 11–18. [Google Scholar]
- Quiroz-Reyes, C.N.; Fogliano, V. Design Cocoa Processing towards Healthy Cocoa Products: The Role of Phenolics and Melanoidins. J. Funct. Foods 2018, 45, 480–490. [Google Scholar] [CrossRef]
- Ortega, N.; Romero, M.P.; MacIà, A.; Reguant, J.; Anglès, N.; Morelló, J.R.; Motilva, M.J. Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. J. Agric. Food Chem. 2008, 56, 9621–9627. [Google Scholar] [CrossRef] [PubMed]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated Green-Based Processes Using Supercritical CO2 and Pressurized Ethanol Applied to Recover Antioxidant Compouds from Cocoa (Theobroma cacao) Bean Hulls. J. Supercrict Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J.; Bangoura, M.L.; Lagnika, C. Quantification of Total Polyphenolic Content and Antimicrobial Activity of Cocoa (Theobroma cacao L.) Bean Shells. Pak. J. Nutr. 2012, 11, 574–579. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa Bean Shell Waste Valorisation; Extraction from Lab to Pilot-Scale Cavitational Reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of Different Conching Processes on Procyanidin Content and Antioxidant Properties of Chocolate. Food Res. Int. 2014, 63, 367–372. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xue, S.J.; Ma, Y.; Jiang, Y.; Ye, X.; Yu, D. Green Separation Technologies in Food Processing: Supercritical-CO2 Fluid and Subcritical Water Extraction. In Green Technologies in Food Production and Processing—Food Engineering Series; Boye, J.I., Arcand, Y., Eds.; Springer: Boston, MA, USA, 2012; pp. 273–294. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Coicalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ramirez-Sanchez, I.; Maya, L.; Ceballos, G.; Villarreal, F. Fluorescent Detection of (-)-Epicatechin in Microsamples from Cacao Seeds and Cocoa Products: Comparison with Folin-Ciocalteu Method. J. Food Compos. Anal. 2010, 23, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of Total Flavonoid Content by Aluminum Chloride Assay: A Critical Evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Mcmurrough, I.; Mcdowell, J. Chromatographic Separation and Automated Analysis of Flavanois. Anal. Biochem. 1978, 91, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Swain, T.; Hillis, W.E. The Phenolic Constituents of Prunus Domestica. I.—The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Swain, T. Changes in Tannins Un Ripening Fruits. Phytochemistry 1963, 2, 371–383. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of Condensed Tannins Using Acidified Vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of Condensed Tannins: A Review. Anim. Feed. Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Dalzell, S.A.; Kerven, G.L. A Rapid Method for the Measurement of Leucaena Spp Proanthocyanidins by the Proanthocyanidin (Butanol/HCl) Assay. J. Sci. Food Agric. 1998, 78, 405–416. [Google Scholar] [CrossRef]
- Nel, A.P. Tannins and Anthocyanins: From Their Origin to Wine Analysis - A Review. S Afr. J. Sci. 2018, 39, 1–20. [Google Scholar] [CrossRef]
- Huang, X.; Teye, E.; Sam-Amoah, L.K.; Han, F.; Yao, L.; Tchabo, W. Rapid Measurement of Total Polyphenols Content in Cocoa Beans by Data Fusion of NIR Spectroscopy and Electronic Tongue. Anal. Methods 2014, 6, 5008–5015. [Google Scholar] [CrossRef]
- Álvarez, C.; Pérez, E.; Cros, E.; Lares, M.; Assemat, S.; Boulanger, R.; Davrieux, F. The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (-)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. J. Near Infrared Spectrosc. 2012, 20, 307–315. [Google Scholar] [CrossRef]
- Whitacre, E.; Oliver, J.; Van Den Broek, R.; Van Engelen, P.; Kremers, B.; Van Der Horst, B.; Stewart, M.; Jansen-Beuvink, A. Predictive Analysis of Cocoa Procyanidins Using Near-Infrared Spectroscopy Techniques. J. Food Sci. 2003, 68, 2618–2622. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J. In Vitro Hypoglycemic and Cholesterol Lowering Effects of Dietary Fiber Prepared from Cocoa (Theobroma cacao L.) Shells. Food Funct. 2012, 3, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive Compounds in Mexican Genotypes of Cocoa Cotyledon and Husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J.; Leonczak, J.; Li, J.; Johnson, J.C.; Collins, T.; Kwik-Uribe, C.; Schmitz, H.H. Determination of Flavanol and Procyanidin (by Degree of Polymerization 1-10) Content of Chocolate, Cocoa Liquors, Powder(s), and Cocoa Flavanol Extracts by Normal Phase High-Performance Liquid Chromatography: Collaborative Study. J. AOAC Int. 2012, 95, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Fulcrand, H.; Mané, C.; Preys, S.; Mazerolles, G.; Bouchut, C.; Mazauric, J.P.; Souquet, J.M.; Meudec, E.; Li, Y.; Cole, R.B.; et al. Direct Mass Spectrometry Approaches to Characterize Polyphenol Composition of Complex Samples. Phytochemistry 2008, 69, 3131–3138. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Liquid Chromatography-High Resolution Mass Spectrometry for the Analysis of Phytochemicals in Vegetal-Derived Food and Beverages. Food Res. Int. 2017, 100, 28–52. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.; Ismail, A.; Ghani, N.A.; Adenan, I. Antioxidant Capacity and Phenolic Content of Cocoa Beans. Food Chem. 2007, 100, 1523–1530. [Google Scholar] [CrossRef]
Criteria | Penalty Points (PP) Assigned | |||
---|---|---|---|---|
Reagent/Solvent Used and Attributes | Equipment Used | |||
Amount Used (mL or g) | Risk | Energy Consumption (kWh) | ||
Number of Pictograms in Label | Signal Word in Label | |||
0 | 0 | No signal word | <0.1 | 0 |
<10 | 1 | “Warning” | 0.1–1.5 | 1 |
10–100 | 2 | “Hazard” | >1.5 | 2 |
>100 | 3 | 3 |
Material | State | Extraction Conditions | PP | Ref. | |||
---|---|---|---|---|---|---|---|
Pre-Treatment Step | Extraction Step | ||||||
Reagents | Equipment | Reagents/Solvents | Equipment | ||||
Pod Husk | Raw | - | Electric oven, mill | Methanol | Mixer, shaker, rotary evaporator, fridge | 19 | [43] |
- | Blender, dryer, microwave, freezer | Acetone, acetic acid, water | Freezer, shaker, centrifuge | 17 | [48] | ||
Beans | Raw | Water, hexane | Freeze-dryer, grinder, dryer | Water, methanol, acetic acid | US bath, shaker, centrifuge | 23 | [49] |
Fermented; Sundried | Hexane | Incubator, dryer | Methanol, water | Centrifuge, freezer, shaker | 21 | [52] | |
Petroleum ether | - | Water, acetic acid, acetonitrile | Blender, US bath, centrifuge, heater, fridge | 25 | [36] | ||
Hexane | Grinder, centrifuge | Acetone, acetic acid, water | US bath, centrifuge, vortex, freezer | 23 | [53] | ||
Fermented; Sundried; Roasted | Dry ice, n-hexane | Mill, fridge | Water; DMSO, acetone, diatomaceous earth | PLE | 20 | [4] | |
Hexane, nitrogen | Mill | Acetone; acetic acid; water | US bath, vortex, centrifuge | 19 | [39] | ||
Nibs | Fermented; Sundried | Hexane | Shaker | Methanol, water, acetone | US bath, centrifuge, rotary evaporator, thermostatic bath | 36 | [54] |
n-hexane | Mill, centrifuge, freeze-dryer | Acetone, water | Centrifuge | 26 | [23] | ||
Fermented; Sundried; Roasted | Petroleum ether | Grinder, centrifuge, fridge, thermostat | Water | Homogenizer, shaking water bath | 10 | [55] | |
Heptane | Centrifuge, roaster | Acetone, acetic acid, water, nitrogen | Centrifuge PHWE, rotary evaporator, US bath, freezer | 34 | [49] | ||
Hexane | Centrifuge grinder, shaker | Acetic acid, acetone, water | Rotary evaporator, centrifuge, freeze-dryer | 40 | [56] | ||
Shells | Raw | - | Freeze-dryer, blender | Ethanol | US bath, rotary evaporator, thermostatic bath | 16 | [46] |
Fermented; Sundried; Roasted | Hexane | Grinder, orbital shaker | Water, acetic acid, acetone | Rotary evaporator, centrifuge, vortex; freeze-dryer | 38 | [57] | |
Hexane | Mill, Soxhlet, freeze-dryer | Water | Centrifuge | 18 | [47] | ||
- | Grinder | CO2 | SFE, freezer | 12 | [58] | ||
- | Grinder | Ethanol | PLE; fridge, rotary evaporator | 15 | [58] | ||
- | PEF, mill, grinder, centrifuge, vacuum | Ethanol | Centrifuge, orbital shaker, freezer | 18 | [29] |
Material | State | Identification and Quantification of Polyphenols | PP | Ref. | |||
---|---|---|---|---|---|---|---|
Technique *1 | Reagents/Solvents *2 | Standard | Equipment | ||||
Pod Husk | Raw | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [43,48] |
C | MeOH, water, acetonitrile, H3PO4 | Gallic, vanillic, caffeic, ferulic, ellagic acid | HPLC–DAD | 27 | [43] | ||
C | Formic acid, methanol, water | Gallic acid, catechin, quercetin, epicatechin, p-coumaric A., protocatechuic A | HPLC–DAD | 18 | [48] | ||
Beans | Raw | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [79] |
- | - | NIRS | 4 | [79] | |||
F–C | Ferulic acid | UV–Vis spectrometer | 5 | [88] | |||
C | - | - | Electronic tongue | 4 | [79] | ||
Fermented, Sundried | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [52,53] | |
F–C | Epicatechin | UV–Vis spectrometer | 4 | [36] | |||
C | Water, acetonitrile, acetic acid | Epicatechin, catechin | HPLC–FLD | 26 | [36] | ||
Dichloromethane, water, methanol, acetic acid | Epicatechin | HPLC–UV | 24 | [53] | |||
Fermented, Sundried, Roasted | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [39] | |
C | Borate buffer, water, hydroxypropyl-y-cyclodextrin, sodium hydroxide, acetonitrile, formic acid | Epicatechin, catechin | UHPLC–UV–QqQ | 24 | [4] | ||
Acetic acid, methanol | Epicatechin, catechin, catechin gallate, gallocatechin, epigallocatechin | Capillary electrophoresis | 20 | [39] | |||
Acetic acid, methanol | HPLC–DAD | 26 | [39] | ||||
Dichloromethane, methanol, water, acetic acid | HPLC–UV–QqQ | 25 | [39] | ||||
Nibs | Fermented, Sundried | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [54] |
F–C | Epicatechin | UV–Vis spectrometer | 4 | [38] | |||
C | Water, formic acid, ethanol, acetonitrile | Epicatechin, catechin | HPLC–DAD | 20 | [54] | ||
Ethyl acetate, butanol, water, 2-propanol, Sephadex LH-20, propanol, acetone | Catechin, epicatechin, PA B2, B3, B4, PA C1, o-arabinoside, cinnamtannin A2, quercetin, quercetin-3-o-glycoside | Semi-preparative SCPC, HPLC–ESI–Q | 52 | [38] | |||
Fermented, Sundried, Roasted | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [49,55] | |
C | Water, formic acid, methanol, acetonitrile | Catechin, epicatechin, procyanidin B1, Procyanidin B2 | HPLC–DAD | 20 | [55] | ||
Ammonium formate, acetonitrile, methanol, nitrogen, formic acid, acetic acid, sodium formate | Catechin, epicatechin, procyanidin B2 | HPLC–DAD–ECD–CAD, HPLC–DAD–MS, HPLC–FLD | 42 | [49] | |||
Bean Shells | Raw | S | Aluminum chloride | Rutin | UV–Vis spectrometer | 11 | [46] |
C | Ethanol, water, formic acid, acetonitrile | Procyanidin B2, epicatechin | UPHLC–Q–TOF | 22 | [46] | ||
Fermented, Sundried, Roasted | S | F–C | Gallic acid | UV–Vis spectrometer | 4 | [28,45,58] | |
Ethanol, HCl, DMAC | Epicatechin | UV–Vis Spectrometer | 12 | [57] | |||
C | Water, methanol, formic acid | Procyanidin B2, epicatechin, catechin, theobromine, caffeine | UPLC–ESI–QqQ | 12 | [57] | ||
Helium | GC–MS | 4 | [58] | ||||
Water, formic acid, methanol | 5-caffeoylquinic acid, epicatechin, caffeine, theobromine | HPLC–PDA | 18 | [28] |
Material | State | PP | Yield | Ref. | |
---|---|---|---|---|---|
Extraction | Analysis | Total Phenol Content (meq g−1) | |||
Pod Husk | Raw | 19 | 4 | 151 | [43] |
17 | 4 | 5–20 | [48] | ||
Beans | Raw | 7 | 5 | 0.08–0.12 | [88] |
Fermented, Sundried | 21 | 4 | 0.6–6 | [52] | |
25 | 4 | 0.2–0.3 | [35] | ||
23 | 4 | 40–120 | [61] | ||
Fermented, Sundried, Roasted | 16 | 4 | 30–70 | [39] | |
Nibs | Fermented, Sundried | 36 | 4 | 140 | [54] |
26 | 4 | 80–120 | [38] | ||
Fermented, Sundried, Roasted | 34 | 4 | 10–35 | [49] | |
Bean Shells | Raw | 16 | 11 | 7.4 | [46] |
Fermented, Sundried, Roasted | 48 | 12 | 1–4 | [57] | |
25 | 4 | 43 | [58] | ||
18 | 4 | 6 | [47] | ||
18 | 4 | 21–55 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.M.; Peyronel, F.; Huang, Y.; Boschetti, C.E.; Corradini, M.G. Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness. Foods 2024, 13, 2397. https://doi.org/10.3390/foods13152397
Silva JM, Peyronel F, Huang Y, Boschetti CE, Corradini MG. Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness. Foods. 2024; 13(15):2397. https://doi.org/10.3390/foods13152397
Chicago/Turabian StyleSilva, Juan Manuel, Fernanda Peyronel, Yinan Huang, Carlos Eugenio Boschetti, and Maria G. Corradini. 2024. "Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness" Foods 13, no. 15: 2397. https://doi.org/10.3390/foods13152397
APA StyleSilva, J. M., Peyronel, F., Huang, Y., Boschetti, C. E., & Corradini, M. G. (2024). Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness. Foods, 13(15), 2397. https://doi.org/10.3390/foods13152397