Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread Formulation
2.2. Physiochemical and Nutritional Analysis
2.2.1. Bread Height
2.2.2. Nutrient Composition Analysis
2.2.3. Colour Analysis
2.2.4. Texture Profile Analysis (TPA)
2.2.5. Pasting Properties
2.3. Sensory Evaluation and Food Purchasing Ominr Consumption Rating Test
- Score 7—“I would buy/consume this product at every opportunity I had”
- Score 6—“I would buy/consume this product very often”
- Score 5—“I like this product and would buy/consume it now and then”
- Score 4—“I would buy/consume this product if available but would not go out of my way”
- Score 3—“I do not like this product but would buy/consume it on occasion”
- Score 2—“I would hardly ever buy/consume this product”
- Score 1—“I would buy/consume this product only if forced to”
2.4. Statistical Analysis and Illustrations
3. Results
3.1. Bread Formulation
3.2. Nutrient Composition
3.3. Pasting Properties
3.4. Texture Profile Analysis
3.5. Colour Analysis
3.6. Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Ghosh, M.K.; Nandi, R. A Comprehensive Review of Food Waste Valorization for the Sustainable Management of Global Food Waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- World Health Organisation. Increasing Fruit and Vegetable Consumption to Reduce the Risk of Noncommunicable Diseases. Available online: https://www.who.int/tools/elena/interventions/fruit-vegetables-ncds#:~:text=WHO%20Recommendations,the%20risk%20of%20certain%20NCDs (accessed on 18 January 2024).
- Petersen, K.S.; Kris-Etherton, P.M. Diet Quality Assessment and the Relationship between Diet Quality and Cardiovascular Disease Risk. Nutrients 2021, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Liu, J.; Zhu, Z.; Zhang, X.; Huang, Y.; Liu, S.; Wang, W.; Zhang, X.; Tang, S.; Hu, Y.; et al. Healthy Dietary Patterns and the Risk of Individual Chronic Diseases in Community-Dwelling Adults. Nat. Commun. 2023, 14, 6704. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-Optimal Lipid Levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef] [PubMed]
- Roughani, A.; Miri, S.M. Spinach: An Important Green Leafy Vegetable and Medicinal Herb. In Proceedings of the 2nd International Conference on Medicinal Plants, Organic Farming, Natural and Pharmaceutical Ingredients, Mashad, Iran, 13 March 2019. [Google Scholar]
- Sri Lasya, C.; Author Chokkara Sri Lasya, C. Spinach and Its Health Benefits: A Review. Pharma Innov. J. 2022, 11, 1232–1239. [Google Scholar]
- Zane, A.; Wender, S.H. Flavonols in Spinach Leaves. J. Org. Chem. 1961, 26, 4718–4719. [Google Scholar] [CrossRef]
- Phenol-Explorer Food Composition-Spinach, Raw. Available online: http://phenol-explorer.eu/contents/food/272#folin-assay (accessed on 28 January 2024).
- Barber, E.; Houghton, M.J.; Williamson, G. Flavonoids as Human Intestinal α-Glucosidase Inhibitors. Foods 2021, 10, 1939. [Google Scholar] [CrossRef]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Frankowska, A.; Jeswani, H.K.; Azapagic, A. Environmental Impacts of Vegetables Consumption in the UK. Sci. Total Environ. 2019, 682, 80–105. [Google Scholar] [CrossRef] [PubMed]
- Statista Bread—Worldwide. Available online: https://www.statista.com/outlook/cmo/food/bread-cereal-products/bread/worldwide (accessed on 28 January 2024).
- Willett, W.; Manson, J.; Liu, S. Glycemic Index, Glycemic Load, and Risk of Type 2 Diabetes. Am. J. Clin. Nutr. 2002, 76, 274S–280S. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Australia New Zealand Survey of Nitrates and Nitrites in Food and Beverages in Australia. Available online: https://www.foodstandards.gov.au/science-data/surveillance/surveyofnitrates (accessed on 22 June 2024).
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of Spinach Powder on the Physicochemical and Antioxidant Properties of Durum Wheat Bread. LWT 2021, 150, 112058. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of the AACC–Method 74-09; AACC: St Paul, MN, USA, 1988. [Google Scholar]
- Baker, A.E.; Walker, C.E.; Kemp, K. An Optimum Compression Depth for Measuring Bread Crumb Firmness. In Cereal Chemistry; American Association of Cereal Chemists: St. Paul, MN, USA, 1988; Volume 65, pp. 302–307. [Google Scholar]
- Chou, S.; Meng, X.; Cui, H.; Zhang, S.; Wang, H.; Li, B. Rheological and Pasting Properties of Maize, Wheat and Rice Starch as Affected by Apple Polyphenols. Int. J. Food Prop. 2019, 22, 1786–1798. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical Interactions between Rice Starch and Different Polyphenols and Structural Characterization of Their Complexes. LWT 2020, 125, 109227. [Google Scholar] [CrossRef]
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance 2017. ISO: Geneva, Switzerland, 2017.
- Mammasse, N.; Schlich, P. Adequate Number of Consumers in a Liking Test. Insights from Resampling in Seven Studies. Food Qual. Prefer. 2014, 31, 124–128. [Google Scholar] [CrossRef]
- Nyitrai, Á.; Urbin, Á.; Nagy, B.V.; Sipos, L. Novel Approach in Sensory Color Masking: Effects of Colored Environments on Chocolates with Different Cocoa Content. Food Qual. Prefer. 2022, 95, 104363. [Google Scholar] [CrossRef]
- Singh-Ackbarali, D.; Maharaj, R. Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at The University of Trinidad and Tobago. J. Curric. Teach. 2014, 3, 10–27. [Google Scholar] [CrossRef]
- Food Standards Australia and New Zealand (FSANZ) Food Composition Databases. Available online: https://www.foodstandards.gov.au/science-data/food-composition-databases (accessed on 7 June 2024).
- Xyris FoodWorks Introduction to Dietary Analysis with FoodWorks 10. Available online: https://support.xyris.com.au/hc/en-us/article_attachments/360002775975 (accessed on 7 June 2024).
- Food Standards Australia and New Zealand Australian Food Composition Database—Release 2.0. Available online: https://afcd.foodstandards.gov.au/fooddetails.aspx?PFKID=F008761 (accessed on 22 July 2024).
- U.S. Department of Agriculture Spinach, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168462/nutrients (accessed on 19 May 2024).
- Kumar, R.; Khatkar, B.S. Thermal, Pasting and Morphological Properties of Starch Granules of Wheat (Triticum aestivum L.) Varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Mohd Shukri, A.; Cheng, L.-H. The Properties of Different Starches under the Influence of Glucono-Delta-Lactone at Different Concentrations. Foods 2023, 12, 1770. [Google Scholar] [CrossRef]
- Yildiz, Ö.; Yurt, B.; Baştürk, A.; Toker, Ö.S.; Yilmaz, M.T.; Karaman, S.; Dağlıoğlu, O. Pasting Properties, Texture Profile and Stress–Relaxation Behavior of Wheat Starch/Dietary Fiber Systems. Food Res. Int. 2013, 53, 278–290. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Comparative Study of Physicochemical, Functional, Antinutritional and Pasting Properties of Taro (Colocasia esculenta), Rice (Oryza sativa) Flour, Pigeonpea (Cajanus cajan) Flour and Their Blends. LWT-Food Sci. Technol. 2012, 48, 59–68. [Google Scholar] [CrossRef]
- Pacheco, A.F.C.; Pacheco, F.C.; dos Santos, F.R.; Cunha, J.S.; Paiva, P.H.C. Starch Paste Properties. In Methods and Protocols in Food Science; Banger, S.P., Ed.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2024; pp. 123–143. [Google Scholar]
- Fagundes, G.A.; Rocha, M.; Salas-Mellado, M.M. Improvement of Protein Content and Effect on Technological Properties of Wheat Bread with the Addition by Cobia (Rachycentron canadum). Food Res. 2018, 2, 221–227. [Google Scholar] [CrossRef]
- Sari, K.I.; Rafisa, A. Chewing and Swallowing Patterns for Different Food Textures in Healthy Subjects. Int. J. Dent. 2023, 2023, 6709350. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Roque, A.R.F.; Seiça, F.F.A.; Batista, C.E.O. Effect of Chemical Pretreatments on the Physical Properties of Kiwi. ETP Int. J. Food Eng. 2016, 2, 90–95. [Google Scholar] [CrossRef]
- Paredes, J.; Cortizo-Lacalle, D.; Imaz, A.M.; Aldazabal, J.; Vila, M. Application of Texture Analysis Methods for the Characterization of Cultured Meat. Sci. Rep. 2022, 12, 3898. [Google Scholar] [CrossRef]
- Trịnh, K.T.; Glasgow, S. On the Texture Profile Analysis Test. In Proceedings of the Chemeca 2012, Wellington, New Zealand, 23–26 September 2012. [Google Scholar]
- Szczesniak, A.S. Texture Is a Sensory Property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Kidmose, U.; Edelenbos, M.; Christensen, L.P.; Hegelund, E. Chromatographic Determination of Changes in Pigments in Spinach (Spinacia oleracea L.) During Processing. J. Chromatogr. Sci. 2005, 43, 466–472. [Google Scholar] [CrossRef]
- Waseem, M.; Akhtar, S.; Manzoor, M.F.; Mirani, A.A.; Ali, Z.; Ismail, T.; Ahmad, N.; Karrar, E. Nutritional Characterization and Food Value Addition Properties of Dehydrated Spinach Powder. Food Sci. Nutr. 2021, 9, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Sengev, A.I.; Abu, J.O.; Gernah, D.I. Effect of Moringa oleifera Leaf Powder Supplementation on Some Quality Characteristics of Wheat Bread. Food Nutr. Sci. 2013, 4, 270–275. [Google Scholar] [CrossRef]
- Okakpu, K.G.; Offia-Olua, B.I.; Okakpu, C.J.; Okpara, C.M. Quality Characteristics of Bread Made from Flour Blends of Wheat, Cooking Banana and Mungbean. J. Adv. Food Sci. Technol. 2023, 10, 9–15. [Google Scholar] [CrossRef]
- Begum, R.; Chowdhury, M.A.F.; Hasan, M.R.; Rahman, M.F.; Rahman, M.H.; Alim, M.A. Efficacy of Freeze-Dried Carrot Pomace Powder in Improving the Quality of Wheat Bread. Food Res. 2023, 7, 11–22. [Google Scholar] [CrossRef]
- Ranawana, V.; Campbell, F.; Bestwick, C.; Nicol, P.; Milne, L.; Duthie, G.; Raikos, V. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part II: Breads Not Containing Oil as an Ingredient. Foods 2016, 5, 62. [Google Scholar] [CrossRef]
- Wang, J.; Rosell, C.M.; Benedito de Barber, C. Effect of the Addition of Different Fibres on Wheat Dough Performance and Bread Quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Muccilli, S.; Padalino, L.; Giannone, V.; Lecce, L.; Giovanniello, V.; Del Nobile, M.A.; De Vita, P.; Spina, A. Durum Wheat Breads “high in Fibre” and with Reduced in Vitro Glycaemic Response Obtained by Partial Semolina Replacement with Minor Cereals and Pulses. J. Food Sci. Technol. 2018, 55, 4458–4467. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zhou, C.; Li, W.; Wang, K. Effects of Kiwifruit Dietary Fibers on Pasting Properties and In Vitro Starch Digestibility of Wheat Starch. Nutrients 2024, 16, 749. [Google Scholar] [CrossRef]
- Zhu, F. Interactions between Starch and Phenolic Compound. Trends Food Sci. Technol. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. A Systematic Review of Gluten-Free Dough and Bread: Dough Rheology, Bread Characteristics, and Improvement Strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary Fiber-Gluten Protein Interaction in Wheat Flour Dough: Analysis, Consequences and Proposed Mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
- Gómez, M.; Ronda, F.; Blanco, C.A.; Caballero, P.A.; Apesteguía, A. Effect of Dietary Fibre on Dough Rheology and Bread Quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Amoah, I.; Cairncross, C.; Rush, E. Swallowing and Liking of Vegetable-Enriched Bread Compared With Commercial Breads as Evaluated by Older Adults. Front. Nutr. 2021, 7, 599737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liang, W.; Wan, J.; Wang, M. Spinach (Spinacia oleracea) Microgreen Prevents the Formation of Advanced Glycation End Products in Model Systems and Breads. Curr. Res. Food Sci. 2023, 6, 100490. [Google Scholar] [CrossRef] [PubMed]
- Nisha, P.; Singhal, R.S.; Pandit, A.B. A Study on the Degradation Kinetics of Visual Green Colour in Spinach (Spinacea Oleracea L.) and the Effect of Salt Therein. J. Food Eng. 2004, 64, 135–142. [Google Scholar] [CrossRef]
- Mohtarami, F.; Esmaiili, M.; Nouraddini, M.; Ostad, I. Fortification of Simit Bread with Spinach Powder: Evaluation of Physico-Chemical, Textural, and Sensorial Properties. Food Sci. Technol. 2022, 18, 225–236. [Google Scholar] [CrossRef]
- Khan, M.A.; Mahesh, C.; Semwal, A.D.; Sharma, G.K. Effect of Spinach Powder on Physico-Chemical, Rheological, Nutritional and Sensory Characteristics of Chapati Premixes. J. Food Sci. Technol. 2015, 52, 2359–2365. [Google Scholar] [CrossRef] [PubMed]
- Kiranawati, T.M.; Hidayati, L.; Saputri, A.M.J.; Sari, R.A.; Susanto, H. The Analysis of Bread Quality from Moringa Oleifera (Kelor) Leaf Flour. In Proceedings of the International Conference on Life Sciences and Technology, Malang, Indonesia, 29 September 2020; AIP Publishing: Melville, NY, USA, 2021; p. 030023. [Google Scholar]
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Kebede, B.T.; Grauwet, T.; Tabilo-Munizaga, G.; Palmers, S.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Headspace Components That Discriminate between Thermal and High Pressure High Temperature Treated Green Vegetables: Identification and Linkage to Possible Process-Induced Chemical Changes. Food Chem. 2013, 141, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Masanetz, C.; Guth, H.; Grosch, W. Fishy and Hay-like off-Flavours of Dry Spinach. Z. Leb. Und-Forsch. A 1998, 206, 108–113. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Marín, A.; Jordán, M.J.; Gil, M.I. Off-Odor Compounds Responsible for Quality Loss of Minimally Processed Baby Spinach Stored under MA of Low O2 and High CO2 Using GC–MS and Olfactometry Techniques. Postharvest Biol. Technol. 2017, 129, 129–135. [Google Scholar] [CrossRef]
- Mehta, V.; Desai, N.; Perwez, A.; Nemade, D.; Dawoodi, S.; Zaman, S. Bin ACE Alzheimer’s: The Role of Vitamin A, C and E (ACE) in Oxidative Stress Induced Alzheimer’s Disease. J. Med. Res. Innov. 2017, 2, e000086. [Google Scholar] [CrossRef]
- Purić, M.; Rabrenović, B.; Rac, V.; Pezo, L.; Tomašević, I.; Demin, M. Application of Defatted Apple Seed Cakes as a By-Product for the Enrichment of Wheat Bread. LWT 2020, 130, 109391. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. [Google Scholar] [CrossRef]
- Galla, N.R.; Pamidighantam, P.R.; Karakala, B.; Gurusiddaiah, M.R.; Akula, S. Nutritional, Textural and Sensory Quality of Biscuits Supplemented with Spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Lee, H.W.; Bi, X.; Henry, C.J. Assessment of Oxalates and Phytic Acid Contents in Asian Green Leafy Vegetables: Dietary Recommendations. Food Humanit. 2023, 1, 1223–1228. [Google Scholar] [CrossRef]
- World Health Organisation. Accelerating Anaemia Reduction: A Comprehensive Framework for Action; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Grafenauer, S.; Curtain, F. An Audit of Australian Bread with a Focus on Loaf Breads and Whole Grain. Nutrients 2018, 10, 1106. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Executive Summary; National Health and Medical Research Council: Canberra, Australia, 2006.
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary Nitrate Provides Sustained Blood Pressure Lowering in Hypertensive Patients. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Blekkenhorst, L.C.; Liu, A.H.; Bondonno, N.P.; Ward, N.C.; Croft, K.D.; Hodgson, J.M. Vegetable-Derived Bioactive Nitrate and Cardiovascular Health. Mol. Aspects Med. 2018, 61, 83–91. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Yang, X.; Croft, K.D.; Considine, M.J.; Ward, N.C.; Rich, L.; Puddey, I.B.; Swinny, E.; Mubarak, A.; Hodgson, J.M. Flavonoid-Rich Apples and Nitrate-Rich Spinach Augment Nitric Oxide Status and Improve Endothelial Function in Healthy Men and Women: A Randomized Controlled Trial. Free Radic. Biol. Med. 2012, 52, 95–102. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The Inhibitory Effects of Flavonoids on α-Amylase and α-Glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-Glucosidase and α-Amylase by Flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef]
Ingredients [g (%) (w/w)] | Control Bread | Spinach Bread (%) (w/w) | |||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
1. Bread flour | 480 (54.0) | 450 (51.6) | 440 (49.5) | 420 (47.3) | 400 (45.0) |
2. Warm water | 355 (39.9) | 283 (31.8) | 212 (23.9) | 141 (15.9) | 70 (7.9) |
3. Gluten substitute | 0.0 | 2.3 (0.3) | 4.6 (0.5) | 6.9 (0.8) | 9.2 (1.0) |
4. Spinach | 0.0 | 89.7 (10.1) | 178.4 (20.1) | 267.1 (30.1) | 355.8 (40.0) |
5. Yeast (Saccharomyces cerevisiae) | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) |
6. Bread improver | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) |
7. Sugar, caster | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) |
8. Butter | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) | 10 (1.1) |
9. Salt | 5 (0.6) | 5 (0.6) | 5 (0.6) | 5 (0.6) | 5 (0.6) |
10. Gluten | 8.9 (1.0) | 8.9 (1.0) | 8.9 (1.0) | 8.9 (1.0) | 8.9 (1.0) |
Total weight (g) | 888.9 | 888.9 | 888.9 | 888.9 | 888.9 |
Control White Bread | Spinach-Enriched Bread | ||||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
Yield (%) | 84 ± 1.5 a | 82 ± 2.1 ab | 81 ± 1.5 ab | 80 ± 1.5 ab | 80 ± 0.0 b |
Weight (g) | 749 ± 15.7 a | 726 ± 17.0 ab | 723 ± 14.8 ab | 712 ± 12.1 b | 712 ± 1.5 b |
Values (/100 g Baked Bread) | Spinach/100 g | Control | 10% Spinach | p-Value | 20% Spinach | p-Value | 30% Spinach | p-Value | 40% Spinach | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Energy (kJ) | 82 | 1053 ± 22 | 1061± 25 | 0.7132 | 1040 ± 21 | 0.4789 | 1029 ± 18 | 0.2118 | 1003 ± 2 * | 0.0163 |
Protein (g) | 2.40 | 9.04 ± 0.18 | 9.53 ± 0.22 * | 0.0405 | 9.78 ± 0.19 ** | 0.0083 | 10.14 ± 0.17 ** | 0.0016 | 10.35 ± 0.02 *** | 0.0002 |
Total fat (g) | 0.30 | 2.26 ± 0.05 | 2.32 ± 0.06 | 0.2426 | 2.32 ± 0.04 | 0.1757 | 2.34 ± 0.04 | 0.0721 | 2.33 ± 0.01 | 0.0514 |
Saturated fat (g) | 0.00 | 0.87 ± 0.02 | 0.89 ± 0.02 | 0.3046 | 0.89 ± 0.02 | 0.3465 | 0.90 ± 0.02 | 0.1926 | 0.89 ± 0.00 | 0.2378 |
Trans Fatty Acids (g) | 0.00 | 0.06 ± 0.01 | 0.07 ± 0.00 | 0.1161 | 0.07 ± 0.00 | 0.1161 | 0.07 ± 0.00 | 0.1161 | 0.07 ± 0.00 | 0.1161 |
Polyunsaturated fat (g) | 0.00 | 0.49 ± 0.01 | 0.48 ± 0.01 | 0.2879 | 0.46 ± 0.01 * | 0.0390 | 0.45 ± 0.01 ** | 0.0080 | 0.43 ± 0.00 *** | 0.0005 |
Monounsaturated fat (g) | 0.00 | 0.36 ± 0.01 | 0.37 ± 0.01 | 0.2879 | 0.37 ± 0.01 | 0.3739 | 0.37 ± 0.01 | 0.3739 | 0.36 ± 0.00 | 1.0000 |
Carbohydrate (g) | 0.60 | 47.17 ± 0.97 | 46.85 ± 1.09 | 0.7208 | 45.24 ± 0.89 | 0.0640 | 44.07 ± 0.76 * | 0.0121 | 42.22 ± 0.09 *** | 0.0009 |
Sugars (g) | 0.60 | 2.49 ± 0.06 | 2.59 ± 0.06 | 0.0946 | 2.63 ± 0.05 * | 0.0335 | 2.69 ± 0.05 ** | 0.0085 | 2.71 ± 0.01 ** | 0.0023 |
Starch (g) | 0.00 | 44.68 ± 0.93 | 44.25 ± 1.03 | 0.6218 | 42.61 ± 0.84 * | 0.0457 | 41.38 ± 0.71 ** | 0.0081 | 39.51 ± 0.08 *** | 0.0007 |
Dietary fibre (g) | 2.50 | 2.02 ± 0.05 | 2.33 ± 0.06 ** | 0.0018 | 2.58 ± 0.05 **** | 0.0001 | 2.85 ± 0.05 **** | <0.0001 | 3.10 ± 0.01 **** | <0.0001 |
Ash (g) | 1.60 | 1.15 ± 0.03 | 1.37 ± 0.03 *** | 0.0006 | 1.56 ± 0.03 **** | 0.0001 | 1.77 ± 0.03 **** | <0.0001 | 1.95 ± 0.01 **** | <0.0001 |
Values (/100 g Baked Bread) | Spinach/100 g | Control | 10% Spinach | p-Value | 20% Spinach | p-Value | 30% Spinach | p-Value | 40% Spinach | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Thiamin (mg) | 0.06 | 0.28 ± 0.01 | 0.28 ± 0.01 | 0.6433 | 0.28 ± 0.01 | 1.0000 | 0.28 ± 0.01 | 1.0000 | 0.27 ± 0.00 | 0.1161 |
Riboflavin (mg) | 0.16 | 0.00 ± 0.00 | 0.02 ± 0.00 | - | 0.04 ± 0.00 | - | 0.06 ± 0.00 | - | 0.08 ± 0.00 | - |
Niacin (mg) | 0.40 | 0.96 ± 0.02 | 1.02 ± 0.03 * | 0.0474 | 1.04 ± 0.02 ** | 0.0093 | 1.08 ± 0.02 ** | 0.0021 | 1.10 ± 0.01 *** | 0.0004 |
Niacin eq. (mg) | 0.99 | 2.90 ± 0.06 | 3.05 ± 0.07 * | 0.0435 | 3.13 ± 0.06 ** | 0.0094 | 3.24 ± 0.06 ** | 0.0020 | 3.31 ± 0.01 *** | 0.0003 |
Pyridoxine (mg) | 0.16 | 0.05 ± 0.01 | 0.06 ± 0.01 * | 0.0241 | 0.08 ± 0.00 *** | 0.0006 | 0.10 ± 0.00 **** | 0.0001 | 0.12 ± 0.00 **** | <0.0001 |
Folic acid (µg) | 0.00 | 38.59 ± 0.80 | 38.14 ± 0.89 | 0.5443 | 36.64 ± 0.73 * | 0.0353 | 35.5 ± 0.61 ** | 0.0059 | 33.79 ± 0.07 *** | 0.0005 |
Food folate (µg) | 110.0 | 36.3 ± 0.8 | 47.4 ± 1.1 **** | 0.0001 | 57.5 ± 1.1 **** | <0.0001 | 68.4 ± 1.2 **** | <0.0001 | 78.4 ± 0.2 **** | <0.0001 |
Total vitamin A eq. (µg) | 469.0 | 11.5 ± 0.2 | 50.3 ± 1.2 **** | <0.0001 | 88.8 ± 1.8 **** | <0.0001 | 128.9 ± 2.2 **** | <0.0001 | 167.6 ± 0.3 **** | <0.0001 |
Retinol (µg) | 0.00 | 11.11 ± 0.23 | 11.46 ± 0.27 | 0.1643 | 11.51 ± 0.23 | 0.0995 | 11.68 ± 0.20 * | 0.0332 | 11.68 ± 0.03 * | 0.0137 |
β carotene (µg) | 1920.0 | 2.04 ± 0.04 | 227.5 ± 5.3 **** | <0.0001 | 452.3 ± 8.9 **** | <0.0001 | 686.1 ± 11.8 **** | <0.0001 | 913.0 ± 1.8 **** | <0.0001 |
Vitamin C (mg) | 27.00 | 0.00 ± 0.00 | 2.34 ± 0.06 **** | <0.0001 | 4.67 ± 0.09 **** | <0.0001 | 7.09 ± 0.12 **** | <0.0001 | 9.44 ± 0.02 **** | <0.0001 |
Vitamin E (mg) | 1.30 | 0.09 ± 0.00 | 0.24 ± 0.01 **** | <0.0001 | 0.39 ± 0.01 **** | <0.0001 | 0.55 ± 0.01 **** | <0.0001 | 0.70 ± 0.00 **** | <0.0001 |
Tocopherol, α (mg) | 1.30 | 0.09 ± 0.00 | 0.24 ± 0.01 **** | <0.0001 | 0.39 ± 0.01 **** | <0.0001 | 0.55 ± 0.01 **** | <0.0001 | 0.70 ± 0.00 **** | <0.0001 |
Iron (mg) | 3.20 | 0.88 ± 0.02 | 1.28 ± 0.03 **** | <0.0001 | 1.67 ± 0.03 **** | <0.0001 | 2.07 ± 0.04 **** | <0.0001 | 2.45 ± 0.01 **** | <0.0001 |
Zinc (mg) | 0.60 | 0.79 ± 0.02 | 0.87 ± 0.02 ** | 0.0080 | 0.92 ± 0.02 ** | 0.0013 | 0.99 ± 0.02 *** | 0.0003 | 1.05 ± 0.01 **** | <0.0001 |
Calcium (mg) | 53.0 | 16.80 ± 0.34 | 23.55 ± 0.55 **** | 0.0001 | 29.83 ± 0.58 **** | <0.0001 | 36.54 ± 0.62 **** | <0.0001 | 42.80 ± 0.08 **** | <0.0001 |
Potassium (mg) | 570.0 | 130.3 ± 2.7 | 200.4 ± 4.7 **** | <0.0001 | 266.9 ± 5.3 **** | <0.0001 | 337.4 ± 5.8 **** | <0.0001 | 403.8 ± 0.8 **** | <0.0001 |
Magnesium (mg) | 68.0 | 25.15 ± 0.52 | 33.3 ± 0.77 **** | 0.0001 | 40.80 ± 0.80 **** | <0.0001 | 48.85 ± 0.84 **** | <0.0001 | 56.27 ± 0.12 **** | <0.0001 |
Phosphorus (mg) | 46.0 | 98.1 ± 2.0 | 104.1 ± 2.4 * | 0.0303 | 107.5 ± 2.1 ** | 0.0053 | 112.0 ± 1.9 *** | 0.0010 | 114.9 ± 0.2 **** | 0.0001 |
Sodium (mg) | 21.0 | 267.0 ± 5.6 | 280.7 ± 6.5 | 0.0963 | 284.3 ± 5.6 * | 0.0352 | 290.8 ± 5.0 ** | 0.0085 | 293.0 ± 0.6 ** | 0.0021 |
Selenium (µg) | 0.00 | 8.21 ± 0.17 | 8.26 ± 0.20 | 0.7376 | 8.09 ± 0.16 | 0.4310 | 8.00 ± 0.14 | 0.1720 | 7.80 ± 0.02 * | 0.0130 |
Iodine (µg) | 0.00 | 5.69 ± 0.12 | 5.59 ± 0.13 | 0.3786 | 5.34 ± 0.10 * | 0.0186 | 5.14 ± 0.09 ** | 0.0030 | 4.86 ± 0.01 *** | 0.0003 |
Linoleic (g) | - | 0.45 ± 0.01 | 0.44 ± 0.01 | 0.4918 | 0.43 ± 0.01 * | 0.0249 | 0.42 ± 0.01 ** | 0.0075 | 0.40 ± 0.00 *** | 0.0010 |
α-Linolenic (g) | - | 0.04 ± 0.00 | 0.04 ± 0.00 | - | 0.04 ± 0.01 | 0.3739 | 0.04 ± 0.01 | 0.3739 | 0.03 ± 0.00 | - |
Nitrate (mg) | 296.0 | 0.00 ± 0.00 | 36.6 ± 0.9 **** | <0.0001 | 73.1 ± 1.4 **** | <0.0001 | 111.1 ± 1.9 **** | <0.0001 | 147.9 ± 0.3 **** | <0.0001 |
Nitrite (mg) | 3.80 | 0.00 ± 0.00 | 0.46 ± 0.01 **** | <0.0001 | 0.92 ± 0.02 **** | <0.0001 | 1.41 ± 0.03 **** | <0.0001 | 1.87 ± 0.01 **** | <0.0001 |
Kaempferol (mg) | 7.86 | 0.00 ± 0.00 | 0.97 ± 0.02 **** | <0.0001 | 1.94 ± 0.04 **** | <0.0001 | 2.95 ± 0.05 **** | <0.0001 | 3.93 ± 0.01 **** | <0.0001 |
Quercetin (mg) | 5.87 | 0.00 ± 0.00 | 0.73 ± 0.02 **** | <0.0001 | 1.45 ± 0.03 **** | <0.0001 | 2.20 ± 0.04 **** | <0.0001 | 2.93 ± 0.01 **** | <0.0001 |
Luteolin (mg) | 1.11 | 0.00 ± 0.00 | 0.14 ± 0.01 **** | <0.0001 | 0.28 ± 0.01 **** | <0.0001 | 0.42 ± 0.01 **** | <0.0001 | 0.55 ± 0.01 **** | <0.0001 |
Total polyphenols | 248.1 | 0.00 ± 0.00 | 30.0 ± 1.0 **** | <0.0001 | 60.6 ± 1.5 **** | <0.0001 | 92.7 ± 1.5 **** | <0.0001 | 123.3 ± 0.6 **** | <0.0001 |
Primary Test | Freeze-Dried Spinach Concentration Added to the Dough | ||||
---|---|---|---|---|---|
Control | 10% | 20% | 30% | 40% | |
Peak viscosity (cP) | 1619 c | 2395 c | 2972 bc | 3920 b | 7539 a |
Trough viscosity (cP) | 893 c | 1133 bc | 1216 bc | 1742 b | 3237 a |
Breakdown viscosity (cP) | 727 d | 1262 cd | 1757 bc | 2179 b | 4302 a |
Final viscosity (cP) | 1923 b | 2018 b | 2015 b | 2720 b | 4961 a |
Setback viscosity (cP) | 1030 b | 885 b | 799 b | 978 b | 1724 a |
Peak time (min) | 5.7 ab | 5.8 a | 5.8 a | 5.6 b | 4.9 c |
Pasting temperature (°C) | 85.9 a | 65.9 b | 65.2 b | 65.6 b | 63.3 c |
Spinach Bread | Comments and Recommendations |
---|---|
0% (286) | “I love this product” “a bit dry” “a bit bitter and bland, so more salt” |
10% (492) | “a bit crumbly” “good balance of taste of bread and spinach” “the smell is still quite strong” “the product is a bit dry, lacks moisture” “feels stale” “bitter and bland, it also tastes eggy” “overall flavour needs improving, maybe more salt” “reduce dryness” |
20% (219) | “similar to 492 but slightly more sour” “less spinach taste” “the smell of the bread needs to be improved” “very distinct flavour” “add salt” “bitter and bland” |
30% (537) | “still a slight taste of spinach that overpowers the bread” “strong aftertaste” “the smell is quite strong, decrease it” “it is bitter” “very bitter taste” |
40% (153) | “a little too fluffy” “strong leafy taste, mouldy odour” “this one has an unpleasant aftertaste” “masking the smell of the spinach” “less spinach taste” “the herbal smell of the bread is quite strong, it might need to be improved, (make it less)” “it is bitter so check if spoilt and if not add more salt to enhance taste” “it is bitter” “very strong taste of spirulina, taste like grass. The texture of the bread is lovely, but need to mask the flavour” “too earthy” “make it less bitter” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, R.V.; Dhital, S.; Williamson, G.; Barber, E. Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread. Foods 2024, 13, 2401. https://doi.org/10.3390/foods13152401
Prasad RV, Dhital S, Williamson G, Barber E. Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread. Foods. 2024; 13(15):2401. https://doi.org/10.3390/foods13152401
Chicago/Turabian StylePrasad, Ritnesh Vishal, Sushil Dhital, Gary Williamson, and Elizabeth Barber. 2024. "Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread" Foods 13, no. 15: 2401. https://doi.org/10.3390/foods13152401
APA StylePrasad, R. V., Dhital, S., Williamson, G., & Barber, E. (2024). Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread. Foods, 13(15), 2401. https://doi.org/10.3390/foods13152401