Bacterial Degradation of Antinutrients in Foods: The Genomic Insight
Abstract
:1. Introduction
2. Classification, Abundance and Adverse Health Effects of Antinutrients
2.1. Antinutrients with Protein Structure
2.2. Glycosides
2.3. Phenols
2.4. Anti-Minerals: Phytates and Oxalates
2.4.1. Phytate
2.4.2. Oxalates
2.5. Anti-Vitamins and Anti-Enzymes
3. Non-Microbial Methods for Antinutrients Detoxification
4. Bacterial Reduction of Antinutrients
4.1. Microbial Degradation of Lectins
4.2. Microbial Degradation of Cyanogenic Glycosides
4.3. Microbial Degradation of Saponins
4.4. Microbial Degradation of Tannins
4.5. Microbial Inactivation of Trypsin Inhibitors
4.6. Microbial Degradation of Phytates
4.7. Microbial Degradation of Oxalates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Petroski, W.; Minich, D.M. Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020, 12, 2929. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. J. Open Biotechnol. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Barkla, B.J.; Farzana, T.; Rose, T.J. Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options. Agronomy 2024, 14, 242. [Google Scholar] [CrossRef]
- Pham, H.H.T.; Kim, D.H.; Nguyen, T.L. Wide-genome selection of lactic acid bacteria harboring genes that promote the elimination of antinutritional factors. Front. Plant Sci. 2023, 14, 1145041. [Google Scholar] [CrossRef] [PubMed]
- David, L.S.; Nalle, C.L.; Abdollahi, M.R.; Ravindran, V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals 2024, 14, 619. [Google Scholar] [CrossRef] [PubMed]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef]
- Arshad, N.; Akhtar, S.; Ismail, T.; Saeed, W.; Qamar, M.; Özogul, F.; Bartkiene, E.; Rocha, J.M. The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.). Foods 2023, 12, 2851. [Google Scholar] [CrossRef]
- Petrova, P.; Petrov, K. Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef]
- Fraberger, V.; Özülkü, G.; Petrova, P.; Nada, K.; Petrov, K.; Johann, D.K.; Rocha, J.M.F. Sourdough as a Source of Technological, Antimicrobial, and Probiotic Microorganisms. In Sourdough Innovations; CRC Press: Boca Raton, FL, USA, 2023; pp. 265–310. [Google Scholar]
- Cid-Gallegos, M.; Corzo-Ríos, L.; Jiménez-Martinez, C.; Sánchez-Chino, X. Protease inhibitors from plants as therapeutic agents—A review. Plant Foods Hum. Nutr. 2022, 77, 20–29. [Google Scholar] [CrossRef]
- Juang, Y.-P.; Liang, P.-H. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.J.; Wang, R.N.; Wang, X.B.; Dang, Y.J.; Li, W.; Yu, B. Synthesis and Antiproliferative Activities of Osw-1 Analogues Bearing 2-Acylamino-Xylose Residues. Org. Chem. Front. 2019, 6, 2385–2391. [Google Scholar] [CrossRef]
- Sharma, N.; Angural, S.; Rana, M.; Puri, N.; Kondepudi, K.K.; Gupta, N. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends Food Sci. Technol. 2020, 96, 1–12. [Google Scholar] [CrossRef]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Carlsson, N.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J. Sci. Food Agric. 2019, 99, 5239–5248. [Google Scholar] [CrossRef] [PubMed]
- Caminero, A.; McCarville, J.L.; Zevallos, V.F.; Pigrau, M.; Yu, X.B.; Jury, J.; Galipeau, H.J.; Clarizio, A.V.; Casqueiro, J.; Murray, J.A.; et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology 2019, 156, 2266–2280. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Schuppan, D.; Rojas Tovar, L.E.; Zevallos, V.F.; Loponen, J.; Gänzle, M. Sourdough fermentation degrades wheat alpha-amylase/trypsin inhibitor (ATI) and reduces pro-inflammatory Activity. Foods 2020, 9, 943. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Pickert, G.; Ashfaq-Khan, M.; Zevallos, V. Non-celiac wheat sensitivity: Differential diagnosis, triggers and implications. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Zehring, J.; Mink, K.; Ramminger, S.; Quendt, U.; Zocher, K.; Rohn, S. Analysis and correlations of the protein content and selected ‘antinutrients’ of faba beans (Vicia faba) in a German sample set of the cultivation years 2016, 2017, and 2018. J. Sci. Food Agric. 2023, 103, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; Palou, E.; López-Malo, A. Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation 2024, 10, 7. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Purohit, P.; Rawat, H.; Verma, N.; Mishra, S.; Nautiyal, A.; Anshul; Bhatt, S.; Bisht, N.; Aggarwal, K.; Bora, A.; et al. Analytical approach to assess anti-nutritional factors of grains and oilseeds: A comprehensive review. J. Agric. Res. 2023, 14, 100877. [Google Scholar] [CrossRef]
- Cotabarren, J.; Lufrano, D.; Parisi, M.G.; Obregón, W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. Plant Sci. 2020, 292, 110398. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G. An Augmented Review about Anti-Nutrients and Toxins of Feed Stuff and their Control Strategies, a Step toward Sustainable Resource Utilization. Int. J. Agric. Innov. Res. 2020, 8, 361–377. [Google Scholar]
- Yadav, D.N.; Bansal, S.; Tushir, S.; Kaur, J.; Sharma, K. Advantage of biofortification over fortification technologies. In Wheat and Barley Grain Biofortification; Woodhead Publishing: Sawston, UK, 2020; pp. 257–273. [Google Scholar] [CrossRef]
- Clemente, M.; Corigliano, M.G.; Pariani, S.A.; Sánchez-López, E.F.; Sander, V.A.; Ramos-Duarte, V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019, 20, 1345. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Yadav, R.; Sanyal, I. Evaluating the pesticidal impact of plant protease inhibitors: Lethal weaponry in the co-evolutionary battle. Pest Manag. Sci. 2022, 78, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, R.; Gruber, C.W. Peptide-based protease inhibitors from plants. Drug Discov. Today 2019, 24, 1877–1889. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, E.; Kocaadam-Bozkurt, B.; Bozkurt, O.; Ağagündüz, D.; Capasso, R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins 2023, 15, 356. [Google Scholar] [CrossRef] [PubMed]
- Gitlin-Domagalska, A.; Maciejewska, A.; Dębowski, D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals 2020, 13, 421. [Google Scholar] [CrossRef]
- Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; Demiate, I.M. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Curr. Opin. Food Sci. 2018, 19, 63–71. [Google Scholar] [CrossRef]
- Mishra, A.; Behura, A.; Mawatwal, S.; Kumar, A.; Naik, L.; Mohanty, S.S.; Manna, D.; Dokania, P.; Mishra, A.; Patra, S.; et al. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019, 134, 110827. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Van Damme, E.J.; Barre, A.; Rougé, P. Classification of plant lectins in families of structurally and evolutionary related proteins. Adv. Exp. Med. Biol. 2001, 491, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.L.; Kohler, J.K.; Aebi, M.; Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Mohnen, D.; et al. Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. In Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; Chapter 37. [Google Scholar] [CrossRef]
- Kilpatrick, D.C. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta 2002, 1572, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kawagishi, H. Fungal Lectins: A Growing Family. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2014; pp. 15–38. [Google Scholar] [CrossRef]
- Van Damme, E.J.M.; Rougé, R.; Peumans, W.J. 3.26—Plant Lectins. Compr. Glycosci. Chem. Syst. Biol. 2007, 3, 563–599. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur Walia, A.K. Lectins from red algae and their biomedical potential. J. Appl. Phycol. 2018, 30, 1833–1858. [Google Scholar] [CrossRef] [PubMed]
- Himansha, S.; Sarathi, S.P. Insight of Lectins—A review. Int. J. Sci. Eng. Res. 2012, 3, 813–821. [Google Scholar]
- El-Araby, M.M.; El-Shatoury, E.H.; Soliman, M.M.; Shaaban, H.F. Characterization and antimicrobial activity of lectins purified from three Egyptian leguminous seeds. AMB Express 2020, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, K. Lectins as Bioactive Proteins in Foods and Feeds. J. Food Technol. Res. 2017, 23, 487–494. [Google Scholar] [CrossRef]
- Gong, T.; Wang, X.; Yang, Y.; Yan, Y.; Yu, C.; Zhou, R.; Jiang, W. Plant Lectins Activate the NLRP3 Inflammasome To Promote Inflammatory Disorders. J. Immunol. 2017, 198, 2082–2092. [Google Scholar] [CrossRef]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Sorimachi, K. Direct Evidence for Intracellular Homeostasis in Mammalian Cells: Insulin-independent Glucose Metabolisms. Ann. Res. Rev. Biol. 2022, 37, 10–19. [Google Scholar] [CrossRef]
- Hamid, R.; Masood, A. Dietary Lectins as Disease Causing Toxicants. Pak. J. Nutr. 2009, 8, 293–303. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Huang, Y.; Li, M.; Lu, J.; Jin, N.; He, Y.; Fan, B. Phytohemagglutinin content in fresh kidney bean in China. Int. J. Food Prop. 2019, 22, 405–413. [Google Scholar] [CrossRef]
- Rodhouse, J.C.; Haugh, C.A.; Roberts, D.; Gilbert, R.J. Red kidney bean poisoning in the UK: An analysis of 50 suspected incidents between 1976 and 1989. Epidemiol. Infect. 1990, 105, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, I.M.; Oliveira, J.T. Antinutritional properties of plant lectins. Toxicon 2004, 44, 385–403. [Google Scholar] [CrossRef]
- Bhutia, S.K.; Behera, B.; Das, D.N.; Mukhopadhyay, S.; Sinha, N.; Panda, P.K.; Naik, P.P.; Patra, S.K.; Mandal, M.; Sarkar, S.; et al. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int. J. Cancer 2016, 139, 457–466. [Google Scholar] [CrossRef]
- Podder, M.K.; Hossain, M.M.; Kabir, S.R.; Asaduzzaman, A.K.M.; Hasan, I. Antimicrobial, antioxidant and antiproliferative activities of a galactose-binding seed lectin from Manilkara zapota. Heliyon 2024, 10, e24592. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Møller, B.L. Cyanogenic glycosides: Synthesis, physiology, and phenotypic plasticity. Ann. Rev. Plant Biol. 2014, 65, 155–185. [Google Scholar] [CrossRef]
- He, X.-Y.; Wu, L.-J.; Wang, W.-X.; Xie, P.-J.; Chen, Y.-H.; Wang, F. Amygdalin—A pharmacological and toxicological review. J. Ethnopharmacol. 2020, 254, 112717. [Google Scholar] [CrossRef]
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef]
- Nyirenda, K.K. Toxicity Potential of Cyanogenic Glycosides in Edible Plants. In Medical Toxicology; Pınar Erkekoglu, P., Ogawa, T., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Deen, A.U.; Kumari, V.; Sharma, A.N.; Mondal, G.; Singh, G.P. Goutam Mondal and Gaurav Pratap Singh. Understanding cyanogenic glycoside toxicity in livestock: A review. Int. J. Chem. Stud. 2018, 6, 1559–1561. [Google Scholar]
- Mosayyebi, B.; Imani, M.; Mohammadi, L.; Akbarzadeh, A.; Zarghami, N.; Edalati, M.; Alizadeh, E.; Rahmati, M. An update on the toxicity of cyanogenic glycosides bioactive compounds: Possible clinical application in targeted cancer therapy. Mater. Chem. Phys. 2020, 246, 122841. [Google Scholar] [CrossRef]
- Harenčár, L.; Razna, K.; Nôžková, J. Cyanogenic Glycosides—Their Role and Potential in Plant Food Resources. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4771. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef] [PubMed]
- Bolarinwa, I.F.; Oke, M.O.; Olaniyan, S.A.; Ajala, A.S. A Review of Cyanogenic Glycosides in Edible Plants. In Toxicology—New Aspects to This Scientific Conundrum; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Ruhaizat-Ooi, I.-H.; Zainal-Abidin, R.-A.; Ab Ghani, N.S.; Afiqah-Aleng, N.; Bunawan, H.; Mohd-Assaad, N.; Mohamed-Hussein, Z.-A.; Harun, S. Understanding the Complex Functional Interplay between Glucosinolates and Cyanogenic Glycosides in Carica papaya. Agronomy 2022, 12, 2508. [Google Scholar] [CrossRef]
- Yulvianti, M.; Zidorn, C. Chemical Diversity of Plant Cyanogenic Glycosides: An Overview of Reported Natural Products. Molecules 2021, 26, 719. [Google Scholar] [CrossRef]
- Urugo, M.M.; Tringo, T.T. Naturally Occurring Plant Food Toxicants and the Role of Food Processing Methods in Their Detoxification. Int. J. Food Sci. 2023, 2023, 9947841. [Google Scholar] [CrossRef]
- Banea-Mayambu, J.P.; Tylleskär, T.; Tylleskär, K.; Gebre-Medhin, M.; Rosling, H. Dietary cyanide from insufficiently processed cassava and growth retardation in children in the Democratic Republic of Congo (formerly Zaire). Ann. Trop. Paediatr. 2000, 20, 34–40. [Google Scholar] [CrossRef]
- Ram, S.; Narwal, S.; Gupta, O.P.; Pandey, V.; Singh, G.P. 4—Anti-nutritional factors and bioavailability: Approaches, challenges, and opportunities. In Wheat and Barley Grain Biofortification; Woodhead Publishing Series in Food Science, Technology and Nutrition; Gupta, O.P., Pandey, V., Narwal, S., Sharma, P., Ram, S., Singh, G.P., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 101–128. [Google Scholar] [CrossRef]
- Yeats, T.H. Setting and Diffusing the Cyanide Bomb in Plant Defense. Plant Physiol. 2018, 178, 956–957. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.C.; Sørensen, M.; Veiga, T.A.M.; Zibrandtsen, J.F.S.; Heskes, A.M.; Olsen, C.E.; Neilson, E.H.J. Reconfigured Cyanogenic Glucoside Biosynthesis in Eucalyptus cladocalyx Involves a Cytochrome P450 CYP706C55. Plant Physiol. 2018, 178, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Lindinger, M.I. Ground Flaxseed—How Safe is it for Companion Animals and for Us? Vet. Sci. Res. 2019, 1, 35–40. [Google Scholar] [CrossRef]
- “Safety evaluation of certain food additives and contaminants”. Seventy-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Bulletin of Joint FAO/WHO Expert Committee on Food Additives, WHO, Rome, Italy. 2012. Available online: https://apps.who.int/iris/handle/10665/44813 (accessed on 3 June 2024).
- Babiker, A.; Alawi, A.; Al Atawi, M.; Al Alwan, I. The role of micronutrients in thyroid dysfunction. Sudan J. Paediatr. 2020, 20, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Bandurska-Stankiewicz, E.M.; Aksamit-Białoszewska, E.; Rutkowska, J.; Stankiewicz, A.; Shafie, D. The effect of nutritional habits and addictions on the incidence of thyroid carcinoma in the Olsztyn province of Poland. Endokrynol. Polska 2011, 62, 145–150. [Google Scholar]
- Truong, T.; Baron-Dubourdieu, D.; Rougier, Y.; Guénel, P. Role of dietary iodine and cruciferous vegetables in thyroid cancer: A countrywide case–control study in New Caledonia. Cancer Causes Control 2010, 21, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Canivenc-Lavier, M.-C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-Based, Biological-Active Surfactants from Plants. In Application and Characterization of Surfactants; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Oleszek, M.; Oleszek, W. Saponins in Food. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S., Asakawa, Y., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, V.K.; Sultan, Z.; Singh, R.; Dar, A.H. Classification, benefits, and applications of various anti-nutritional factors present in edible crops. J. Agric. Food Res. 2023, 14, 100902. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Schreiner, T.B.; Dias, M.M.; Barreiro, M.F.; Pinho, S.P. Saponins as Natural Emulsifiers for Nanoemulsions. J. Agric. Food Chem. 2022, 70, 6573–6590. [Google Scholar] [CrossRef] [PubMed]
- Taroncher, M.; Vila-Donat, P.; Tolosa, J.; Ruiz, M.J.; Rodríguez-Carrasco, Y. Biological activity and toxicity of plant nutraceuticals: An overview. Curr. Opin. Food Sci. 2021, 42, 113–118. [Google Scholar] [CrossRef]
- Choudhary, N.; Khatik, G.L.; Suttee, A. The Possible Role of Saponin in Type-II Diabetes- A Review. Curr. Diabetes Rev. 2021, 17, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Tan, L.; Chen, M.; He, C. Pharmacological activities and molecular mechanisms of Pulsatilla saponins. Chin. Med. 2022, 17, 59. [Google Scholar] [CrossRef]
- Nath, H.; Samtiya, M.; Dhewa, T. Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Hum. Nutr. Metab. 2022, 28, 200147. [Google Scholar] [CrossRef]
- del Hierro, J.N.; Herrera, T.; Fornari, T.; Reglero, G.; Martin, D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J. Funct. Foods 2018, 40, 484–497. [Google Scholar] [CrossRef]
- “Code of Federal Regulations”, Food and Drugs. Chapter I—Food and Drugs Administration Department of Health and Human Services, Subchapter B—Food for Human Consumption. 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.510 (accessed on 24 May 2024).
- Oboh, G. Nutritive value and haemolytic properties (in vitro) of the leaves of Vernonia amygdalina on human erythrocyte. Nutr. Health 2006, 18, 151–160. [Google Scholar] [CrossRef]
- Bissinger, R.; Modicano, P.; Alzoubi, K.; Honisch, S.; Faggio, C.; Abed, M.; Lang, F. Effect of saponin on erythrocytes. Int. J. Hematol. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Basu, P.; Maier, C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed. Pharmacother. 2018, 107, 1648–1666. [Google Scholar] [CrossRef]
- Wang, X.; Howell, C.P.; Chen, F.; Yin, J.; Jiang, Y. Gossypol—A polyphenolic compound from cotton plant. Adv. Food Nutr. Res. 2009, 58, 215–263. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M.; Di Lorenzo, A.; Nabavi, S.F.; Talas, Z.S.; Nabavi, S.M. Polyphenols: Well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: You are what you eat! Curr. Pharm. Biotechnol. 2014, 15, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Molino, S.; Casanova, N.A.; Rufián Henares, J.Á.; Fernandez Miyakawa, M.E. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. J. Agric. Food Chem. 2020, 68, 2836–2848. [Google Scholar] [CrossRef]
- Iqbal, N.; Poór, P. Plant Protection by Tannins Depends on Defence-Related Phytohormones. J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Molino, S.; Lerma-Aguilera, A.; Jiménez-Hernández, N.; Rufián Henares, J.Á.; Francino, M.P. Evaluation of the Effects of a Short Supplementation With Tannins on the Gut Microbiota of Healthy Subjects. Front. Microbiol. 2022, 13, 848611. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins medical/pharmacological and related applications: A critical review. Sust. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, V.; Kaur, J.; Tanwar, B.; Goyal, A.; Sharma, R.; Gat, Y.; Kumar, A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2021, 40, 432–444. [Google Scholar] [CrossRef]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Francavilla, A.; Joye, I.J. Anthocyanins in Whole Grain Cereals and Their Potential Effect on Health. Nutrients 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Delimont, N.M.; Haub, M.D.; Lindshield, B.L. The Impact of Tannin Consumption on Iron Bioavailability and Status: A Narrative Review. Curr. Dev. Nutr. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Delimont, N.M.; Fiorentino, N.M.; Kimmel, K.A.; Haub, M.D.; Rosenkranz, S.K.; Lindshield, B.L. Long-Term Dose-Response Condensed Tannin Supplementation Does Not Affect Iron Status or Bioavailability. Curr. Dev. Nutr. 2017, 1, e001081. [Google Scholar] [CrossRef] [PubMed]
- Pebrina, R.; Nafilata, I.; Sunartono, S.; Aselina, F. The Relationship of Drinking Tea Behavior with Levels of Hemoglobin in STIKes Guna Bangsa Yogyakarta Students. J. Health 2019, 6, 126–131. [Google Scholar] [CrossRef]
- de Souza, C.G.; Neto, S.G.; Henriques, L.T.; Araújo, G.G.L.; Dias, L.T.S.; Muniz, A.J.C. Performance and blood parameters of Holstein/Zebu crossbred heifers fed with two tannins sources. Res. Soc. Develop. 2020, 9, 128922150. [Google Scholar] [CrossRef]
- Mani, L.; Fatimah-Muis, S.; Kartini, A. The correlation of intake phytate and tannin on serum transferrin receptor and hemoglobin in stunted overweight adolescents. Potravin. Slovak J. Food Sci. 2019, 13, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Houssni, I.E.; Zahidi, A.; Khedid, K.; Hassikou, R. Review of processes for improving the bioaccessibility of minerals by reducing the harmful effect of phytic acid in wheat. Food Chem. Adv. 2024, 4, 100568. [Google Scholar] [CrossRef]
- Akond, A.S.M.G.M.; Crawford, H.; Berthold, J.; Talukder, Z.I.; Hossain, K. Minerals (Zn, Fe, Ca and Mg) and antinutrient (Phytic acid) constituents in common bean. Am. J. Food Technol. 2011, 6, 235–243. [Google Scholar] [CrossRef]
- Ravindran, V.; Ravindran, G.; Sivalogan, S. Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 1994, 50, 133–136. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Davidsson, L.; Walczyk, T.; Hurrell, R.F. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am. J. Clin. Nutr. 2004, 79, 418–423. [Google Scholar] [CrossRef]
- Petry, N.; Egli, I.; Zeder, C.; Walczyk, T.; Hurrell, R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Essack, H.; Odhav, B.; Mellem, M. Screening of traditional South African leafy vegetables for specific anti-nutritional factors before and after processing. Food Sci. Technol 2017, 37, 3. [Google Scholar] [CrossRef]
- Lonnerdal, B.; Sandberg, A.S.; Sandstorm, B.; Kunz, C. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J. Nutr. 1989, 119, 211–214. [Google Scholar] [CrossRef]
- Zhou, J.R.; John, W.E. Phytic acid in health and disease. Crit. Rev. Food Sci. Nutr. 1995, 35, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Bloot, A.P.M.B.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Cnana, C. A Review of Phytic Acid Sources, Obtention, and Applications. Food Rev. Int. 2023, 39, 1. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.J.; Chun, H.K.; Cho, S.Y.; Cho, S.M.; Lillehoj, H.S. Dietary Phytic Acid Lowers the Blood Glucose Level in Diabetic KK Mice. Nutr. Res. 2006, 29, 474–479. [Google Scholar] [CrossRef]
- Buades Fuster, J.M.; Sanchís Cortés, P.; Perelló Bestard, J.; Grases Freixedas, F. Plant Phosphates, Phytate and Pathological Calcifications in Chronic Kidney Disease. Nefrologia 2017, 37, 20–28. [Google Scholar] [CrossRef]
- Xu, Q.; Kanthasamy, A.G.; Reddy, M.B. Neuroprotective Effect of the Natural Iron Chelator, Phytic Acid in a Cell Culture Model of Parkinson’s Disease. Toxicology 2008, 245, 101–108. [Google Scholar] [CrossRef]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Chapter 1—Food processing for increasing consumption: The case of legumes. In Food Processing for Increased Quality and Consumption; Academic Press: Cambridge, MA, USA, 2018; pp. 1–28. Available online: https://www.scribd.com/book/378677055/Food-Processing-for-Increased-Quality-and-Consumption (accessed on 12 May 2024).
- Stepanova, N. Oxalate Homeostasis in Non-Stone-Forming Chronic Kidney Disease: A Review of Key Findings and Perspectives. Biomedicines 2023, 11, 1654. [Google Scholar] [CrossRef] [PubMed]
- Ermer, T.; Eckardt, K.U.; Aronson, P.S.; Knauf, F. Oxalate, Inflammasome, and Progression of Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2016, 25, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Y.H.; Chi, Z.P.; Huang, R.; Huang, H.; Liu, G.Y.; Zhang, Y.F.; Yang, H.S.; Lin, J.H.; Yang, T.H.; et al. The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urol. Int. 2020, 104, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.S. The Function of Oxalic Acid in the Human Metabolism. Clin. Chem. Lab. Med. 2011, 49, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, Goitrogens, Phytates and Oxalates, Friends or Foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar] [CrossRef]
- Huynh, N.K.; Nguyen, D.H.M.; Nguyen, H.V.H. Effects of processing on oxalate contents in plant foods: A review. J. Food Compost. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Savage, G.; Klunklin, W. Oxalates are found in many different european and asian foods—Effects of cooking and processing. J. Food Res. 2018, 7, 3. [Google Scholar] [CrossRef]
- Curhan, C.C.; Willett, W.C.; Knight, E.L.; Stampfer, M.J. Dietary Factors and the Risk of Incident Kidney Stones in Younger Women: Nurses’ Health Study II. Arch. Intern. Med. 2004, 164, 885–891. [Google Scholar] [CrossRef]
- Akwaowo, E.U.; Ndon, B.A.; Etuk, E.U. Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis Hook f.). Food Chem. 2000, 70, 235–240. [Google Scholar] [CrossRef]
- Munro, A.; Bassir, O. Oxalate in Nigerian vegetables. West African J. Biol. Appl. Chem. 1969, 4, 14–18. [Google Scholar]
- Rahman, M.M.; Abdullah, R.B.; Wan Khadijah, W.E. A review of oxalate poisoning in domestic animals: Tolerance and performance aspects. J. Anim. Physiol. Anim. Nutr. 2013, 97, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, Y.; Shukha, Y.; Lu, H.; Wang, L.; Liu, Z.; Liu, C.; Zhao, Y.; Wang, H.; Zhao, G.; et al. Dysregulated Oxalate Metabolism Is a Driver and Therapeutic Target in Atherosclerosis. Cell Rep. 2021, 36, 109420. [Google Scholar] [CrossRef] [PubMed]
- Zelder, F.; Sonnay, M.; Prieto, L. Antivitamins for Medicinal Applications. ChemBioChem 2015, 16, 1264–1278. [Google Scholar] [CrossRef]
- Sinha, K.; Khare, V. Review on: Antinutritional factors in vegetable crops. Pharma Innov. J. 2017, 6, 353–358. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Lyngdoh, K.D.; Sharma, P.B. Importance of Understanding AntiNutritional Factors Present in our Foods. Food Sci. Rep. 2023, 4, 1–9. [Google Scholar]
- Saxena, I.; Tayyab, S. Protein proteinase inhibitors from avian egg whites. Cell. Mol. Life Sci. 1997, 53, 13–23. [Google Scholar] [CrossRef]
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Chandrasekaran, D.; Purushothaman, M.R. Anti-Nutritional Factors and Toxins in Feeds. In Vistas in Marine Biotechnology; 2010; pp. 166–172. Available online: http://eprints.cmfri.org.in/16686/1/Winter%20School_2010_Vistas%20in%20Marine%20Biotechnology.pdf#page=179 (accessed on 13 April 2024).
- Chowdhury, S.; Punia, D. Nutrient and antinutrient composition of pearl millet grains as affected by milling and baking. Food/Nahrung 1997, 41, 105–107. [Google Scholar] [CrossRef]
- Udensi, E.A.; Arisa, N.U.; Maduka, M. Effects of processing methods on the levels of some antinutritional factors in Mucuna flagellipes. Nig. Food J. 2008, 26, 53–59. [Google Scholar] [CrossRef]
- Vashishth, A.; Ram, S.; Beniwal, V. Cereal phytases and their importance in improvement of micronutrients bioavailability. 3 Biotech 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Nakitto, A.M.; Muyonga, J.H.; Nakimbugwe, D. Effects of combined traditional processing methods on the nutritional quality of beans. Food Sci. Nut. 2015, 3, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Ndouyang, C.J.; Schinzoumka, P.A. Effect of uncontrolled fermentation and soaking on antinutrients of Tacca leontopetaloides (L) Kuntze (Taccaceae) tuber flour. Int. J. Agric. Pol. Res. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Premlata, T.; Bajwa, H.K.; Sharma, V.; Santosh, O. Quality improvement of bamboo shoots by removal of antinutrients using different processing techniques: A review. J. Food Sci Technol. 2022, 59, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frontela, C.; García-Alonso, F.J.; Ros, G.; Martínez, C. Phytic acid and inositol phosphates in raw flours and infant cereals: The effect of processing. J. Food Compos. Anal. 2008, 21, 343–350. [Google Scholar] [CrossRef]
- Abera, S.; Yohannes, W.; Chandravanshi, B.S. Effect of Processing Methods on Antinutritional Factors (Oxalate, Phytate, and Tannin) and Their Interaction with Minerals (Calcium, Iron, and Zinc) in Red, White, and Black Kidney Beans. Int. J. Anal. Chem. 2023, 2023, 6762027. [Google Scholar] [CrossRef] [PubMed]
- Mongwaketse, T.; Kruger, J.; Lewies, A.; Baumgartner, J.; Mattheus Smuts, C. Minerals, antinutrients content and the bioaccessibility of iron and zinc in cooked, spontaneously fermented-dried, and blanched-dried dark green leafy vegetables commonly consumed in Sub-Saharan Africa. Food Sci. Technol. 2022, 42, e37921. [Google Scholar] [CrossRef]
- Faizal, F.I.; Ahmad, N.H.; Yaacob, J.S.; Abdul Halim-Lim, S.; Abd Rahim, M.H. Food processing to reduce antinutrients in plant-based foods. Int. Food Res. J. 2023, 30, 25–45. [Google Scholar] [CrossRef]
- Abd El-Hady, E.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT—Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Bandyopadhyay, S. Extrusion cooking technology employed to reduce the anti-nutritional factor tannin in sesame (Sesamum indicum) meal. J. Food Eng. 2003, 56, 201–202. [Google Scholar] [CrossRef]
- Suhag, R.; Dhiman, A.; Deswal, G.; Thakur, D.; Singh Sharanagat, V.; Kumar, K.; Kumar, V. Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT—Food Sci. Technol. 2021, 150, 111960. [Google Scholar] [CrossRef]
- Huang, H.; Kwok, K.-C.; Liang, H.-H. Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrason. Sonochem. 2008, 15, 724–730. [Google Scholar] [CrossRef]
- Sadhu, S.; Thirumdas, R.; Deshmukh, R.R.; Annapure, U.S. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT—Food Sci. Technol. 2017, 78, 97–104. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Q.; Liu, X.; Ding, T.; Zhang, X.; Zhai, Y.; Bai, Y. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma. Food Chem. 2017, 232, 515–522. [Google Scholar] [CrossRef]
- Ramireddy, L.; Radhakrishnan, M. Chapter 12—Cold plasma applications on pulse processing. In Pulse Foods, 2nd ed.; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 295–307. ISBN 9780128181843. [Google Scholar] [CrossRef]
- Amin, A.; Petersen, I.L.; Malmberg, C.; Orlien, V. Perspective on the Effect of Protein Extraction Method on the Antinutritional Factor (ANF) Content in Seeds. ACS Food Sci. Technol. 2022, 2, 604–612. [Google Scholar] [CrossRef]
- Duraiswamy, A.; Sneha, A.N.M.; Jebakani, K.S.; Selvaraj, S.; Pramitha, J.L.; Selvaraj, R.; Petchiammal, K.I.; Kather Sheriff, S.; Thinakaran, J.; Rathinamoorthy, S.; et al. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2023, 13, 1070398. [Google Scholar] [CrossRef]
- Sokrab, A.M.; Mohamed Ahmed, I.A.; Babiker, E.E. Effect of fermentation on antinutrients, and total and extractable minerals of high and low phytate corn genotypes. J. Food Sci. Technol. 2014, 51, 2608–2615. [Google Scholar] [CrossRef]
- Cuadrado, C.; Hajos, G.; Burbano, C.; Pedrosa, M.M.; Ayet, G.; Muzquiz, M.; Pusztai, A.; Gelencser, E. Effect of natural fermentation on the lectin of lentils measured by immunological methods. Food Agric. Immunol. 2002, 14, 41–49. [Google Scholar] [CrossRef]
- Nivetha, N.; Suvarna, V.C.; Abhishek, R.U. Reduction of Phenolics, Tannins and Cyanogenic Glycosides Contents in Fermented Beverage of Linseed (Linum usitatissimum). Int. J. Food. Ferment. Technol. 2018, 8, 185–190. [Google Scholar] [CrossRef]
- Palani, K.; Harbaum-Piayda, B.; Meske, D.; Keppler, J.K.; Bockelmann, W.; Heller, K.J.; Schwarz, K. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem. 2016, 190, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Bolívar-Monsalve, J.; Ceballos-González, C.; Ramírez-Toro, C.; Bolívar, G.A. Reduction in saponin content and production of glutenfree cream soup base using quinoa fermented with Lactobacillus plantarum. J. Food Proc. Preserv. 2018, 42, e13495. [Google Scholar] [CrossRef]
- Tahmourespour, A.; Tabatabaee, N.; Khalkhali, H.; Amini, I. Tannic acid degradation by Klebsiella strains isolated from goat feces. Iran J. Microbiol. 2016, 8, 14–20. [Google Scholar] [PubMed] [PubMed Central]
- Gao, Y.L.; Wang, C.S.; Zhu, Q.H.; Qian, G.Y. Optimization of solid-state fermentation with Lactobacillus brevis and Aspergillus oryzae for trypsin inhibitor degradation in soybean meal. J. Integr. Agric. 2013, 12, 869–876. [Google Scholar] [CrossRef]
- Osman, M.A. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10, 1–6. [Google Scholar] [CrossRef]
- Magala, M.; Kohajdová, Z.; Karovičová, J. Degradation of phytic acid during fermentation of cereal substrates. J. Cereal Sci. 2015, 61, 94–96. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, D.; Aseri, G.K.; Sohal, J.S.; Vij, S.; Sharma, D. Role of lacto-fermentation in reduction of antinutrients in plant-based foods. J. Appl. Biol. Biotech. 2021, 9, 7–16. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of Fermentation on the Nutritional Quality of the Selected Vegetables and Legumes and Their Health Effects. Life 2023, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Murru, N.; Blaiotta, G.; Peruzy, M.F.; Santonicola, S.; Mercogliano, R.; Aponte, M. Screening of Oxalate Degrading Lactic Acid Bacteria of Food Origin. Ital. J. Food Saf. 2017, 6, 6345. [Google Scholar] [CrossRef]
- Hokama, S.; Honma, Y.; Toma, C.; Ogawa, Y. Oxalate-degrading Enterococcus faecalis. Microbiol. Immunol. 2000, 44, 235–240. [Google Scholar] [CrossRef]
- Jeyakumar, E.; Lawrence, R. 10—Microbial fermentation for reduction of antinutritional factors. In Current Developments in Biotechnology and Bioengineering; Rai, A.K., Singh, S.P., Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–260. [Google Scholar] [CrossRef]
- Michlmayr, H.; Kneifel, W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef]
- He, S.; Shi, J.; Ma, Y.; Xue, S.J.; Zhang, H.; Zhao, S. Kinetics for the thermal stability of lectin from black turtle bean. J. Food Eng. 2014, 142, 132–137. [Google Scholar] [CrossRef]
- Baintner, K.; Duncan, S.H.; Stewart, C.S.; Pusztai, A. Binding and degradation of lectins by components of rumen liquor. J. Appl. Bacteriol. 1993, 74, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, N.; Robles-Montes, A.; van Eys, J. Fermentation of Soybean Meal Results in a Net Reduction of Heat-Labile and Heat-Stable Antinutritional Factors. In Proceedings of the Poultry Science Association 2020 Annual Meeting, Virtual, 20–22 July 2020; Abstract 206. Available online: https://www.soymeal.org/soy-meal-articles/fermentation-of-soybean-meal-results-in-a-net-reduction-of-heat-labile-and-heat-stable-antinutritional-factors/ (accessed on 10 June 2014).
- Cressey, P.; Reeve, J. Metabolism of cyanogenic glycosides: A review. Food. Chem. Toxicol. 2019, 125, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Khota, W.; Kaewpila, C.; Kimprasit, T.; Seemakram, W.; Kakaisorn, S.; Wanapat, M.; Cherdthong, A. The isolation of rumen enterococci strains along with high potential utilizing cyanide. Sci. Rep. 2023, 13, 13176. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Sekar, K.; Al- Sohaibani, S. Detoxification of cyanides in cassava flour by linamarase of Bacillus subtilis KM05 isolated from cassava peel. African J. Biotechnol. 2012, 11, 7232–7237. [Google Scholar]
- Dymarska, M.; Widenmann, A.; Low, K.E.; Abbott, D.W.; Guan, L.; Gänzle, M.G. Conversion of Phytochemicals by Lactobacilli: (Phospho)-β-glucosidases Are Specific for Glucosylated Phytochemicals Rather than Disaccharides. J. Agric. Food Chem. 2024, 72, 5428–5438. [Google Scholar] [CrossRef] [PubMed]
- Modrackova, N.; Vlkova, E.; Tejnecky, V.; Schwab, C.; Neuzil-Bunesova, V. Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific. Microorganisms 2020, 8, 839. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Munjal, N.; Sturino, J.M. Characterization of amygdalin-degrading Lactobacillus species. J. Appl. Microbiol. 2015, 118, 443–453. [Google Scholar] [CrossRef]
- Lei, V.; Amoa-Awua, W.K.; Brimer, L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 1999, 53, 169–184. [Google Scholar] [CrossRef]
- Alphonce, S.; Kaale, L.D. Assessment of Biochemical Changes during Fermentation Process for Production of Traditional Fermented Cassava Meal “Mchuchume”. Tanz. J. Sci. 2020, 46, 228–240. [Google Scholar]
- Overney, C.E.; Huang, J.J. Genome sequence of Bacillus megaterium O1, a saponin degrading bacterium. Microbiol. Resour. Announc. 2020, 9, e00524-20. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wei, P.C.; Chen, Q.; Chen, X.; Wang, S.C.; Li, J.R.; Gao, C. Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria. Biochem. Biophys. Res. Commun. 2018, 496, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Nionelli, L.; Montemurro, M.; Pontonio, E.; Verni, M.; Gobbetti, M.; Rizzello, C.G. Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. Int. J. Food Microbiol. 2018, 279, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Renchinkhand, G.; Park, Y.W.; Cho, S.-H.; Song, G.-Y.; Bae, H.C.; Choi, S.-J.; Nam, M.S. β-Glucosidase and Conversion of Ginsenoside Rb1. J. Food Biochem. 2015, 39, 155–163. [Google Scholar] [CrossRef]
- Renchinkhand, G.; Magsar, U.; Bae, H.C.; Choi, S.-H.; Nam, M.S. Identification of β-Glucosidase Activity of Lentilactobacillus buchneri URN103L and Its Potential to Convert Ginsenoside Rb1 from Panax ginseng. Foods 2022, 11, 529. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, X.; Li, Q.; Liu, J.; Liang, C.; Wang, C.; Zhang, W. Anaerobic digestion for degrading saponins from Panax notoginseng root and applying biogas slurry to promote degradation of autotoxic saponins in continuous cropping soil. Environ. Technol. Innov. 2023, 31, 103203. [Google Scholar] [CrossRef]
- Qian, B.; Yin, L.; Yao, X.; Zhong, Y.; Gui, J.; Lu, F.; Zhang, F.; Zhang, J. Effects of fermentation on the hemolytic activity and degradation of Camellia oleifera saponins by Lb. crustorum and Bacillus subtilis. FEMS Microbiol. Lett. 2018, 365, fny014. [Google Scholar] [CrossRef]
- de Las Rivas, B.; Rodríguez, H.; Anguita, J.; Muñoz, R. Bacterial tannases: Classification and biochemical properties. Appl. Microbiol. Biotechnol. 2019, 103, 603–623. [Google Scholar] [CrossRef]
- Nicholas, K.B.; Nicholas, H.B. GeneDoc: A Tool for Editing and Annotating Multiple Sequence Alignments. 1997. Available online: http://iubioarchive.bio.net/soft/molbio/ibmpc/genedoc-readme.html (accessed on 26 May 2024).
- Guan, L.; Wang, K.; Gao, Y.; Li, J.; Yan, S.; Ji, N.; Ren, C.; Wang, J.; Zhou, Y.; Li, B.; et al. Biochemical and Structural Characterization of a Novel Bacterial Tannase from Lachnospiraceae bacterium in Ruminant Gastrointestinal Tract. Front. Bioeng. Biotechnol. 2021, 9, 806788. [Google Scholar] [CrossRef]
- Mancheño, J.M.; Atondo, E.; Tomás-Cortázar, J.; Luís Lavín, J.; Plaza-Vinuesa, L.; Martín-Ruiz, I.; Barriales, D.; Palacios, A.; Daniel Navo, C.; Sampedro, L.; et al. A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microb. Biotechnol. 2022, 15, 648–667. [Google Scholar] [CrossRef]
- Unban, K.; Kodchasee, P.; Shetty, K.; Khanongnuch, C. Tannin-tolerant and Extracellular Tannase Producing Bacillus Isolated from Traditional Fermented Tea Leaves and Their Probiotic Functional Properties. Foods 2020, 9, 490. [Google Scholar] [CrossRef]
- Ren, B.; Wu, M.; Wang, Q.; Peng, X.; Wen, H.; McKinstry, W.J.; Chen, Q. Crystal structure of tannase from Lactobacillus plantarum. J. Mol. Biol. 2013, 425, 2737–2751. [Google Scholar] [CrossRef]
- Pulido-Mateos, E.C.; Lessard-Lord, J.; Guyonnet, D.; Desjardins, Y.; Royet, D. Comprehensive analysis of the metabolic and genomic features of tannin-transforming Lactiplantibacillus plantarum strains. Sci. Rep. 2022, 12, 22406. [Google Scholar] [CrossRef]
- Maldonado-Barragán, A.; Caballero-Guerrero, B.; Lucena-Padrós, H.; Ruiz-Barba, J.L. Genome sequence of Lactobacillus pentosus IG1, a strain isolated from Spanish-style green olive fermentations. J. Bacteriol. 2011, 193, 5605. [Google Scholar] [CrossRef]
- Carrasco, J.A.; Lucena-Padrós, H.; Brenes, M.; Ruiz-Barba, J.L. Expression of genes involved in metabolism of phenolic compounds by Lactobacillus pentosus and its relevance for table-olive fermentations. Food Microbiol. 2018, 76, 382–389. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Unban, K.; Nguyen, T.H.; Haltrich, D.; Khanongnuch, C. Expression and biochemical characterization of a new alkaline tannase from Lactobacillus pentosus. Protein Expr. Purif. 2019, 157, 36–41. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Terefe, Z.K.; Omwamba, M.N.; Nduko, J.M. Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Sci. Nutr. 2021, 9, 6343–6352. [Google Scholar] [CrossRef] [PubMed]
- Joudaki, H.; Aria, N.; Moravej, R.; Rezaei Yazdi, M.; Emami-Karvani, Z.; Hamblin, M.R. Microbial Phytases: Properties and Applications in the Food Industry. Curr. Microbiol. 2023, 80, 374. [Google Scholar] [CrossRef] [PubMed]
- Anastasio, M.; Pepe, O.; Cirillo, T.; Palomba, S.; Blaiotta, G.; Villani, F. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. J. Food Sci. 2010, 75, M28–M35. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.M.; Egli, I.M.; Aeberli, I.; Hurrell, R.F.; Meile, L. Phytic acid degrading lactic acid bacteria in tef-injera fermentation. Int. J. Food Microbiol. 2014, 190, 54–60. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular evolutionary genetics analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Karamad, D.; Khosravi-Darani, K.; Khaneghah, A.M.; Miller, A.W. Probiotic Oxalate-Degrading Bacteria: New Insight of Environmental Variables and Expression of the oxc and frc Genes on Oxalate Degradation Activity. Foods 2022, 11, 2876. [Google Scholar] [CrossRef] [PubMed]
- Azcarate-Peril, M.A.; Bruno-Bárcena, J.M.; Hassan, H.M.; Klaenhammer, T.R. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl. Environ. Microbiol. 2006, 72, 1891–1899. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Devlin, J.C.; Hu, J.; Volkova, A.; Battaglia, T.W.; Ho, M.; Asplin, J.R.; Byrd, A.; Loke, P.; Li, H.; et al. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. eLife 2021, 10, e63642. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chen, W.; Cao, L.; He, Y.; Zhou, H.; Mao, H. Abundance, Functional, and Evolutionary Analysis of Oxalyl-Coenzyme A Decarboxylase in Human Microbiota. Front. Microbiol. 2020, 11, 672. [Google Scholar] [CrossRef]
- Gomathi, S.; Sasikumar, P.; Anbazhagan, K.; Sasikumar, S.; Kavitha, M.; Selvi, M.S.; Selvam, G.S. Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: Assessment of probiotic potential. Sci. World J. 2014, 2014, 648059. [Google Scholar] [CrossRef]
Antinutrient | Subtypes | Foods | Chemical Nature | Mechanism of Action | Reference |
---|---|---|---|---|---|
Proteins | |||||
Protease inhibitors | Trypsin inhibitors | Legume seeds | Protein | Inhibit trypsin, chymotrypsin, and protein digestion | [11] |
Lectins | Beans, peas, carrots, tomato, potatoes, fruits | Protein | Bind carbohydrates specifically | [2,3] | |
Phenols | |||||
Tannins | Condensed (catechin, epicatechin, etc.) | Tea, cocoa, grapes, apples, apricots, berries, nuts | Polyflavans | Bind proteins by hydrogen bonds and hydrophobic interactions, thus decreasing iron and calcium absorption; anti-trypsin and anti-amylase activities | [2] |
Hydrolysable (tannic acid, etc.) | Walnuts, pomegranates | Esters of carbohydrates with gallic/ellagic acid | Decrease the bioavailability of non-heme iron; form a complex with vitamin B | [4] | |
Phytoestrogens | Isoflavones (genistein, daidzein, glycitein, biochanin A) | Soy and soy products | Hydroxylated and methylated isoflavone derivatives; structurally similar to 17-β-estradiol | Binds to the estrogen receptor, modulates estrogenic activity | [22] |
Lignans | Flaxseeds, sesame seeds | Diverse derivatives of phenylpropanoid dimers (C18) | Estrogen receptor and MAPK pathway | [2] | |
Stilbenes (e.g., resveratrol; gigantol) | Grapes, peanuts rhubarb | Hydroxylated derivatives of stilbene (1,2-diphenyl ethene) | Modulate NF-β-B, MAPK and JAK/STAT pathways involved in inflammation | [3] | |
Coumestans | Lima beans, alfalfa | Hydroxylated and methylated coumestan derivatives; structurally similar to 17-β-estradiol | Binds to estrogen receptor, modulates estrogenic activity | [2] | |
Gossypol | Cotton seeds | Terpenoid aldehyde | Binds the β-amino group of lysine, limiting its bioavailability | [1] | |
Glycosides | |||||
Goitrogens | Brassica vegetables, millet, cassava | Glucosinolates, derivatives of glucose and amino acids; sulfur-containing | Inhibit iodine uptake | [21] | |
Cyanogenic glycosides | Cassava, cocoyam (leaves, roots), bamboo (stem, sprouts), sorghum, apples (grains and fruits), apricots (kernels) | α-hydroxynitrile (cyanohydrin) glycosylated with glucose or gentiobiose (glu-β(1→6)-glu) | Hydrolyzed by β-glucosidase to α-hydroxynitrile, which is spontaneously decomposed to HCN and aldehyde/ketone | [10] | |
Saponins | Triterpenoid | Legumes | Triterpenoid aglycone plus mono- or oligosaccharide glycone | Bind to intestinal cells and minimize absorption and utilization of nutrients | [13] |
Steroids | Oats, pepper, asparagus, ginseng | Steroid aglycone plus mono- or oligosaccharide glycone | [13] | ||
Anti-minerals | |||||
Oxalates | Spinach, rhubarb, beet greens, amaranth, taro, swiss chard, sweet potatoes | Salts of the oxalic acid (ethanedioic, H2C2O4) | Relatively insoluble salts with Ca2+, Mg2+, Zn2+, and Fe2+, limiting their bioavailability | [7] | |
Phytates | Legumes, cereals, nuts, seeds, pseudocereals | Salts of the phytic acid (myoinositol hexaphosphate) | Insoluble salts with Zn2+, Ca2+, Mn2+, Mg2+, and Fe2+, limiting their bioavailability | [14] | |
Anti-enzymes | |||||
Solanine | Potatoes, tomatoes, eggplant | Glycoalkaloid, saponin-like | Cholinesterase inhibitor | [1] | |
Amylase inhibitors | Wheat, oats, rye | - | Inhibits absorption of dietary starch | [17] | |
Arginase inhibitors | Sunflower seeds | - | Inhibits the last step of the urea cycle and the nitrogen cycle | [17] | |
Protease inhibitors | Egg white | Ovostatin, ovomucoid, ovoinhibitor, and cystatin | Inhibit digestive enzymes | [17] | |
Anti-vitamins | Anti-vitamin K Anti-vitamin B7 Anti-vitamin C Anti-vitamin A, E, D Anti-vitamin B1 | Alfalfa, grapefruit Eggs Melon, squash, zucchini, cucumber Soybeans Raw fish | Coumarins Avidin Ascorbic acid oxidase Lipoxidase Thiaminase | Inhibitors or structural modifiers of vitamins that interact with enzymes, interfering with their natural functions; or are vitamin-destroying enzymes | [3] |
Food/Plant | Latin Name | Concentration (mg/100 g, or mg/100 mL) |
---|---|---|
Cacao beans | Theobroma cacao L. | 6100–8100 |
Grape seeds | Vitis vinifera L. | 2180–6050 |
Sorghum | Sorghum bicolor | 413–5333 |
Chokeberries | Aronia melanocarpa | 553–2106 |
Chocolate | 828–1332 | |
Beans | Phaseolus vulgaris L. | 5–830 |
Pecans | Carya illinoinensis | 238–695 |
Hazelnuts | Corylus spp. | 125–645 |
Lingonberries | Vaccinium vitis-idaea L. | 175–545 |
Cranberries | Vaccinium oxycoccus L. | 194–496 |
Blueberries | Vaccinium corymbosum L. | 311–335 |
- | Vaccinium myrtillus L. | 87–274 |
Apple | Malus domestica | 46–278 |
Almonds | Prunus dulcis | 67–257 |
ANF | Source | Suggested Effects | Experimental Effects | Model | Reference |
---|---|---|---|---|---|
Lectins | Beans, peas, carrots, tomato, potatoes, fruits, lentils, wheat, soybean, peanuts, gorse, Artocarpus integrifolia | Altered gut function, inflammation; systemic metabolism disruption; key organ damage | ND | ND | [50] |
Activation of caspase-1 and IL-1β via the NLRP3 inflammasome | Mice | [44] | |||
Tannins | Tea, cocoa, grape, berries | ↓ Iron absorption and stores | ND * | ND | [2] |
Tea | 54% with low Hb levels (with tea); 69% with normal Hb levels (w/o tea) | Humans | [107] | ||
Sorghum, Tannic acid | Dose-dependent decrease in milk production with increased tannic acid in the diet | Cows | [108] | ||
Tea | Correlation between tannin intake and low levels of Hb and transferrin receptor | Humans (stunted overweight teenagers) | [109] | ||
Goitrogens | Brassica vegetables, millet, cassava | ↓ Iodine uptake; hypothyroidism and goiter | ND | ND | [2] |
Cruciferous vegetables diet | 1.5-fold higher risk of thyroid carcinoma | Humans | [73] | ||
Cruciferous vegetables, rich in brassicas diet | High prevalence of thyroid cancer, mild iodine deficiency | Humans | [74] | ||
Phytoestrogens | Soy and soy products | Endocrine disruption, higher risk of estrogen-sensitive cancers | ND | ND | [2] |
Cyanogenic glycosides | Cassava, cocoyam, bamboo, sorghum | Generate HCN, a potent respiratory inhibitor | ND | ND | [56] |
Cassava | ND | Growth retardation in children | Humans | [66] | |
Saponins | Legumes (triterpenoid) Oats, pepper, asparagus, ginseng (steroid) | ND | ND | [55,85] | |
Bitter leaf (Vernonia amygdalina) | ND | Hemolytic effect on human erythrocytes | Humans | [88] | |
Commercial saponin | ND | Hemolysis and apoptosis of erythrocytes due to increased Ca2+ and ceramide formation | Humans | [89] | |
Oxalates | Spinach, rhubarb, beet greens | ↓ Ca2+ absorption; promotion of kidney stones and failure | AGXT linked with decreased glycine/oxalate ratio and risk of atherosclerosis - | Mice Humans Macrophage | [123,124] |
Phytates | Legumes, cereals, nuts, seeds | ↓ Ca2+, ↓ Fe2+/3+, ↓ Zn2+ absorption | ND | ND | [2] |
Phytic acid added to white bread | ↓ Mg absorption (dose-dependent) | Humans | [114] | ||
Common beans (Phaseolus vulgaris), also rich in polyphenols | 14–45% ↓ Fe absorption, not improved unless both phytates and polyphenols were removed | Humans | [115] |
ANF * | Source | Species/Strain | Initial Concentration | Maximum Reduction (%) | Fermentation Conditions | Reference |
---|---|---|---|---|---|---|
Lectins | Lentils | Unspecified starter culture | 79 g/L | 98% | 72–96 h, 42 °C | [163] |
Cyanogenic glycosides | Linseed | L. acidophilus MTCC-10307 | 5.17 mg/g | 66% | 2 days, 30 °C | [164] |
Goitrogens | Raw white cabbage | Leuconostoc mesenteroides, E. faecium | 168 μmol/100 g FW * | ~90% 100% | 5 days, 20 °C 7 days, 20 °C | [165] |
Saponins | Quinoa dough | Lp. plantarum 1 | 272 mg/100 g | 64% 71% | 3 days, 35 °C 4 days, 35 °C | [166] |
Tannins | Goat feces | Klebsiella pneumoniae | 64 g/L | 68% 98% | 24 h, 30 °C 72 h, 30 °C | [167] |
Trypsin inhibitors | Soybean | Lev. brevis CICC 6004 | 6.4 mg/g DW * | 57.1% | 72 h, pH 5.1, 10% inoculum | [168] |
Amylase inhibitors | Pearl millet | Unspecified starter culture | n/a | 50.8% | 24 h, 30 °C | [169] |
Phytates | Tarhana | Fructilactobacillus sanfranciscensis CCM 7699 | 3.3 g/kg | 89% | 144 h, pH 4.8–4.2 | [170] |
Oxalates | Ammonium oxalate | L. acidophilus | 10 mM | 11.8% | 48 h | [171] |
Ammonium oxalate | Streptococcus thermophilus | 10 mM | 3.5% | 48 h | [171] | |
Sodium oxalate | Enterococcus faecalis | 5 g/L | 100% | 48 h | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsov, A.; Tsigoriyna, L.; Batovska, D.; Armenova, N.; Mu, W.; Zhang, W.; Petrov, K.; Petrova, P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024, 13, 2408. https://doi.org/10.3390/foods13152408
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods. 2024; 13(15):2408. https://doi.org/10.3390/foods13152408
Chicago/Turabian StyleArsov, Alexander, Lidia Tsigoriyna, Daniela Batovska, Nadya Armenova, Wanmeng Mu, Wenli Zhang, Kaloyan Petrov, and Penka Petrova. 2024. "Bacterial Degradation of Antinutrients in Foods: The Genomic Insight" Foods 13, no. 15: 2408. https://doi.org/10.3390/foods13152408
APA StyleArsov, A., Tsigoriyna, L., Batovska, D., Armenova, N., Mu, W., Zhang, W., Petrov, K., & Petrova, P. (2024). Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods, 13(15), 2408. https://doi.org/10.3390/foods13152408