Extraction, Characterization, and Nutraceutical Potential of Prosthechea karwinskii Orchid for Insulin Resistance and Oxidative Stress in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Kits
2.2. Plant Material
2.3. Obtaining the Extract
2.4. Compound Identification with UHPLC-ESI-qTOF-MS/MS
2.5. Induction of Obesity
2.6. Experimental Design
2.7. Evaluated Parameters
2.8. Statistical Analysis
3. Results and Discussion
3.1. Compounds Identified with UHPLC-ESI-qTOF-MS/MS
3.2. Effect of P. karwinskii Extract on Obesity, Insulin Resistance, and Oxidative Stress Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Andreadi, A.; Bellia, A.; Di Daniele, N.; Meloni, M.; Lauro, R.; Della-Morte, D.; Lauro, D. The Molecular Link between Oxidative Stress, Insulin Resistance, and Type 2 Diabetes: A Target for New Therapies against Cardiovascular Diseases. Curr. Opin. Pharmacol. 2022, 62, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, A.B.; Dhibi, S.; Dhifi, W.; Saad, R.B.; Brini, F.; Hfaidh, N.; Mnif, W. Essential Oil from Halophyte: Lobularia Maritima: Protective Effects against CCl4-Induced Hepatic Oxidative Damage in Rats and Inhibition of the Production of Proinflammatory Gene Expression by Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. RSC Adv. 2019, 9, 36758–36770. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Garcia, G.; Solano-Gomez, R.; Lagunez-Rivera, L. Documentation of the Medicinal Knowledge of Prosthechea Karwinskii in a Mixtec Community in Mexico. Rev. Bras. Farmacogn. 2014, 24, 153–158. [Google Scholar] [CrossRef]
- Rojas-Olivos, A.; Solano-Gómez, R.; Alexander-Aguilera, A.; Jiménez-Estrada, M.; Zilli-Hernández, S.; Lagunez-Rivera, L. Effect of Prosthechea Karwinskii (Orchidaceae) on Obesity and Dyslipidemia in Wistar Rats. Alex. J. Med. 2017, 53, 311–315. [Google Scholar] [CrossRef]
- Barragán-Zarate, G.S.; Alexander-Aguilera, A.; Lagunez-Rivera, L.; Solano, R.; Soto-Rodríguez, I. Bioactive Compounds from Prosthechea Karwinskii Decrease Obesity, Insulin Resistance, pro-Inflammatory Status, and Cardiovascular Risk in Wistar Rats with Metabolic Syndrome. J. Ethnopharmacol. 2021, 279, 114376. [Google Scholar] [CrossRef]
- Barragán-Zarate, G.S.; Lagunez-Rivera, L.; Solano, R.; Pineda-Peña, E.A.; Landa-Juárez, A.Y.; Chávez-Piña, A.E.; Carranza-Álvarez, C.; Hernández-Benavides, D.M. Prosthechea Karwinskii, an Orchid Used as Traditional Medicine, Exerts Anti-Inflammatory Activity and Inhibits ROS. J. Ethnopharmacol. 2020, 253, 112632. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Nolasco, C.; Barragán-Zarate, G.S.; Lagunez-Rivera, L.; Solano, R.; Favari, L.; Jiménez-Andrade, J.M.; Chávez-Piña, A.E. Role of LTB4 and Nitric Oxide in the Gastroprotective Effect of Prosthechea Karwinskii Leaves Extract in the Indomethacin-Induced Gastric Injury in the Rat. Nat. Prod. Res. 2022, 37, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, A.M.; Cribb, P.J.; Chase, M.W.; Rasmussen, F.N. Genera Orchidacearum Volume 4: Epidendroideae (Part One); Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Soto, M.A.; Hágsater, E.; Jiménez, R.; Salazar, G.A.; Solano, R.; Flores, R.; Ruiz, I. Orchids of Mexico. Digital Catalogue; Herbario AMO: México City, Mexico, 2007. [Google Scholar]
- Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. De Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef]
- Solano, R.; Salazar-Chávez, G.; Jiménez-Machorro, R.; Hagsater, E.; Cruz-García, G. Actualización Del Catálogo de Autoridades Taxonómicas de Orchidaceae de México; Data Base SNIB-CONABIO, Project KT005; Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca: Mexico City, Mexico, 2020. [Google Scholar]
- NORMA Oficial Mexicana NOM-062-ZOO-1999; Especificaciones Técnicas Para la Producción, Cuidado y Uso de Los Animales de Laboratorio 2001; Diario Oficial de la Federación. SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación): Diario Oficial de la Federación, Mexico, 2011.
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Guerrero-Romero, F. The Correct Formula for the Triglycerides and Glucose Index. Eur. J. Pediatr. 2020, 179, 1171. [Google Scholar] [CrossRef]
- De Souza, M.P.; Bataglion, G.A.; da Silva, F.M.A.; de Almeida, R.A.; Paz, W.H.P.; Nobre, T.A.; Marinho, J.V.N.; Salvador, M.J.; Fidelis, C.H.V.; Acho, L.D.R.; et al. Phenolic and Aroma Compositions of Pitomba Fruit (Talisia Esculenta Radlk.) Assessed by LC-MS/MS and HS-SPME/GC-MS. Food Res. Int. 2016, 83, 87–94. [Google Scholar] [CrossRef]
- Ma, T.; Lin, J.; Gan, A.; Sun, Y.; Sun, Y.; Wang, M.; Wan, M.; Yan, T.; Jia, Y. Qualitative and Quantitative Analysis of the Components in Flowers of Hemerocallis Citrina Baroni by UHPLC–Q-TOF-MS/MS and UHPLC–QQQ-MS/MS and Evaluation of Their Antioxidant Activities. J. Food Compos. Anal. 2023, 120, 105329. [Google Scholar] [CrossRef]
- Dahibhate, N.L.; Dwivedi, P.; Kumar, K. GC–MS and UHPLC-HRMS Based Metabolite Profiling of Bruguiera Gymnorhiza Reveals Key Bioactive Compounds. South Afr. J. Bot. 2022, 149, 1044–1048. [Google Scholar] [CrossRef]
- Paunovic, M.; Milosevic, M.; Mitrovic-ajtic, O.; Velickovic, N. Heliyon Polyphenol-Rich Black Currant and Cornelian Cherry Juices Ameliorate Metabolic Syndrome Induced by a High-Fat High-Fructose Diet in Wistar Rats. Heliyon 2024, 10, e27709. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Abbas, M.; El-shiekh, R.A.; Bakr, A.F.; Rashad, M.M.; Emam, S.R.; El-banna, H.A. Vitis vinifera L. Seed Standardized Extract; a Promising Therapeutic against Metabolic Syndrome Induced by High-Fat/High-Carbohydrate Diet and Streptozotocin in Rats. S. Afr. J. Bot. 2024, 167, 476–486. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, M.; Liu, D. Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Pharm. Res. 2015, 32, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Durg, S.; Veerapur, V.P.; Neelima, S.; Dhadde, S.B. Antidiabetic Activity of Embelia Ribes, Embelin and Its Derivatives: A Systematic Review and Meta-Analysis. Biomed. Pharmacother. 2017, 86, 195–204. [Google Scholar] [CrossRef]
- Ghorbani, A. Biomedicine & Pharmacotherapy Mechanisms of Antidiabetic efects of Flavonoid Rutin. Biomed. Pharmacother. J. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Barbosa, P.O.; Tanus-santos, J.E.; Cavalli, R.D.C.; Bengtsson, T.; Barbosa, P.O.; Tanus-santos, J.E.; Cavalli, R.D.C.; Bengtsson, T. The Nitrate-Nitrite-Nitric Oxide Pathway: Potential Role in Mitigating Oxidative Stress in Hypertensive Disorders of Pregnancy. Nutrients 2024, 16, 1475. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, Y.H.; Ai, C.X.; Zhang, B.; Zhang, H.; Liu, Z.M.; Yu, M.H.; Hu, B. Differential Effects of Oxytetracycline on Detoxification and Antioxidant Defense in the Hepatopancreas and Intestine of Chinese Mitten Crab under Cadmium Stress. Sci. Total Environ. 2024, 930, 172633. [Google Scholar] [CrossRef] [PubMed]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The Investigation of the Oxidative Stress-Related Parameters in Type2 Diabetes Mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef]
- Leghi, G.E.; Domenici, F.A.; Vannucchi, H. Influence of Oxidative Stress and Obesity in Patients with Nonalcoholic Steatohepatitis. Arq. Gastroenterol. 2015, 52, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.O.; Souza, M.O.; Silva, M.P.S.; Santos, G.T.; Silva, M.E.; Bermano, G.; Freitas, R.N. Açaí (Euterpe Oleracea Martius) Supplementation Improves Oxidative Stress Biomarkers in Liver Tissue of Dams Fed a High-Fat Diet and Increases Antioxidant Enzymes’ Gene Expression in Offspring. Biomed. Pharmacother. 2021, 139, 111627. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Pourakbar, L.; Siavash Moghaddam, S. Effects of Malic Acid and EDTA on Oxidative Stress and Antioxidant Enzymes of Okra (Abelmoschus Esculentus L.) Exposed to Cadmium Stress. Ecotoxicol. Environ. Saf. 2022, 248, 114320. [Google Scholar] [CrossRef]
- Hussain, I.; Siddique, A.; Ashraf, M.A.; Rasheed, R.; Ibrahim, M.; Iqbal, M.; Akbar, S.; Imran, M. Does Exogenous Application of Ascorbic Acid Modulate Growth, Photosynthetic Pigments and Oxidative Defense in Okra (Abelmoschus esculentus (L.) Moench) under Lead Stress? Acta Physiol. Plant. 2017, 39, 144. [Google Scholar] [CrossRef]
- Londero, É.P.; Bressan, C.A.; Pês, T.S.; Saccol, E.M.H.; Baldisserotto, B.; Finamor, I.A.; Pavanato, M.A. Rutin-Added Diet Protects Silver Catfish Liver against Oxytetracycline-Induced Oxidative Stress and Apoptosis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108848. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective Effects of Kaempferol 3-O-Rutinoside and Kaempferol 3-O-Glucoside from Carthamus Tinctorius L. on CCl4-Induced Oxidative Liver Injury in Mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, A.K.; Sharma, M.C.; Gupta, R.S. Antioxidant Activity and Protection of Pancreatic b -Cells by Embelin in Streptozotocin-Induced Diabetes. J. Diabetes 2012, 4, 248–256. [Google Scholar] [CrossRef]
- Nonose, Y.; Pieper, L.Z.; da Silva, J.S.; Longoni, A.; Apel, R.V.; Meira-Martins, L.A.; Grings, M.; Leipnitz, G.; Souza, D.O.; de Assis, A.M. Guanosine Enhances Glutamate Uptake and Oxidation, Preventing Oxidative Stress in Mouse Hippocampal Slices Submitted to High Glutamate Levels. Brain Res. 2020, 1748, 147080. [Google Scholar] [CrossRef]
Peak | RT (min) | m/z [M-H]− | Error (ppm) | MS/MS Fragments | Compound (Chemical Formula) | Type of Compound | Relative Yield (%) | Chemical Structure |
---|---|---|---|---|---|---|---|---|
1 | 0.7 | 191.0557 | 1.9 | 85.0293, 87.0078, 111.0443, 127.6945 | Quinic Acid abd (C7H12O6) | Cyclitol, cyclic polyol, and cyclohexanecarboxylic acid | 22.21 | |
2 | 0.8 | 133.0140 | 1.8 | 115.0032 | Malic acid d (C4H6O5) | Dicarboxylic organic acid | 5.71 | |
3 | 1.2 | 117.0191 | 2.3 | 73.0290, 99.0072 | Succinic acid d (C4H604) | Dicarboxylic organic acid | 1.89 | |
4 | 2.3 | 164.0712 | 3.2 | 72.0072, 103.0539, 147.0442 | L-(-)-Phenylalanine e (C9H11NO2) | Amino acid | 0.53 | |
5 | 2.7 | 282.0833 | 3.9 | 108.5347, 133.0157, 150.0429 | Guanosine e (C10H13N5O5) | Nucleoside | 0.46 | |
6 | 6.0 | 353.0867 | 3.1 | 179.0365, 191.0556 | Neochlorogenic acid b (C16H18O9) | Caffeoylquinic acid, phenolic compound | 4.35 | |
7 | 6.3 | 353.0866 | 3.4 | 173.0452, 179.0365, 191.0556 | Chlorogenic acid a (C16H18O9) | Caffeoylquinic acid, phenolic compound | 8.44 | |
8 | 6.5 | 609.1438 | 3.8 | 300.0266, 301.0335 | Rutin abe (C27H30O16) | Flavonoid glycoside | 15.52 | |
9 | 6.6 | 593.1489 | 3.9 | 284.0314, 285.0393 | Kaempferol-3-O-rutinoside e (C27H30O15) | Flavonol glycoside | 25.30 | |
10 | 6.8 | 187.0970 | 3.1 | 97.0653, 125.0963, 169.0889 | Azelaic acid c (C9H1604) | Dicarboxylic acid | 2.10 | |
11 | 8.2 | 329.2321 | 3.9 | 171.1023, 229.1436 | Pinellic acid c (C18H34O5) | Carboxylic acid | 1.09 | |
12 | 11.5 | 293.2112 | 3.6 | 275.2013, 235.1680, 223.1685 | Embelin c (C17H26O4) | Para-benzoquinone | 8.60 |
CG | OG | PK | MET | |
---|---|---|---|---|
Weight at week 0 (g) | 74.3 ± 17.9 | 78.2 ± 15.5 | - | - |
Weight at week 20 (g) | 368.5 ± 38.1 | 456.2 ± 42.6 * | - | - |
TyG index at week 20 | 7.73 ± 0.48 | 8.85 ± 0.53 * | - | - |
HOMA-IR at week 20 | 1.73 ± 0.25 | 5.01 ± 0.47 * | - | - |
Weight at the end of the experiment (g) | 423.1 ± 30.2 | 527.0 ± 45.3 * | 487.0 ± 42.8 # | 489.0 ± 55.2 # |
Total adipose tissue at the end of the experiment (g) | 14.3 ± 3.1 | 37.92 ± 4.4 * | 29.38 ± 3.5 * ** | 33.35 ± 4.9 * |
Week 1 | CG | OG | PK | MET |
---|---|---|---|---|
Weight (g) | 389.00 ± 28.70 | 479.00 ± 35.97 * | 472.00 ± 32.49 * | 494.00 ± 67.77 * |
Liquid consumption (mL/day) | 30.60 ± 4.59 | 17.42 ± 2.61 * | 13.85 ± 2.07 * | 9.85 ± 1.47 * ** |
Liquid consumption (mL/day/100 g) | 7.86 ± 0.58 | 3.63 ± 0.27 * | 2.93 ± 0.20 * ** | 1.99 ± 0.27 * ** |
Equivalent in kcal in drinkable water | 0.00 | 13.58 ± 1.02 * | 10.96 ± 0.75 * ** | 7.44 ± 1.02 * ** |
Feed consumption (g/day) | 24.28 ± 3.64 | 17.57 ± 2.63 * | 17.71 ± 2.65 * | 18.42 ± 2.76 * |
Feed consumption (g/day/100 g) | 6.24 ± 0.46 | 3.66 ± 0.27 * | 3.75 ± 0.25 * | 3.73 ± 0.51 * |
Equivalent in kcal in feed | 19.35 ± 1.42 | 11.37 ± 0.85 * | 11.63 ± 0.80 * | 11.56 ± 1.58 * |
Total Kcal/day/100 g body weight | 19.35 ± 1.42 | 24.95 ± 1.87 * | 22.59 ± 1.55 * | 19.01 ± 2.60 ** |
Week 2 | CG | OG | PK | MET |
Weight (g) | 398.00 ± 25.21 | 482.00 ± 33.55 * | 459.00 ± 35.41 * | 482.00 ± 55.16 * |
Liquid consumption (mL/day) | 32.57 ± 4.88 | 28.14 ± 4.22 | 33.60 ± 5.04 | 30.77 ± 4.61 |
Liquid consumption (mL/day/100 g) | 8.18 ± 1.10 | 5.83 ± 0.95 * | 7.32 ± 0.38 ** | 6.38 ± 0.06 * |
Equivalent in kcal in drinkable water | 0.00 | 65.39 ± 4.55 * | 76.80 ± 5.92 * ** | 75.08 ± 10.15 * ** |
Feed consumption (g/day) | 27.28 ± 4.09 | 16.00 ± 2.4 * | 11.85 ± 1.77 * ** | 12.71 ± 1.90 * ** |
Feed consumption (g/day/100 g) | 6.85 ± 0.44 | 3.31 ± 0.23 * | 2.58 ± 0.19 * ** | 2.63 ± 0.35 * ** |
Equivalent in kcal in feed | 21.25 ± 1.36 | 10.29 ± 0.71 * | 8.00 ± 0.61 * ** | 8.17 ± 1.10 * ** |
Total Kcal/day/100 g body weight | 21.25 ± 1.36 | 75.68 ± 5.26 * | 84.80 ± 6.54 * | 83.26 ± 11.25 * |
Week 3 | CG | OG | PK | MET |
Weight (g) | 402.00 ± 30.75 | 492.00 ± 37.76 * | 468.00 ± 29.42 * | 486.00 ± 54.94 * |
Liquid consumption (mL/day) | 30.42 ± 4.56 | 44.85 ± 6.72 * | 46.28 ± 6.94 * | 31.00 ± 4.650 ** |
Liquid consumption (mL/day/100 g) | 7.56 ± 0.57 | 9.11 ± 0.69 * | 9.89 ± 0.62 * | 6.37 ± 0.90 ** |
Equivalent in kcal in drinkable water | 0.00 | 102.10 ± 7.83 * | 110.70 ± 6.96 * | 71.44 ± 10.13 * ** |
Feed consumption (g/day) | 23.14 ± 3.47 | 12.14 ± 1.82 * | 9.57 ± 1.43 * | 9.57 ± 1.43 * |
Feed consumption (g/day/100 g) | 17.84 ± 1.36 | 7.65 ± 0.58 * | 6.34 ± 0.39 * ** | 6.10 ± 0.86 * ** |
Equivalent in kcal in feed | 5.75 ± 0.44 | 2.46 ± 0.18 * | 2.04 ± 0.12 * | 1.96 ± 0.27 * |
Total Kcal/day/100 g body weight | 17.84 ± 1.36 | 109.7 ± 8.42 * | 117.10 ± 7.36 * | 77.54 ± 11.00 * ** |
Week 4 | CG | OG | PK | MET |
Weight (g) | 423.10 ± 30.20 | 527.00 ± 45.30 * | 487.00 ± 42.80 # | 489.00 ± 55.20 # |
Liquid consumption (mL/day) | 33.11 ± 4.96 | 48.91 ± 7.33 * | 44.57 ± 6.68 * | 52.97 ± 8.54 * |
Liquid consumption (mL/day/100 g) | 7.82 ± 0.63 | 9.28 ± 0.75 * | 9.15 ± 0.61 * | 10.83 ± 1.61 * |
Equivalent in kcal in drinkable water | 0.00 | 103.93 ± 8.40 * | 102.55 ± 6.85 * | 121.32 ± 18.09 * |
Feed consumption (g/day) | 24.42 ± 3.66 | 11.71 ± 1.75 * | 10.71 ± 1.60 * | 9.57 ± 1.43 * |
Feed consumption (g/day/100 g) | 5.77 ± 0.46 | 2.22 ± 0.17 * | 2.19 ± 0.14 * | 1.96 ± 0.27 * |
Equivalent in kcal in feed | 17.89 ± 1.44 | 6.88 ± 0.55 * | 6.81 ± 0.45 * | 6.09 ± 0.84 * |
Total Kcal/day/100 g body weight | 17.89 ± 1.44 | 110.81 ± 8.95 * | 109.36 ± 10.34 * | 127.41 ± 12.94 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Zarate, G.S.; Lagunez-Rivera, L.; Alexander-Aguilera, A.; Solano, R.; Vilarem, G. Extraction, Characterization, and Nutraceutical Potential of Prosthechea karwinskii Orchid for Insulin Resistance and Oxidative Stress in Wistar Rats. Foods 2024, 13, 2432. https://doi.org/10.3390/foods13152432
Barragán-Zarate GS, Lagunez-Rivera L, Alexander-Aguilera A, Solano R, Vilarem G. Extraction, Characterization, and Nutraceutical Potential of Prosthechea karwinskii Orchid for Insulin Resistance and Oxidative Stress in Wistar Rats. Foods. 2024; 13(15):2432. https://doi.org/10.3390/foods13152432
Chicago/Turabian StyleBarragán-Zarate, Gabriela Soledad, Luicita Lagunez-Rivera, Alfonso Alexander-Aguilera, Rodolfo Solano, and Gerard Vilarem. 2024. "Extraction, Characterization, and Nutraceutical Potential of Prosthechea karwinskii Orchid for Insulin Resistance and Oxidative Stress in Wistar Rats" Foods 13, no. 15: 2432. https://doi.org/10.3390/foods13152432
APA StyleBarragán-Zarate, G. S., Lagunez-Rivera, L., Alexander-Aguilera, A., Solano, R., & Vilarem, G. (2024). Extraction, Characterization, and Nutraceutical Potential of Prosthechea karwinskii Orchid for Insulin Resistance and Oxidative Stress in Wistar Rats. Foods, 13(15), 2432. https://doi.org/10.3390/foods13152432