Antibacterial Activity of Ethanol Extract from Australian Finger Lime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Compound Extraction
2.2. Test Microorganisms
2.3. Detection of Minimum Inhibitory Concentration (MIC)
2.4. Antibacterial Activity of the Constituents from Finger Lime
2.5. Determination of the Anti-HLB Activity of Australian Finger Lime Extracts in the Field
2.5.1. Plant Materials and Research Area
2.5.2. Australian Finger Lime Extract Treatment Using the Spaying Method In Vivo
2.5.3. Genomic DNA Extraction and qPCR Analysis for the HLB Bacterium
2.6. GC-MS Chemicals and Sample Preparation
2.7. GC-MS Analysis
2.8. Cell Membrane Permeability
2.9. Scanning Electron Microscopy (SEM)
2.10. Statistical Analysis
3. Results and Discussion
3.1. The Minimum Inhibitory Concentration (MIC) of the Extract against the Tested Bacteria In Vitro
3.2. Anti-HLB Activity of Finger Lime Extract In Vivo
3.3. Antibacterial Activity Constituents of Finger Lime Extract
3.4. GC-MS Analysis
3.5. Cell Membrane Permeability
3.6. Effects of Antibacterials on the Bacterial Cell Wall
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Divakar, S.; Shivamurthy, G.R.; Aradhya, S.M. Isolation of a free radical-scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). J. Sci. Food. Agric. 2005, 85, 1461–1468. [Google Scholar] [CrossRef]
- Yi, Z.B.; Yu, Y.; Liang, Y.Z.; Zeng, B. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri Reticulatae of a new Citrus cultivar and its main flavonoids. LWT 2008, 41, 597–603. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid.-Based Complement. Altern. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, C.H.; Cai, J.; Zhang, W.; Qi, W.L.; Wang, Z.; Liu, Z.B.; Yang, Y. Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts. Food Control 2018, 86, 117–125. [Google Scholar] [CrossRef]
- Hassan, M.M.; Soliman, M.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Taha, E.K.A.; Sayed, S. The effectiveness of Xanthium strumamrium L. Extract and trichoderma spp. Against pomegranate isolated pathogenic fungi in taif, Saudi Arabia. J. King Saud. Univ. Sci. 2022, 34, 102185. [Google Scholar] [CrossRef]
- Hwang, S.L.; Shin, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. In Dietary Phytochemicals and Microbes; Patra, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–32. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop. Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Zhong, G.; Nicolosi, E. Citrus origin, diffusion, and economic importance. In The Citrus Genome; Springer: Berlin/Heidelberg, Germany, 2020; pp. 5–21. [Google Scholar]
- Sidhic, J.; George, S.; Alfarhan, A.; Rajagopal, R.; Olatunji, O.J.; Narayanankutty, A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023, 28, 6875. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, H.; Agar, O.T.; Imran, A.; de Souza, T.S.P.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Phytochemicals in finger lime and their potential health benefits: A review. Food Rev. Int. 2023, 1–21. [Google Scholar] [CrossRef]
- Johnson, J.B.; Batley, R.; Manson, D.; White, S.; Naiker, M. Volatile compounds, phenolic acid profiles and phytochemical content of five Australian finger lime (Citrus australasica) cultivars. LWT-Food Sci. Technol. 2022, 154, 112640. [Google Scholar] [CrossRef]
- Konczak, I.; Roulle, P. Nutritional properties of commercially grown native Australian fruits: Lipophilic antioxidants and minerals. Food Res. Int. 2011, 44, 2339–2344. [Google Scholar] [CrossRef]
- Alves, M.N.; Lopes, S.A.; Raiol-Junior, L.L.; Wulff, N.A.; Girardi, E.A.; Ollitrault, P.; Peña, L. Resistance to ‘Candidatus Liberibacter asiaticus’, the Huanglongbing associated bacterium, in sexually and/or graft-compatible citrus relatives. Front. Plant Sci. 2021, 11, 617664. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Dutt, M.; Vashisth, T. Comparative phytochemical analysis of the fruits of four Florida-grown finger lime (Citrus australasica) selections. LWT 2021, 135, 110003. [Google Scholar] [CrossRef]
- Dutt, M.; Mahmoud, L.M.; Chamusco, K.; Stanton, D.; Chase, C.D.; Nielsen, E.; Quirico, M.; Yu, Q.; Gmitter, F.G.; Grosser, J.W. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS ONE 2021, 16, e0255842. [Google Scholar] [CrossRef] [PubMed]
- Aznar, R.; Rodríguez-Pérez, C.; Rai, D.K. Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. Appl. Sci. 2022, 12, 1712. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Kyhse-Andersen, J.; Schmidt, C.; Nordin, G.; Andersson, B.; Nilsson-Ehle, P.; Lindström, V.; Grubb, A. Serum Cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better maker than serum creatinine for glomerular filtration rate. Clin. Chem. 1994, 40, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.; Zheng, W.; Han, X.; Jiang, Y.; Hu, P.; Tang, Z.; Shi, L. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Weng, L. Study on the extraction of polysaccharide from wild and artificial Cordyceps sobolifera and bacteriostasis effect. Agric. Sci. Technol. Equip. 2010, 27, 45–46. [Google Scholar]
- Robertson, G.H.; Cao, T.K.; Orts, W.J. Wheat proteins extracted from flour and batter with aqueous ethanol at subambient temperatures. Cereal Chem. 2007, 84, 497–501. [Google Scholar] [CrossRef]
- Boulet, M.; Britten, M.; Lamarche, F. Dispersion of food proteins in water-alcohol mixed dispersants. Food Chem. 2001, 74, 69–74. [Google Scholar] [CrossRef]
- Tai, Y.; Shen, J.; Luo, Y.; Qu, H.; Gong, X. Research progress on the ethanol precipitation process of traditional Chinese medicine. Chin. Med. 2020, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Powell, C.A.; Zhou, L.J.; He, Z.L.; Stover, E.; Duan, Y.P. Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology 2011, 101, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, D.; Twieg, E.; Hartung, J.S.; Levy, L. Optimized quantification of unculturable Candidatus Liberibacter spp. in host plants using real-time PCR. Plant Dis. 2008, 92, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Diao, W.; Hu, Q.; Zhang, H.; Xu, J. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Dunnett, C.W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- SPSS Inc. SPSS Statistics for Windows; Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Song, X.; Liu, T.; Wang, L.; Liu, L.; Li, X.; Wu, X. Antibacterial effects and mechanism of mandarin (Citrus reticulata L.) essential oil against Staphylococcus aureus. Molecules 2020, 25, 4956. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Catalfamo, M.; Laganà, P.; Rappazzo, A.C.; Raymo, V.; Zampino, D.; Zaccone, R. Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and Candida strains. Flavour Fragr. J. 2019, 34, 187–200. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Bove, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Ramadugu, C.; Keremane, M.L.; Halbert, S.E.; Duan, Y.P.; Roose, M.L.; Stover, E.; Lee, R.F. Long-term field evaluation reveals huanglongbing resistance in Citrus relatives. Plant Dis. 2016, 100, 1858–1869. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Trivedi, P.; Wang, N. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology 2016, 106, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Lin, B.B.; Liu, X.; Wu, S.Q.; Zheng, H.X.; Huo, K.K.; Qi, S.S.; Chen, C. Phytochemicals content, antioxidant and antibacterial activities of Sophora viciifolia. Chem. Biodivers. 2019, 16, e1900080. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian fruits—A novel source of antioxidants for food. Innov. Food Sci. Emerg. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Wang, X.; Liu, X.; Zhong, K.; Huang, Y.; Chen, Y.; Gao, H. In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus. J. Food Saf. 2018, 38, e12416. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Servillo, L.; Giovane, A.; Balestrieri, M.L.; Bata-Csere, A.; Cautela, D.; Castaldo, D. Betaines in fruits of Citrus genus plants. J. Agric. Food Chem. 2011, 59, 9410–9416. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Bhandari, U.; Panda, B.P.; Dubey, K.; Khan, W.; Ahmad, S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J. Pharm. Biomed. 2018, 159, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Bandyopadhyay, P.K. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16. Microb. Pathog. 2020, 141, 103977. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Gomes, I.B.; Simões, M. Antimicrobial activity of glycolic acid and glyoxal against Bacillus cereus and Pseudomonas fluorescens. Food Res. Int. 2020, 136, 109346. [Google Scholar] [CrossRef] [PubMed]
- Bruni, G.O.; Klasson, K.T. Aconitic acid recovery from renewable feedstock and review of chemical and biological applications. Foods 2022, 11, 573. [Google Scholar] [CrossRef]
- Nakae, T. Outer-membrane permeability of bacteria. Crit. Rev. Microbiol. 1986, 13, 1–62. [Google Scholar] [CrossRef]
- O’Donovan, L.; Brooker, J.D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 2001, 147, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Teng, D.; Wang, X.; Xi, D.; Mao, R.; Zhang, Y.; Guan, Q.; Zhang, J.; Wang, J. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377. Appl. Microbiol. Biotechnol. 2014, 98, 8313–8325. [Google Scholar] [CrossRef]
- Shin, S.Y.; Bajpai, V.K.; Kim, H.R.; Kang, S.C. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT-Food Sci. Technol. 2007, 40, 1515–1519. [Google Scholar] [CrossRef]
- Bai, J.R.; Wu, Y.P.; Bu, Q.; Zhong, K.; Gao, H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT-Food Sci. Technol. 2022, 153, 112441. [Google Scholar] [CrossRef]
Bacteria | The Antibacterial Rates at Each Concentration (%) | MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
1000 μg/mL | 500 μg/mL | 330 μg/mL | 250 μg/mL | 125 μg/mL | 62.5 μg/mL | Finger Lime | Streptomycin | |
Agrobacterium tumefaciens | 60.17 | 23.81 | 5.14 | 1.22 | 0 | 0 | 1000 | 100 |
Xanthomonas campestris | 73.22 | 41.20 | 19.43 | 10.28 | 3.57 | 0.82 | 500 | 5 |
Xanthomonas citri | 31.96 | 14.87 | 6.43 | 1.74 | 0 | 0 | 1000 | 10 |
Staphylococcus aureus | 32.03 | 15.37 | 5.75 | 1.59 | 0 | 0 | 1000 | 15 |
Bacillus subtilis | 53.12 | 29.69 | 6.58 | 0 | 0 | 0 | 500 | 5 |
Escherichia coli | 57.42 | 34.05 | 10.27 | 7.22 | 1.44 | 0 | 500 | 5 |
Initial Ct | 6 Days Later Ct | Reduction in the Number of CLas (Cells/g) | Antibacterial Activity Ratio | |
---|---|---|---|---|
Finger lime extract | 23.41 ± 0.85 a | 25.34 ± 1.23 a | 4.4 × 109 ± 2.6 × 109 a | 0.68 ± 0.11 a |
Kasugamycin | 24.33 ± 0.78 a | 24.67 ± 0.73 a | 2.3 × 109 ± 5.5 × 108 a | 0.51 ± 0.00 a |
No-treatment control | 23.64 ± 0.34 a | 24.74 ± 0.33 a | 7.7 × 108 ± 4.5 × 108 a | 0.20 ± 0.04 b |
The Original Extract 2500 μg/mL | A 2500 μg/mL | B 2500 μg/mL | B1 2500 μg/mL | B2 2500 μg/mL | B1-1 2500 μg/mL | B1-2 2500 μg/mL | Streptomycin 10 μg/mL | |
---|---|---|---|---|---|---|---|---|
Diameter of the Inhibition Zone (mm) | 12.32 | 0.00 | 12 | 1.2 | 11 | 0.5 | 0.2 | 8.00 |
Retention Time (min.) | Compound | Relative Area (%) |
---|---|---|
Organic Acids | ||
Aliphatic organic acids | ||
7.222 | L-alanine | 1.979 |
8.518 | N-methylglutamic acid | 1.427 |
8.953 | 4-hydroxybutyric acid | 2.375 |
9.159 | L-valine | 0.809 |
10.708 | Proline | 4.931 |
11.037 | Succinic acid | 1.793 |
11.929 | Serine | 0.905 |
15.375 | L-aspartic acid | 1.324 |
15.547 | Glucosaminic acid | 0.9 |
20.279 | Aconitic acid | 0.898 |
... | ||
28.086 | ||
Alicyclic organic acids | ||
5.826 | Shikimic acid | 0.039 |
7.779 | 2-furoic acid | 0.03 |
9.337 | 4-hydroxyproline | 0.006 |
12.948 | Glycyl proline | 0.009 |
13.364 | Tranexamic acid | 0.113 |
14.845 | Cholic acid | 0.028 |
14.974 | Glycyl tyrosine | 0.004 |
15.309 | Oxoproline | 1.954 |
20.705 | Lactobionic acid | 0.225 |
24.684 | Digalacturonic acid | 0.086 |
... | ||
2.500 | ||
Aromatic acids | ||
16.027 | Dl-dopa | 0.036 |
16.461 | N-acetyl-d-tryptophan | 0.016 |
17.548 | L-phenylalanine | 0.271 |
0.323 | ||
Carbohydrates | ||
14.85 | Glucosamine | 1.343 |
22.868 | D-tagatose | 4.372 |
23.302 | Galactose | 1.861 |
23.68 | Glucose | 2.258 |
24.387 | Ribopyranose | 1.989 |
24.444 | Melezitose | 2.558 |
24.86 | 1-kestose | 2.083 |
28.14 | Rhamnose | 2.542 |
28.173 | Ethyl beta-d-glucopyranoside | 2.566 |
33.331 | Trisaccharide | 2.223 |
... | ||
31.159 | ||
Alkaloids | ||
7.291 | 1-butylamine | 0.046 |
7.705 | Maleimide | 0.128 |
7.925 | Piperidone | 0.024 |
10.65 | Niacinamide | 0.1 |
11.53 | 1-methylhydantoin | 0.014 |
13.832 | 5-methoxytryptamine | 0.04 |
13.971 | Cyclohexylamine | 0.018 |
14.511 | Serotonin | 0.012 |
24.473 | Trigonelline | 0.113 |
30.762 | N-acetyl-5-hydroxytryptamine | 0.109 |
... | ||
0.612 | ||
Polyphenols | ||
Phenolic acids | ||
5.826 | Shikimic acid | 0.039 |
15.926 | Cinnamic acid | 0.005 |
16.005 | 3,4-dihydroxycinnamic acid | 0.017 |
22.526 | Chlorogenic acid | 0.214 |
22.61 | Quinic acid | 4.098 |
24.112 | 4-hydroxycinnamic acid | 0.415 |
25.972 | Coniferin | 0.347 |
27.991 | Piceatannol | 0.098 |
28.192 | 4-methoxycinnamic acid | 0.04 |
28.829 | Sinapic acid | 0.294 |
... | ||
5.571 | ||
Flavonoids | ||
11.848 | Epicatechin | 0.001 |
14.743 | Formononetin | 0.003 |
15.678 | Arbutin | 0.015 |
17.184 | Catechin | 0.001 |
20.604 | Gallocatechin | 0.038 |
33.871 | Daidzein | 0.023 |
34.716 | Epigallocatechin | 0.008 |
0.089 | ||
Alcohols | ||
10.242 | Glycerol | 2.835 |
11.168 | Phytol | 0.878 |
18.099 | Galactitol | 0.243 |
18.099 | 3-deoxyhexitol | 0.243 |
23.67 | Lactitol | 1.157 |
25.286 | Galactinol | 0.555 |
26.755 | Myo-inositol | 4.129 |
30.601 | 2-methylpropan-2-ol | 0.49 |
31.909 | Prenol | 1.076 |
35.648 | Delta-tocopherol | 1.076 |
... | ||
13.380 | ||
Esters | ||
20.537 | Glycerol 3-phosphate | 0.458 |
20.963 | Inosine-5′-monophosphate | 0.213 |
24.268 | Glucaric acid gama-lactone | 0.337 |
27.204 | Myristyl myristate | 0.415 |
33.826 | Beta-mannosylglycerate | 2.373 |
3.796 | ||
Others | ||
24.421 | D-erythro-sphingosine | 2.702 |
5.068 | Methylamine | 0.897 |
10.091 | Ethanolamine | 0.539 |
12.958 | Putrescine | 0.335 |
25.826 | Phytosphingosine | 0.123 |
27.263 | Guanine | 0.019 |
15.975 | 5-hydroxynorvaline | 0.009 |
... | ||
14.484 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Fan, Z.; Zhu, C.; Huang, Y.; Wu, P.; Zeng, J. Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods 2024, 13, 2465. https://doi.org/10.3390/foods13152465
Zhang R, Fan Z, Zhu C, Huang Y, Wu P, Zeng J. Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods. 2024; 13(15):2465. https://doi.org/10.3390/foods13152465
Chicago/Turabian StyleZhang, Ruimin, Zhengyan Fan, Congyi Zhu, Yongjing Huang, Pingzhi Wu, and Jiwu Zeng. 2024. "Antibacterial Activity of Ethanol Extract from Australian Finger Lime" Foods 13, no. 15: 2465. https://doi.org/10.3390/foods13152465
APA StyleZhang, R., Fan, Z., Zhu, C., Huang, Y., Wu, P., & Zeng, J. (2024). Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods, 13(15), 2465. https://doi.org/10.3390/foods13152465