Impact of Rice Bran Oil Emulsified Formulation on Digestion and Glycemic Response to Japonica Rice: An In Vitro Test and a Clinical Trial in Adult Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Foods
2.2. Participants
2.3. Study Design
2.4. Measurements and Analysis
2.5. Sensory Evaluation
2.6. Continuous Glucose Monitor
2.7. In Vitro Digestibility Test
2.7.1. Simulated Digestive Fluid Preparation
2.7.2. In Vitro Digestibility Test Protocol
2.8. Statistical Analysis
3. Results
3.1. Analysis of the Blood Samples
3.2. Stratified Analysis of the Blood Samples
3.3. CGM Data
3.4. In Vitro Digestibility Test
3.5. Sensory Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Lernmark, Å.; Metzger, B.E.; Nathan, D.M.; Kirkman, M.S. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2023, 46, e151–e199. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed]
- Sobiecki, J.G.; Imamura, F.; Davis, C.R.; Sharp, S.J.; Koulman, A.; Hodgson, J.M.; Guevara, M.; Schulze, M.B.; Zheng, J.S.; Agnoli, C.; et al. A nutritional biomarker score of the Mediterranean diet and incident type 2 diabetes: Integrated analysis of data from the MedLey randomised controlled trial and the EPIC-InterAct case-cohort study. PLoS Med. 2023, 20, e1004221. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 2013, 36, 4166–4171. [Google Scholar] [CrossRef] [PubMed]
- Oba, S.; Nanri, A.; Kurotani, K.; Goto, A.; Kato, M.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Nutr. J. 2013, 12, 165. [Google Scholar] [CrossRef]
- Kimura, Y.; Yoshida, D.; Hirakawa, Y.; Hata, J.; Honda, T.; Shibata, M.; Sakata, S.; Uchida, K.; Kitazono, T.; Ninomiya, T. Dietary fiber intake and risk of type 2 diabetes in a general Japanese population: The Hisayama Study. J. Diabetes Investig. 2021, 12, 527–536, (Epub 1 September 2020). [Google Scholar] [CrossRef]
- Yu, J.; Balaji, B.; Tinajero, M.; Jarvis, S.; Khan, T.; Vasudevan, S.; Ranawana, V.; Poobalan, A.; Bhupathiraju, S.; Sun, Q.; et al. White rice, brown rice and the risk of type 2 diabetes: A systematic review and meta-analysis. BMJ Open 2022, 12, e065426. [Google Scholar] [CrossRef]
- Tamura, M. 9 Storage of Cooked Rice. In Science of Rice Chemistry and Nutrition; Tian, J., Ogawa, Y., Singh, J., Kaur, L., Eds.; Springer: Singapore, 2023; pp. 169, 184–185. [Google Scholar]
- The Food Security Office; Policy Planning Division, Minister’s Secretariat of MAFF. The 97th Statistical Yearbook of Ministry of Agriculture, Forestry and Fisheries. Available online: https://www.maff.go.jp/e/data/stat/97th/index.html (accessed on 13 August 2024).
- Lin, J.; Li, C. Influence of instant rice characteristics and processing conditions on starch digestibility—A review. J. Food Sci. 2023, 88, 3143–3154. [Google Scholar] [CrossRef]
- Photinam, R.; Moongngarm, A. Effect of adding vegetable oils to starches from different botanical origins on physicochemical and digestive properties and amylose-lipid complex formation. J. Food Sci. Technol. 2023, 60, 393–403. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, K.H.; Park, S.H.; Hur, S.W.; Auh, J.H. Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread. Foods 2020, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Ramírez, J.E.; Cabrera-Ramirez, A.H.; Morales-Sánchez, E.; Rodriguez-García, M.E.; Reyes-Vega, M.L.; Ramírez-Jiménez, A.K.; Contreras-Jiménez, B.L.; Gaytán-Martínez, M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydr. Polym. 2020, 246, 116555. [Google Scholar] [CrossRef]
- Tong, C.; Liu, L.; Waters, D.L.; Huang, Y.; Bao, J. The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch. Carbohydr. Polym. 2015, 133, 187–193. [Google Scholar] [CrossRef]
- Guo, Y.; Fang, R.; Wu, Z.; Xi, G.; Qiao, D.; Wang, G.; Cui, T.; Zhang, L.; Zhao, S.; Zhang, B. Incorporating edible oil during cooking tailors the microstructure and quality features of brown rice following heat moisture treatment. Food Res. Int. 2024, 180, 114069. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, F.; Bainto-Ancheta, L.; Aumasa, T.; Wonglek, S.; Prempree, P.; Ogawa, Y. Structural characteristics and in vitro starch digestibility of oil-modified cooked rice with varied addition manipulations. Food Res. Int. 2024, 186, 114381. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Fujimoto, A.; Kitamura, R.; Saito, T.; Mikami, A.; Susaki, K.; Kobayashi, H. Structural characteristics determining starch digestibility in cooked rice-complexed with emulsion formulation. Utsunomiya University, Tochigi, Japan. 2024; manuscript in preparation; to be submitted. [Google Scholar]
- Nurdin, S.U.; Nurdjanah, S.; Triyandi, R.; Nurhadi, B. Antioxidant Activity, Glycemic Response, and Functional Properties of Rice Cooked with Red Palm Oil. J. Nutr. Metab. 2024, 2024, 3483292. [Google Scholar] [CrossRef]
- Farooq, A.M.; Dhital, S.; Li, C.; Zhang, B.; Huang, Q. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int. J. Biol. Macromol. 2018, 107, 1080–1085. [Google Scholar] [CrossRef]
- Suntharesan, J.; Atapattu, N.; Jasinghe, E.; Ekanayake, S.; de Silva, D.A.G.H.; Dunseath, G.; Luzio, S.; Premawardhana, L. Acute postprandial gut hormone, leptin, glucose and insulin responses to resistant starch in obese children: A single blind crossover study. Arch. Dis. Child. 2023, 108, 47–52. [Google Scholar] [CrossRef]
- Kawada, N.; Kobayashi, H.; Mikami, A.; Susaki, K.; Matsuoka, R.; Utsunomiya, K. Assessing the postprandial glycemic response to japonica rice (Oryza sativa L. cv. Koshihikari) with a small amount of lysolecithin and canola oil in Japanese adult men: A double-blind, placebo-controlled, crossover study. J. Oleo. Sci. 2024, 73, 751–760. [Google Scholar] [CrossRef]
- Nakamura, Y.; Takemoto, A.; Oyanagi, T.; Tsunemi, S.; Kubo, Y.; Nakagawa, T.; Nagai, Y.; Tanaka, Y.; Sone, M. Effects of cooked rice containing high resistant starch on postprandial plasma glucose, insulin, and incretin in patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2023, 32, 48–56. [Google Scholar]
- Chikubu, S.; Watanabe, S.; Sugimoto, T.; Sakai, F.; Taniguchi, Y. Relation between palatability evaluations of cooked rice and physicochemical properties of rice. Jpn. Soc. Starch. Sci. 1983, 30, 333–341. [Google Scholar] [CrossRef]
- Dartois, A.; Singh, J.; Kaur, L.; Singh, H. Influence of guar gum on the in vitro starch digestibility—Rheological and microstructural characteristics. Food Biophys. 2010, 5, 149–160. [Google Scholar] [CrossRef]
- Tamura, M.; Singh, J.; Kaur, L.; Ogawa, Y. Impact of structural characteristics on starch digestibility of cooked rice. Food Chem. 2016, 191, 91–97. [Google Scholar] [CrossRef]
- Tamura, M.; Singh, J.; Kaur, L.; Ogawa, Y. Impact of the degree of cooking on starch digestibility of rice—An in vitro study. Food Chem. 2016, 191, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 2010, 1, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Araki, E.; Goto, A.; Kondo, T.; Noda, M.; Noto, H.; Origasa, H.; Osawa, H.; Taguchi, A.; Tanizawa, Y.; Tobe, K.; et al. Japanese clinical practice guideline for diabetes 2019. J. Diabetes Investig. 2020, 11, 1020–1076. [Google Scholar] [CrossRef]
- Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Lim, J.; Sun, L.; Henry, C.J. Effect of co-ingestion of amino acids with rice on glycaemic and insulinaemic response. Br. J. Nutr. 2015, 114, 1845–1851. [Google Scholar] [CrossRef]
- Fujimoto, K.; Fujii, K.; Kanamori, T.; Murai, K.; Tomura, T.; Tsutsumi, R.; Teramoto, T.; Nonaka, Y.; Sakaue, H.; Matsuo, Y.; et al. Randomized, double-blind, crossover, placebo-controlled clinical trial to evaluate the effects of chicken hot water extract on insulin secretion. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2422–2430. [Google Scholar]
- Lindgren, O.; Carr, R.D.; Deacon, C.F.; Holst, J.J.; Pacini, G.; Mari, A.; Ahrén, B. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J. Clin. Endocrinol. Metab. 2011, 96, 2519–2524. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Putseys, J.A.; Lamberts, L.; Delcour, J.A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238–247. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; McClements, D.J.; Liang, L.; Liu, C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res. Int. 2018, 106, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Spiegelman, D.; Sudha, V.; Gayathri, R.; Hong, B.; Praseena, K.; Anjana, R.M.; Wedick, N.M.; Arumugam, K.; Malik, V.; et al. Effect of brown rice, white rice, and brown rice with legumes on blood glucose and insulin responses in overweight Asian Indians: A randomized controlled trial. Diabetes Technol. Ther. 2014, 16, 317–325. [Google Scholar] [CrossRef]
- Malik, V.S.; Sudha, V.; Wedick, N.M.; RamyaBai, M.; Vijayalakshmi, P.; Lakshmipriya, N.; Gayathri, R.; Kokila, A.; Jones, C.; Hong, B.; et al. Substituting brown rice for white rice on diabetes risk factors in India: A randomized controlled trial. Br. J. Nutr. 2019, 121, 1389–1397.31. [Google Scholar] [CrossRef]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils-A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef]
- Lin, W. The association between body mass index and glycohemoglobin (HbA1c) in the US population’s diabetes status. Int. J. Environ. Res. Public Health 2024, 21, 517. [Google Scholar] [CrossRef]
- Kusunoki, Y.; Katsuno, T.; Nakae, R.; Watanabe, K.; Ochi, F.; Tokuda, M.; Akagami, T.; Miuchi, M.; Miyagawa, J.; Namba, M. Insulin resistance and β-cell function influence postprandial blood glucose levels in Japanese patients with gestational diabetes mellitus. Gynecol. Endocrinol. 2015, 31, 929–933. [Google Scholar] [CrossRef]
- Boye, K.S.; Lage, M.J.; Shinde, S.; Thieu, V.; Bae, J.P. Trends in HbA1c and body mass index among individuals with type 2 diabetes: Evidence from a US database 2012–2019. Diabetes Ther. 2021, 12, 2077–2087. [Google Scholar] [CrossRef]
- Heinemann, L. Continuous glucose monitoring (CGM) or blood glucose monitoring (BGM): Interactions and implications. J. Diabetes Sci. Technol. 2018, 12, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Wadwa, R.P.; Laffel, L.M.; Shah, V.N.; Garg, S.K. Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technol. Ther. 2018, 20, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Saito, Y.; Saito, T.; Kobayashi, H.; Mikami, A.; Sasahara, Y. Multiple effects of oil addition and freezing-reheating treatment on the in vitro starch digestibility of rice grains. Food Hydrocoll. Health 2023, 4, 100150. [Google Scholar] [CrossRef]
- Tamura, M.; Fujimoto, A.; Nagashima, S.; Kitamura, R.; Saito, T.; Mikami, A.; Susaki, K.; Kobayashi, H. Formation and in vitro starch digestibility of amylose-lipid complex using cooked rice starch and emulsified formulation. Utsunomiya University, Tochigi, Japan. 2024; manuscript in preparation; to be submitted. [Google Scholar]
- Eduardo, M.; Svanberg, U.; Ahrné, L. Effect of hydrocolloids and emulsifiers on the shelf-life of composite cassava-maize-wheat bread after storage. Food Sci. Nutr. 2016, 4, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.B.H.; Hannachi, A.; Haros, C.M. Combined effect of chia flour and soy lecithin incorporation on nutritional and technological quality of fresh bread and during staling. Foods 2020, 9, 446. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Witt, T.; Cowin, G.; Dhital, S.; Turner, M.S.; Stokes, J.R.; Gidley, M.J. Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes. Food Hydrocoll. 2018, 83, 454–464. [Google Scholar] [CrossRef]
Materials | Weight (%) |
---|---|
Refined rice bran oil | 55.5 |
Reduced sugar syrup | 25.0 |
Water | 14.7 |
Salt | 3.00 |
Others | 1.82 |
Total | 100 |
Placebo | Treatment | |
---|---|---|
Energy (kcal) | 296 | 306 |
Protein (g) | 4.00 | 3.60 |
Fat (g) | 0.80 | 2.00 |
Carbohydrate (g) | 68.4 | 68.6 |
Salt equivalent (g) | 0.01 | 0.07 |
Water (g) | 127 | 126 |
Participants (N = 15) | |
---|---|
Age (years) | 59.4 ± 7.7 |
Height (cm) | 172 ± 6 |
Body weight (kg) | 74.1 ± 8.5 |
BMI (kg/cm2) | 25.0 ± 2.3 |
Body fat percentage (%) | 24.2 ± 3.9 |
Systolic blood pressure (mmHg) | 126 ± 11 |
Diastolic blood pressure (mmHg) | 84.1 ± 10.0 |
Fasting blood glucose (mg/dL) | 96.8 ± 10.2 |
Fasting blood insulin (μU/mL) | 4.17 ± 2.80 |
HbA1c (%) | 5.55 ± 0.31 |
Triglyceride (mg/dL) | 111 ± 63 |
Total cholesterol (mg/dL) | 219 ± 37 |
LDL-cholesterol (mg/dL) | 133 ± 35 |
Participants with HbA1c Greater than 5.6 (N = 9) | Participants with an Insulinogenic Index Lower than 0.4 (N = 11) | |
---|---|---|
Age (years) | 57.4 ± 7.9 | 58.2 ± 7.7 |
Height (cm) | 174 ± 4 | 173 ± 6 |
Body weight (kg) | 78.8 ± 3.3 | 74.6 ± 10.0 |
BMI (kg/cm2) | 26.0 ± 1.2 | 24.7 ± 2.6 |
Body fat percentage (%) | 25.5 ± 3.5 | 23.8 ± 4.4 |
Systolic blood pressure (mmHg) | 125 ± 5 | 124 ± 9 |
Diastolic blood pressure (mmHg) | 85.0 ± 8.6 | 82.4 ± 10.8 |
Fasting blood glucose (mg/dL) | 101.9 ± 10.2 | 98.8 ± 11.0 |
Fasting blood insulin (μU/mL) | 4.29 ± 1.27 | 3.60 ± 1.55 |
HbA1c (%) | 5.77 ± 0.14 | 5.61 ± 0.31 |
Triglyceride (mg/dL) | 120 ± 74 | 98.5 ± 51.2 |
Total cholesterol (mg/dL) | 217 ± 45 | 214 ± 35 |
LDL-cholesterol (mg/dL) | 133 ± 42 | 129 ± 34 |
C∞ (%) | k (min−1) | eGI | |
---|---|---|---|
Placebo | 93.8 ± 1.4 b | 0.018 ± 0.003 a | 105.6 ± 4.3 a |
Treatment | 102.5 ± 2.7 a | 0.015 ± 0.003 a | 107.9 ± 6.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawada, N.; Kamachi, K.; Tamura, M.; Tamura, M.; Kitamura, R.; Susaki, K.; Yamamoto, H.; Kobayashi, H.; Matsuoka, R.; Ishihara, O. Impact of Rice Bran Oil Emulsified Formulation on Digestion and Glycemic Response to Japonica Rice: An In Vitro Test and a Clinical Trial in Adult Men. Foods 2024, 13, 2628. https://doi.org/10.3390/foods13162628
Kawada N, Kamachi K, Tamura M, Tamura M, Kitamura R, Susaki K, Yamamoto H, Kobayashi H, Matsuoka R, Ishihara O. Impact of Rice Bran Oil Emulsified Formulation on Digestion and Glycemic Response to Japonica Rice: An In Vitro Test and a Clinical Trial in Adult Men. Foods. 2024; 13(16):2628. https://doi.org/10.3390/foods13162628
Chicago/Turabian StyleKawada, Naoki, Keiko Kamachi, Masatsugu Tamura, Maki Tamura, Rika Kitamura, Kenta Susaki, Hiroyoshi Yamamoto, Hideaki Kobayashi, Ryosuke Matsuoka, and Osamu Ishihara. 2024. "Impact of Rice Bran Oil Emulsified Formulation on Digestion and Glycemic Response to Japonica Rice: An In Vitro Test and a Clinical Trial in Adult Men" Foods 13, no. 16: 2628. https://doi.org/10.3390/foods13162628
APA StyleKawada, N., Kamachi, K., Tamura, M., Tamura, M., Kitamura, R., Susaki, K., Yamamoto, H., Kobayashi, H., Matsuoka, R., & Ishihara, O. (2024). Impact of Rice Bran Oil Emulsified Formulation on Digestion and Glycemic Response to Japonica Rice: An In Vitro Test and a Clinical Trial in Adult Men. Foods, 13(16), 2628. https://doi.org/10.3390/foods13162628