QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds
Abstract
:1. Introduction
2. Computational Methods
- The identification of the main molecular mechanism of alkylation reactions between nine chemical carcinogens and polyphenolic compounds at physiological conditions (pH 7.4 and an aqueous environment).
- Two scales for the quantification of CSA: the absolute scale based on the comparison of the calculated activation-free energies for alkylation reactions of polyphenols with guanine and the relative scale using glutathione as a reference compound.
- The establishment of the order of CSA in a series of polyphenolic compounds at physiological conditions.
- The identification of the most effective scavengers of chemical carcinogens of the epoxy type and the structural features responsible for their activity.
2.1. Investigation of Molecular Mechanisms of Alkylation Reactions of Guanine, Glutathione, and Polyphenolic Compounds with Chemical Carcinogens at Physiological Conditions
2.2. The Determination of an Appropriate Combination of Density Functional, Flexible Basis Set, and Implicit Solvation Model
2.3. Determination of Anticarcinogenic Potential of Various Polyphenolic Compounds as Scavengers of Nine Investigated Chemical Carcinogens of the Epoxy Type Using QM-CSA Methodology
2.4. Evaluation of the CSA of Polyphenolic Compounds by Applying Two Scales
3. Results and Discussion
3.1. Validation of the Developed QM-CSA Protocol
3.2. Application of the QM-CSA Protocol: Mechanistic Insights into Alkylation Reactions of Nine Investigated Chemical Carcinogens with EGCG, EGC, and (+)-Catechin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Bren, U.; Guengerich, F.P.; Mavri, J. Guanine alkylation by the potent carcinogen aflatoxin B1: Quantum chemical calculations. Chem. Res. Toxicol. 2007, 20, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Kranjc, A.; Mavri, J. Guanine alkylation by ethylene oxide: Calculation of chemical reactivity. J. Phys. Chem. A 2006, 110, 5740–5744. [Google Scholar] [CrossRef] [PubMed]
- Bren, U.; Zupan, M.; Guengerich, F.P.; Mavri, J. Chemical reactivity as a tool to study carcinogenicity: Reaction between chloroethylene oxide and guanine. J. Org. Chem. 2006, 71, 4078–4084. [Google Scholar] [CrossRef]
- Lajovic, A.; Nagy, L.D.; Guengerich, F.P.; Bren, U. Carcinogenesis of urethane: Simulation versus experiment. Chem. Res. Toxicol. 2015, 28, 691. [Google Scholar] [CrossRef] [PubMed]
- Galesa, K.; Bren, U.; Kranjc, A.; Mavri, J. Carcinogenicity of acrylamide: A computational study. J. Agric. Food Chem. 2008, 56, 8720–8727. [Google Scholar] [CrossRef]
- Kržan, M.; Mavri, J. Carcinogenicity of styrene oxide: Calculation of chemical reactivity. Croat. Chem. Acta 2009, 82, 317–322. [Google Scholar]
- Mavri, J. Can the chemical reactivity of an ultimate carcinogen be related to its carcinogenicity? An application to propylene oxide. Toxicol. In Vitro 2013, 27, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Gladović, M.; Španinger, E.; Bren, U. Nucleic bases alkylation with acrylonitrile and cyanoethylene oxide: A computational study. Chem. Res. Toxicol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Španinger, E.; Bren, U. Carcinogenesis of β-propiolactone: A computational study. Chem. Res. Toxicol. 2020, 33, 769–781. [Google Scholar] [CrossRef]
- Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003, 66, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.; Sandhu, J.K.; Harper, M.-E.; Cuperlovic-Culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; de Molina, A.R. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr. Rev. 2013, 71, 585–599. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Cerezo-Guisado, M.I.; Zur, R.; Lorenzo, M.J.; Risco, A.; Martín-Serrano, M.A.; Alvarez-Barrientos, A.; Cuenda, A.; Centeno, F. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol. 2015, 84, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X. A review on anti-cancer effect of green tea catechins. J. Funct. Foods 2020, 74, 104172. [Google Scholar] [CrossRef]
- Chen, X.; Du, Y.; Wu, L.; Xie, J.; Chen, X.; Hu, B.; Wu, Z.; Yao, Q.; Li, Q. Effects of tea-polysaccharide conjugates and metal ions on precipitate formation by epigallocatechin gallate and caffeine, the key components of green tea infusion. J. Agric. Food Chem. 2019, 67, 3744–3751. [Google Scholar] [CrossRef] [PubMed]
- Haratifar, S.; Meckling, K.; Corredig, M. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J. Dairy Sci. 2014, 97, 672–678. [Google Scholar] [CrossRef]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Cao, J.; Han, J.; Xiao, H.; Qiao, J.; Han, M. Effect of tea polyphenol compounds on anticancer drugs in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients 2016, 8, 762. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.H.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Res. Int. 2015, 2015, 925640. [Google Scholar] [CrossRef]
- Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules 2018, 23, 2284. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.Y.; Fujiki, H. Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules 2016, 21, 1566. [Google Scholar] [CrossRef] [PubMed]
- Andújar, I.; Recio, M.C.; Giner, R.M.; Ríos, J. Cocoa polyphenols and their potential benefits for human health. Oxid. Med. Cell. Longev. 2012, 2012, 906252. [Google Scholar] [CrossRef]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Lambert, J.D.; Sang, S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol. 2009, 83, 11–21. [Google Scholar] [CrossRef]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory action of green tea. Antiinflamm. Antiallergy Agents Med. Chem. 2016, 15, 74–90. [Google Scholar] [CrossRef]
- Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Ann Beltz, L.; Kay Bayer, D.; Lynn Moss, A.; Mitchell Simet, I. Mechanisms of cancer prevention by green and black tea polyphenols. Curr. Med. Chem. Anticancer Agents 2006, 6, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.K.; Na, H.-K.; Chun, K.-S.; Kim, Y.-K.; Lee, S.J.; Lee, S.S.; Lee, O.-S.; Sim, Y.-C.; Surh, Y.-J. Inhibition of phorbol ester–induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J. Nutr. 2003, 133, 3805S–3810S. [Google Scholar] [CrossRef]
- Fechtner, S.; Ahmed, S. In vitro Comparison of Anti-Inflammatory Activity of Green Tea Catechins. FASEB J. 2016, 30, 916.4. [Google Scholar] [CrossRef]
- Rathore, K.; Choudhary, S.; Odoi, A.; Wang, H.-C.R. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis. Carcinogenesis 2012, 33, 174–183. [Google Scholar] [CrossRef]
- Ho, H.C.; Huang, C.C.; Lu, Y.T.; Yeh, C.M.; Ho, Y.T.; Yang, S.F.; Hsin, C.H.; Lin, C.W. Epigallocatechin-3-gallate inhibits migration of human nasopharyngeal carcinoma cells by repressing MMP-2 expression. J. Cell. Physiol. 2019, 234, 20915–20924. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. Eur. J. Nutr. 2011, 50, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vascular Cell 2013, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, W.; Owusu, L.; Wu, D.; Xin, Y. Epigallocatechin-3-gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int. J. Mol. Med. 2015, 35, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, M.H.; Jeong, M.; Hwang, Y.S.; Lim, S.H.; Shin, B.A.; Ahn, B.W.; Jung, Y.D. EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Res. 2004, 24, 747–754. [Google Scholar]
- Guruvayoorappan, C.; Kuttan, G. (+)-Catechin inhibits tumour angiogenesis and regulates the production of nitric oxide and TNF-α in LPS-stimulated macrophages. Innate Immun. 2008, 14, 160–174. [Google Scholar] [CrossRef]
- Manikandan, R.; Beulaja, M.; Arulvasu, C.; Sellamuthu, S.; Dinesh, D.; Prabhu, D.; Babu, G.; Vaseeharan, B.; Prabhu, N. Synergistic anticancer activity of curcumin and catechin: An in vitro study using human cancer cell lines. Microsc. Res. Tech. 2012, 75, 112–116. [Google Scholar] [CrossRef]
- Carla Cadoná, F.; Kolinski Machado, A.; Farina Azzolin, V.; Barbisan, F.; Bortoluzzi Dornelles, E.; Glanzner, W.; Bayard Gonçalves, P.D.; Elias Assmann, C.; Esteves Ribeiro, E.; Beatrice Mânica da Cruz, I. Guaraná a caffeine-rich food increases oxaliplatin sensitivity of colorectal HT-29 cells by apoptosis pathway modulation. Curr. Med. Chem. Anticancer Agents 2016, 16, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yin, M.; Hao, D.; Shen, Y. Anti-cancer activity of catechin against A549 lung carcinoma cells by induction of cyclin kinase inhibitor P21 and suppression of cyclin E1 and P–AKT. Appl. Sci. 2020, 10, 2065. [Google Scholar] [CrossRef]
- Furlan, V.; Bren, U. Protective Effects of [6]-Gingerol Against Chemical Carcinogens: Mechanistic Insights. Int. J. Mol. Sci. 2020, 21, 695. [Google Scholar] [CrossRef] [PubMed]
- Štern, A.; Furlan, V.; Novak, M.; Štampar, M.; Kolenc, Z.; Kores, K.; Filipič, M.; Bren, U.; Žegura, B. Chemoprotective Effects of Xanthohumol against the Carcinogenic Mycotoxin Aflatoxin B1. Foods 2021, 10, 1331. [Google Scholar] [CrossRef] [PubMed]
- Furlan, V.; Bren, U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Muzolf, M.; Szymusiak, H.; Gliszczyńska-Świgło, A.; Rietjens, I.M.; Tyrakowska, B.E. pH-dependent radical scavenging capacity of green tea catechins. J. Agric. Food Chem. 2008, 56, 816–823. [Google Scholar] [CrossRef]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Improving the accuracy of hybrid meta-GGA density functionals by range separation. J. Phys. Chem. Lett. 2011, 2, 2810–2817. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett. 2012, 3, 117–124. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Phys. Chem. Chem. Phys. 2012, 14, 13171–13174. [Google Scholar] [CrossRef] [PubMed]
- Peverati, R.; Truhlar, D.G. Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 2012, 14, 16187–16191. [Google Scholar] [CrossRef] [PubMed]
- Haoyu, S.Y.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar]
- Yu, H.S.; He, X.; Truhlar, D.G. MN15-L: A new local exchange-correlation functional for Kohn–Sham density functional theory with broad accuracy for atoms, molecules, and solids. J. Chem. Theory Comput. 2016, 12, 1280–1293. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Exchange–correlation functional with good accuracy for both structural and energetic properties while depending only on the density and its gradient. J. Chem. Theory Comput. 2012, 8, 2310–2319. [Google Scholar] [CrossRef] [PubMed]
- Schneebeli, S.T.; Bochevarov, A.D.; Friesner, R.A. Parameterization of a B3LYP specific correction for noncovalent interactions and basis set superposition error on a gigantic data set of CCSD(T) quality noncovalent interaction energies. J. Chem. Theory Comput. 2011, 7, 658–668. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372, 20120476. [Google Scholar] [CrossRef] [PubMed]
- Jana, K.; Ghosh, S.; Wakchaure, P.D.; Bandyopadhyay, T.; Ganguly, B. Probing the role of imidazopyridine and imidazophosphorine scaffolds to design novel proton pump inhibitor for H+, K+-ATPase: A DFT study. ACS Omega 2019, 4, 1311–1321. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. How accurate are the Minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J. Chem. Theory Comput. 2016, 12, 4303–4325. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, K.B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 2004, 25, 1342–1346. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev. 1999, 99, 2161–2200. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- MarvinSketch; Version 20.19; ChemAxon: Budapest, Hungary, 2021; Available online: https://www.chemaxon.com/products/marvin/marvinsketch/ (accessed on 20 August 2024).
- Hayes, J.D.; McLellan, L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273–300. [Google Scholar] [CrossRef] [PubMed]
- Dringen, R.; Brandmann, M.; Hohnholt, M.C.; Blumrich, E.-M. Glutathione-dependent detoxification processes in astrocytes. Neurochem. Res. 2015, 40, 2570–2582. [Google Scholar] [CrossRef] [PubMed]
Functional/Solvation Model | (kcal/mol) a | ωTS (i cm−1) b | ωR (cm−1) c | dTS (Å) d | dR (Å) e | (kcal/mol) f | (/) g | (kcal/mol) h |
---|---|---|---|---|---|---|---|---|
Styrene Oxide | ||||||||
M11-L/SMD | 27.16 | 640.08 | 17.63 | 1.94 | 3.34 | 0.66 | 0.02 | 26.5 |
MN12-L/SMD | 25.50 | 577.35 | 22.26 | 1.94 | 3.13 | 1.00 | 0.04 | 26.5 |
Propylene Oxide | ||||||||
M11-L/SMD | 26.34 | 629.23 | 29.99 | 2.06 | 3.82 | 0.94 | 0.04 | 25.4 |
MN12-L/SMD | 25.45 | 569.04 | 30.07 | 2.05 | 3.17 | 0.05 | 0.002 | 25.4 |
Ethylene Oxide | ||||||||
M11-L/SMD | 24.08 | 613.17 | 11.77 | 2.07 | 2.79 | 0.62 | 0.02 | 24.7 |
MN12-L/SMD | 23.29 | 580.76 | 8.28 | 2.06 | 3.24 | 1.41 | 0.05 | 24.7 |
Glycidamide | ||||||||
M11-L/SMD | 23.76 | 654.07 | 24.06 | 2.08 | 3.70 | 0.96 | 0.04 | 22.8 |
MN12-L/SMD | 23.35 | 598.03 | 24.22 | 2.06 | 3.26 | 0.55 | 0.02 | 22.8 |
Vinyl Carbamate Epoxide | ||||||||
M11-L/SMD | 20.65 | 543.75 | 29.15 | 2.15 | 3.49 | 1.75 | 0.08 | 22.4 |
MN12-L/SMD | 20.95 | 515.44 | 25.84 | 2.13 | 3.36 | 1.45 | 0.06 | 22.4 |
Beta-propiolactone | ||||||||
M11-L/SMD | 21.11 | 583.95 | 16.85 | 2.13 | 3.57 | 0.31 | 0.01 | 20.8 |
MN12-L/SMD | 21.34 | 562.69 | 17.17 | 2.13 | 3.39 | 0.54 | 0.03 | 20.8 |
Chloroethylene Oxide | ||||||||
M11-L/SMD | 18.35 | 539.26 | 23.65 | 2.19 | 3.59 | 1.15 | 0.06 | 19.5 |
MN12-L/SMD | 17.64 | 515.29 | 36.83 | 2.16 | 3.19 | 1.86 | 0.09 | 19.5 |
2-Cyanoethylene Oxide | ||||||||
M11-L/SMD | 20.65 | 646.51 | 20.00 | 2.10 | 3.32 | 1.45 | 0.08 | 19.2 |
MN12-L/SMD | 20.57 | 616.92 | 45.33 | 2.08 | 3.50 | 1.37 | 0.07 | 19.2 |
AFB1 Exo-8.9-Epoxide | ||||||||
M11-L/SMD | 16.99 | 225.87 | 21.53 | 2.12 | 4.21 | 1.89 | 0.12 | 15.1 |
MN12-L/SMD | 16.88 | 207.05 | 26.03 | 2.12 | 4.14 | 1.78 | 0.12 | 15.1 |
Functional/Solvation Model M11-L/SMD | (kcal/mol) a | ωTS (i cm−1) b | ωR (cm−1) c | dTS (Å) d | dR (Å) e | r (/) f | (kcal/mol) g |
---|---|---|---|---|---|---|---|
Styrene Oxide | |||||||
EGCG | 25.65 | 585.16 | 10.48 | 1.99 | 3.35 | 1.53 | 27.16 |
EGC | 19.80 | 577.89 | 6.19 | 2.04 | 3.67 | 1.18 | 27.16 |
(+)-Catechin | 20.32 | 591.12 | 11.05 | 2.03 | 3.14 | 1.21 | 27.16 |
Glutathione | 16.81 | 677.09 | 15.61 | 2.60 | 4.14 | 1.00 | 27.16 |
Propylene Oxide | |||||||
EGCG | 25.71 | 566.03 | 14.46 | 2.00 | 3.25 | 1.52 | 26.34 |
EGC | 20.73 | 581.61 | 25.13 | 2.03 | 3.41 | 1.23 | 26.34 |
(+)-Catechin | 18.85 | 555.36 | 16.31 | 2.02 | 3.35 | 1.12 | 26.34 |
Glutathione | 16.87 | 663.75 | 22.00 | 2.58 | 3.47 | 1.00 | 26.34 |
Ethylene Oxide | |||||||
EGCG | 24.27 | 566.56 | 14.55 | 2.01 | 3.73 | 1.70 | 24.08 |
EGC | 22.12 | 586.59 | 27.95 | 2.05 | 3.85 | 1.55 | 24.08 |
(+)-Catechin | 17.37 | 574.66 | 21.41 | 2.03 | 3.36 | 1.22 | 24.08 |
Glutathione | 14.25 | 675.23 | 27.41 | 2.60 | 3.69 | 1.00 | 24.08 |
Glycidamide | |||||||
EGCG | 22.07 | 552.28 | 16.34 | 2.02 | 4.48 | 1.09 | 23.76 |
EGC | 19.35 | 562.81 | 8.97 | 2.06 | 4.64 | 0.95 | 23.76 |
(+)-Catechin | 19.46 | 583.34 | 11.72 | 2.05 | 3.48 | 0.96 | 23.76 |
Glutathione | 20.30 | 694.05 | 9.16 | 2.57 | 4.13 | 1.00 | 23.76 |
Vinyl Carbamate Epoxide | |||||||
EGCG | 17.64 | 564.04 | 10.75 | 2.10 | 3.58 | 1.47 | 20.65 |
EGC | 11.64 | 591.42 | 11.13 | 2.13 | 3.54 | 0.97 | 20.65 |
(+)-Catechin | 13.61 | 590.77 | 21.98 | 2.12 | 3.70 | 1.14 | 20.65 |
Glutathione | 11.97 | 655.05 | 14.84 | 2.65 | 4.82 | 1.00 | 20.65 |
Beta-propiolactone | |||||||
EGCG | 16.97 | 581.69 | 12.28 | 2.09 | 3.06 | 1.20 | 21.11 |
EGC | 12.85 | 615.41 | 17.64 | 2.10 | 3.23 | 0.91 | 21.11 |
(+)-Catechin | 10.65 | 630.25 | 16.37 | 2.08 | 3.24 | 0.75 | 21.11 |
Glutathione | 14.19 | 653.94 | 12.49 | 2.62 | 3.65 | 1.00 | 21.11 |
Chloroethylene Oxide | |||||||
EGCG | 15.70 | 580.33 | 15.14 | 2.14 | 3.82 | 1.68 | 18.35 |
EGC | 12.86 | 607.74 | 17.61 | 2.16 | 3.52 | 1.37 | 18.35 |
(+)-Catechin | 8.02 | 591.69 | 9.26 | 2.15 | 3.47 | 0.86 | 18.35 |
Glutathione | 9.36 | 633.79 | 23.68 | 2.74 | 3.69 | 1.00 | 18.35 |
2-Cyanoethylene Oxide | |||||||
EGCG | 20.01 | 612.51 | 6.30 | 2.04 | 3.30 | 1.43 | 20.65 |
EGC | 17.97 | 634.52 | 5.88 | 2.07 | 3.37 | 1.29 | 20.65 |
(+)-Catechin | 13.95 | 644.96 | 3.85 | 2.05 | 3.45 | 0.99 | 20.65 |
Glutathione | 13.99 | 712.15 | 9.04 | 2.63 | 3.68 | 1.00 | 20.65 |
AFB1 Exo-8.9-Epoxide | |||||||
EGCG | 17.15 | 156.05 | 14.12 | 2.40 | 3.81 | 1.33 | 16.99 |
EGC | 13.15 | 204.14 | 10.80 | 2.68 | 3.40 | 1.02 | 16.99 |
(+)-Catechin | 14.37 | 143.49 | 10.84 | 2.39 | 3.32 | 1.11 | 16.99 |
Glutathione | 12.92 | 245.54 | 8.88 | 3.06 | 3.77 | 1.00 | 16.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlan, V.; Tošović, J.; Bren, U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024, 13, 2708. https://doi.org/10.3390/foods13172708
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods. 2024; 13(17):2708. https://doi.org/10.3390/foods13172708
Chicago/Turabian StyleFurlan, Veronika, Jelena Tošović, and Urban Bren. 2024. "QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds" Foods 13, no. 17: 2708. https://doi.org/10.3390/foods13172708
APA StyleFurlan, V., Tošović, J., & Bren, U. (2024). QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods, 13(17), 2708. https://doi.org/10.3390/foods13172708