The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. DIA Proteome and PRM
2.3. Targeted Detection of Long-Chain Fatty Acids
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Feeding Mulberry Silage on Carcass Fatness and Meat Quality
3.2. Proteome Analysis of Carcass Fatness in Sheep Fed with Mulberry Silage
3.3. Targeted Metabolomics Detection of Long-Chain Fatty Acids in Adipose Tissue
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Howe, P.; Meyer, B.; Record, S.; Baghurst, K. Dietary intake of long-chain ω-3 polyunsaturated fatty acids: Contribution of meat sources. Nutrition 2006, 22, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Scollan, N.D.; Choi, N.J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Oteng, A.B.; Kersten, S. Mechanisms of Action of trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Panth, N.; Abbott, K.A.; Dias, C.B.; Wynne, K.; Garg, M.L. Differential effects of medium- and long-chain saturated fatty acids on blood lipid profile: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 675–687. [Google Scholar] [CrossRef]
- Rosenberg, I.H.; Schaefer, E.J. Dietary saturated fatty acids and blood cholesterol. N. Engl. J. Med. 1988, 318, 1270–1271. [Google Scholar] [CrossRef]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Virtanen, J.K. Randomized trials of replacing saturated fatty acids with n-6 polyunsaturated fatty acids in coronary heart disease prevention: Not the gold standard? Prostaglandins Leukot. Essent. Fat. Acids 2018, 133, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, H.-J.; Bucheli, P.; Zhang, P.-F.; Wei, D.-Z.; Lu, Y.-H. Phytochemical Profiles of Different Mulberry (Morus sp.) Species from China. J. Agric. Food Chem. 2009, 57, 9133–9140. [Google Scholar] [CrossRef]
- Cui, W.Y.; Luo, K.Y.; Xiao, Q.; Sun, Z.Y.; Wang, Y.F.; Cui, C.F.; Chen, F.C.; Xu, B.; Shen, W.J.; Wan, F.C.; et al. Effect of mulberry leaf or mulberry leaf extract on glycemic traits: A systematic review and meta-analysis. Food Funct. 2023, 14, 1277–1289. [Google Scholar] [CrossRef]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2017, 56, 1509–1521. [Google Scholar] [CrossRef]
- Guangqun, M.; Xiaoyun, C.; Guige, H.; Fenglan, Z.; Qingguo, M. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Wang, C.Y.; Chao, J.; Jia, J.Q.; Guo, X.J.; Zhang, G.Z.; Gui, Z.Z. Improved 1-deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Braz. J. Microbiol. 2014, 45, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Coad, J.; Morel, P.; Booth, C. Effect of consuming pork meat enriched with long chain omega 3 fatty acids and selenium on markers of cardiovascular disease. In Proceedings of the Massey University Advancing Pork Production Seminar, Palmerston North, New Zealand, 7 June 2011; pp. 44–47. [Google Scholar]
- Hassan, F.U.; Arshad, M.A.; Li, M.W.; Rehman, M.S.U.; Loor, J.J.; Huang, J.X. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef]
- Bingwen, S.; Hui, T.; Xiaoli, Z.; Jiangpeng, G.; Kai, C.; Yan, T.; Qiyu, D. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australas. J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef]
- Li, P; Li, X; Long, Q; Zeng, Q; Yao, M; Tang, M; Gong, F; Zhang, J. Effects of different feeding methods on meat quality characteristics of Guizhou black goats. Chin. Herbiv. Anim. Sci. 2024, 44, 80–84. [Google Scholar]
- Hsu, C.H.; Hsu, C.W.; Hsueh, C.; Wang, C.L.; Wu, Y.C.; Wu, C.C.; Liu, C.C.; Yu, J.S.; Chang, Y.S.; Yu, C.J. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol. Cell. Proteom. 2016, 15, 2396–2410. [Google Scholar] [CrossRef]
- Trajkovska, K.T.; Topuzovska, S. High-density lipoprotein metabolism and reverse cholesterol transport: Strategies for raising HDL cholesterol. Anatol. J. Cardiol. 2017, 18, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ben-Aicha, S.; Badimon, L.; Vilahur, G. Advances in HDL: Much more than lipid transporters. Int. J. Mol. Sci. 2020, 21, 732. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Chen, C.; Ren, H.; Zhu, J.; Deng, Y.; Cui, Q.; Hu, X.; He, J.; Li, H.; et al. Flavonoids from mulberry leaves inhibit fat production and improve fatty acid distribution in adipose tissue in finishing pigs. Anim. Nutr. 2024, 16, 147–157. [Google Scholar] [CrossRef]
- Woudberg, N.J.; Lecour, S.; Goedecke, J.H. HDL Subclass Distribution Shifts with Increasing Central Adiposity. J. Obes. 2019, 2019, 2107178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Y.; Wan, J.; Zhang, P.; Pei, F. COX6B1 relieves hypoxia/reoxygenation injury of neonatal rat cardiomyocytes by regulating mitochondrial function. Biotechnol. Lett. 2019, 41, 59–68. [Google Scholar] [CrossRef]
- Abu-Libdeh, B.; Douiev, L.; Amro, S.; Shahrour, M.; Ta-Shma, A.; Miller, C.; Elpeleg, O.; Saada, A. Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. Eur. J. Hum. Genet. 2017, 25, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yan, H.; Du, J.; Chen, X.; Shao, J.; Zhang, Y.; Xu, Z.; Jin, Y.; Lin, N.; Yang, B.; et al. PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 2021, 17, 3221–3237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, X.; Nie, X.; Sun, L.; Tang, T.S.; Chen, D.; Sun, Q. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog. 2012, 8, e1003086. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, F.; Grefte, S.; Roestenberg, P.; Joosten-Wagenaars, J.; Smeitink, J.A.; Willems, P.H.; Koopman, W.J. Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology. Mitochondrion 2013, 13, 436–443. [Google Scholar] [CrossRef]
- Bandara, A.B.; Drake, J.C.; James, C.C.; Smyth, J.W.; Brown, D.A. Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion 2021, 58, 160–168. [Google Scholar] [CrossRef]
- Suhane, S.; Kanzaki, H.; Arumugaswami, V.; Murali, R.; Ramanujan, V.K. Mitochondrial NDUFS3 regulates the ROS-mediated onset of metabolic switch in transformed cells. Biol. Open 2013, 2, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, D.; Wang, Y.; Shen, X.; Dong, A.; Dong, C.; Duan, K.; Ren, J.; Li, W.; Shu, G.; et al. Loss of NDUFS1 promotes gastric cancer progression by activating the mitochondrial ROS-HIF1α-FBLN5 signaling pathway. Br. J. Cancer 2023, 129, 1261–1273. [Google Scholar] [CrossRef]
- Bai, R.R.; Guo, J.A.; Ye, X.Y.; Xie, Y.Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef]
- Picca, A.; Guerra, F.; Calvani, R.; Romano, R.; Coelho, H.J.; Bucci, C.; Marzetti, E. Mitochondrial dysfunction, protein misfolding and neuroinflammation in parkinson’s disease: Roads to biomarker discovery. Biomolecules 2021, 11, 1508. [Google Scholar] [CrossRef] [PubMed]
- Farshbaf, M.J.; Ghaedi, K. Huntington’s disease and mitochondria. Neurotox. Res. 2017, 32, 518–529. [Google Scholar] [CrossRef]
- de Assis, A.M.; Saute, J.A.M.; Longoni, A.; Haas, C.B.; Torrez, V.R.; Brochier, A.W.; Souza, G.N.; Furtado, G.V.; Gheno, T.C.; Russo, A.; et al. Peripheral oxidative stress biomarkers in spinocerebellar ataxia type 3/Machado-Joseph disease. Front. Neurol. 2017, 8, 485. [Google Scholar] [CrossRef]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Med. Cell. Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef]
- Giudetti, A.M.; Salzet, M.; Cassano, T. Oxidative stress in aging brain: Nutritional and pharmacological interventions for neurodegenerative disorders. Oxidative Med. Cell. Longev. 2018, 2018, 3416028. [Google Scholar] [CrossRef] [PubMed]
- Kosmachevskaya, O.V.; Novikova, N.N.; Topunov, A.F. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants 2021, 10, 253. [Google Scholar] [CrossRef]
- Khaket, T.P.; Ahmad, R. Biochemical Studies on Hemoglobin Modified with Reactive Oxygen Species (ROS). Appl. Biochem. Biotechnol. 2011, 164, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Minkler, P.E.; Salomon, R.G.; Anderson, V.E.; Hoppel, C.L. Cardiolipin: Characterization of distinct oxidized molecular species. J. Lipid Res. 2011, 52, 125–135. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Miyazawa, M.; Kamei, A.; Abe, K.; Kojima, T. Ameliorative effects of Mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: Induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci. Biotechnol. Biochem. 2010, 74, 2385–2395. [Google Scholar] [CrossRef]
- Wang, G.D.; Dong, J.N. Network pharmacology approach to evaluate the therapeutic effects of mulberry leaf components for obesity. Exp. Ther. Med. 2022, 23, 56. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xiao, Y.; Peng, Y.; He, J.; Chen, C.; Xiao, D.; Yin, Y.; Li, F. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs. Anim. Nutr. 2021, 7, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, J.; Zhao, N.; Jin, F.; Fan, Q.; Du, E.; Wei, J. Dietary Morus alba L. leaf supplementation improves hepatic lipid accumulation of laying hens via downregulating CircACACA. Poult. Sci. 2023, 102, 103042. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2021, 101, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Fang, Y.; Xu, X.; Ye, W.; Kang, S.; Yang, K.; Cao, Y.; Xu, R.; Zheng, J.; Wang, H. Dietary saturated fatty acids increased all-cause and cardiovascular disease mortality in an elderly population: The National Health and Nutrition Examination Survey. Nutr. Res. 2023, 120, 99–114. [Google Scholar] [CrossRef]
- Sergi, D.; Williams, L.M. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr. Rev. 2020, 78, 261–277. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Q.; Wang, X.; Wang, H. Mulberry leaf polyphenols alleviated high-fat diet-induced obesity in mice. Front. Nutr. 2022, 9, 979058. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.Y.; Seo, Y.J.; Ji, S.D.; Han, J.W.; Hwang, J.S.; Yun, E.Y. Fatty acid composition of adipose tissues in Obese mice and SD rats fed with Isaria sinclairii powder. Toxicol. Res. 2010, 26, 185–192. [Google Scholar] [CrossRef]
- Qin, L.; Huang, T.; Jing, R.; Wen, J.; Cao, M. Mulberry leaf extract reduces abdominal fat deposition via adenosine-activated protein kinase/sterol regulatory element binding protein-1c/acetyl-CoA carboxylase signaling pathway in female Arbor Acre broilers. Poult. Sci. 2023, 102, 102638. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Xu, Q.; Lan, X.; Li, W. Temporal Transcriptome Dynamics of Longissimus dorsi Reveals the Mechanism of the Differences in Muscle Development and IMF Deposition between Fuqing Goats and Nubian Goats. Animals 2024, 14, 1770. [Google Scholar] [CrossRef]
- Matsuzaka, T.; Shimano, H. [Role of Fatty Acid Elongase Elovl6 in the Regulation of Fatty Acid Quality and Lifestyle-related Diseases]. Yakugaku Zasshi 2022, 142, 473–476. [Google Scholar] [CrossRef]
- Shimano, H. [SREBP-1c and Elovl6 as Targets for Obesity-related Disorders]. Yakugaku Zasshi 2015, 135, 1003–1009. [Google Scholar] [CrossRef]
- Dong, J.; Li, M.; Peng, R.; Zhang, Y.; Qiao, Z.; Sun, N. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J. Transl. Med. 2024, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.C.; Siponen, M.I.; Alexson, S.E. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta 2012, 1822, 1397–1410. [Google Scholar] [CrossRef]
- Weiss-Hersh, K.; Garcia, A.L.; Marosvölgyi, T.; Szklenár, M.; Decsi, T.; Rühl, R. Saturated and monounsaturated fatty acids in membranes are determined by the gene expression of their metabolizing enzymes SCD1 and ELOVL6 regulated by the intake of dietary fat. Eur. J. Nutr. 2020, 59, 2759–2769. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wang, S.; Sui, X.; Meng, Q.; Wu, G. Low expression of ELOVL6 may be involved in fat loss in white adipose tissue of cancer-associated cachexia. Lipids Health Dis. 2024, 23, 144. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Chang, G.; Xu, T.; Zhao, H.; Zhang, K.; Shen, X. Feeding a High Concentrate Diet Down-Regulates Expression of ACACA, LPL and SCD and Modifies Milk Composition in Lactating Goats. PLoS ONE 2015, 10, e0130525. [Google Scholar] [CrossRef]
- Jump, D.B.; Torres-Gonzalez, M.; Olson, L.K. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem. Pharmacol. 2011, 81, 649–660. [Google Scholar] [CrossRef]
- Baldin, M.; Adeniji, Y.A.; Souza, J.G.; Green, M.H.; Harvatine, K.J. In vivo kinetics of oleic, linoleic, and α-linolenic acid biohydrogenation in the rumen of dairy cows. J. Dairy Sci. 2022, 105, 7373–7385. [Google Scholar] [CrossRef]
- Stein, O.; Dabach, Y.; Ben-Naim, M.; Halperin, G.; Stein, Y. Effects of oleic acid and macrophage recruitment on cholesterol efflux in cell culture and in vivo. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 596–601. [Google Scholar] [CrossRef]
- Harvey, K.A.; Walker, C.L.; Xu, Z.D.; Whitley, P.; Pavlina, T.M.; Hise, M.; Zaloga, G.P.; Siddiqui, R.A. Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J. Lipid Res. 2010, 51, 3470–3480. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.; Buckley, J.; Meyer, B. Long-chain omega-3 fatty acids in red meat. Nutr. Diet. 2007, 64, S135–S139. [Google Scholar] [CrossRef]
- Brosolo, G.; Da Porto, A.; Marcante, S.; Picci, A.; Capilupi, F.; Capilupi, P.; Bertin, N.; Vivarelli, C.; Bulfone, L.; Vacca, A.; et al. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News? Int. J. Mol. Sci. 2023, 24, 9520. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain? Progress Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef]
- Fan, H.J.; Huang, W.Y.; Guo, Y.; Ma, X.F.; Yang, J.H. α-Linolenic acid suppresses proliferation and invasion in osteosarcoma cells via inhibiting fatty acid synthase. Molecules 2022, 27, 2741. [Google Scholar] [CrossRef]
- Naghshi, S.; Aune, D.; Beyene, J.; Mobarak, S.; Asadi, M.; Sadeghi, O. Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of cohort studies. BMJ-Br. Med. J. 2021, 375, n2213. [Google Scholar] [CrossRef]
- Yuan, Q.H.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.L.; Chen, Z.M.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Arsic, A.; Takic, M.; Kojadinovic, M.; Petrovic, S.; Paunovic, M.; Vucic, V.; Medic, D.R. Metabolically healthy obesity: Is there a link with polyunsaturated fatty acid intake and status? Can. J. Physiol. Pharmacol. 2021, 99, 64–71. [Google Scholar] [CrossRef]
- Piper, K.; Garelnabi, M. Eicosanoids: Atherosclerosis and cardiometabolic health. J. Clin. Transl. Endocrinol. 2020, 19, 100216. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef] [PubMed]
Items/Group | Control | Mulberry |
---|---|---|
concentrated feed | 21.3% | 21.3% |
peanut vines | 25.5% | 25.5% |
corn silage | 53.2% | 0 |
mulberry silage | 0 | 53.2% |
Group | Corn | Mulberry |
---|---|---|
White blood cells | 8.41 ± 5.18 | 11.94 ± 2.63 |
Neutrophils | 1.86 ± 1.62 | 2.78 ± 0.80 |
Lymphocytes | 4.79 ± 2.60 | 6.48 ± 2.36 |
Monocytes | 0.98 ± 0.70 | 1.63 ± 0.329 |
Eosinophils | 0.70 ± 0.50 | 0.95 ± 0.29 |
Basophils | 0.07 ± 0.05 | 0.09 ± 0.029 |
Neutrophils (%) | 18.42 ± 8.19 | 23.76 ± 6.99 |
Lymphocytes (%) | 60.44 ± 9.35 | 53.06 ± 11.25 |
Monocytes (%) | 12.06 ± 3.63 | 14.10 ± 3.43 |
Eosinophils (%) | 8.28 ± 2.45 | 8.34 ± 3.18 |
Basophils (%) | 0.80 ± 0.10 | 0.74 ± 0.089 |
Red blood cells | 10.44 ± 1.70 | 11.46 ± 1.20 |
Hemoglobin | 99.40 ± 16.29 | 114.80 ± 9.68 |
Erythrocytes | 32.80 ± 5.36 | 36.24 ± 3.19 |
Average red blood cell volume | 31.46 ± 1.52 | 31.70 ± 1.60 |
Average hemoglobin content of red blood cells | 9.54 ± 0.35 | 10.04 ± 0.52 |
Mean corpuscular hemoglobin concentration | 303.20 ± 10.18 | 317.00 ± 7.62 * |
Coefficient of variation of red blood cell distribution width | 17.90 ± 0.83 | 18.76 ± 0.65 |
Standard deviation of red blood cell distribution width | 21.00 ± 1.85 | 22.20 ± 1.31 |
Platelets | 202.20 ± 138.58 | 219.20 ± 72.76 |
Average platelet volume | 4.60 ± 0.31 | 4.60 ± 0.32 |
Platelet distribution width | 15.14 ± 0.52 | 14.92 ± 0.36 |
Platelet hematocrit | 0.10 ± 0.07 | 0.10 ± 0.04 |
Group | Corn | Mulberry |
---|---|---|
Subcutaneous fat (kg) | 2.10 ± 0.15 | 1.27 ± 0.10 ** |
Subcutaneous fat rate (%) | 8.81 ± 0.34 | 5.38 ± 0.32 ** |
The content of intramuscular fat (g/100 g) | 1.80 ± 0.13 | 1.82 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhao, X.; Zheng, K.; Wu, J.; Lv, Z.; Huang, X.; Jiang, Y.; Fang, W.; Cao, Y.; Jiang, J. The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage. Foods 2024, 13, 2739. https://doi.org/10.3390/foods13172739
Cao Y, Zhao X, Zheng K, Wu J, Lv Z, Huang X, Jiang Y, Fang W, Cao Y, Jiang J. The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage. Foods. 2024; 13(17):2739. https://doi.org/10.3390/foods13172739
Chicago/Turabian StyleCao, Yang, Xiaoou Zhao, Kaizhi Zheng, Jianliang Wu, Zhiqiang Lv, Xin Huang, Yongqing Jiang, Wenwen Fang, Yang Cao, and Junfang Jiang. 2024. "The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage" Foods 13, no. 17: 2739. https://doi.org/10.3390/foods13172739
APA StyleCao, Y., Zhao, X., Zheng, K., Wu, J., Lv, Z., Huang, X., Jiang, Y., Fang, W., Cao, Y., & Jiang, J. (2024). The Effect of Mulberry Silage Supplementation on the Carcass Fatness and Long-Chain Fatty Acid Composition of Growing Lambs Compared with Traditional Corn Silage. Foods, 13(17), 2739. https://doi.org/10.3390/foods13172739