Preliminary Evaluation of the Effect of Domestication on the Marketable and Nutritional Quality of B. aegyptiaca (L.) Delile Oil from Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Assay
2.2. Oil Extraction
2.3. Reagents and Materials
2.4. Physicochemical Properties
2.5. Fatty Acid (FA) Composition
2.6. Tocopherol Analysis
2.7. Sterol Analysis
2.8. Squalene Analysis
2.9. Total Polyphenol Assay
2.10. Inorganic Elements
2.11. Statistical Analysis
3. Results and Discussion
3.1. Yield and Physicochemical Properties
3.2. FA Composition
3.3. Tocopherols
3.4. Sterols
3.5. Squalene
3.6. Total Polyphenols
3.7. Inorganic Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elamin, M.M.; Satti, A.A. Insecticidal potentialities of Balanites aegyptiaca extracts against the khapra beetle (Trogoderma granarium). Glob. Adv. Res. J. Environ. Sci. Toxicol. 2013, 2, 5–10. [Google Scholar]
- Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Chérif, A.A.; Houndonougbo, J.S.; Idohou, R.; Mensah, S.; Azihou, A.F.; Avocèvou-Ayisso, C.; Assogbadjo, A.E.; Sinsin, B. Towards sustainable conservation and domestication of Balanites aegyptiaca L.(Zygophyllaceae) in Africa: Progress and challenges. J. Arid Environ. 2023, 218, 105053. [Google Scholar] [CrossRef]
- Chothani, D.L.; Vaghasiya, H.U. A review on Balanites aegyptiaca Del (desert date): Phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn. Rev. 2011, 5, 55. [Google Scholar] [CrossRef]
- Tesfaye, A. Balanites (Balanite aegyptiaca) Del., multipurpose tree: A prospective review. Int. J. Mod. Chem. Appl. Sci. 2015, 2, 189–194. [Google Scholar]
- Hounsou-Dindin, G.; Idohou, R.; Donou Hounsode, M.T.; Adomou, A.C.; Assogbadjo, A.E.; Glèlè Kakaï, R. Distribution and structural characterization of Balanites aegyptiaca (L.) Delile and Ricinodendron heudelotii (Bail.) Pierre among phytodistricts and land use types in Benin (West Africa). Trop. Ecol. 2023, 64, 86–104. [Google Scholar] [CrossRef]
- Orwa, C. Agroforestree Database: A Tree Reference and Selection Guide, Version 4.0. Available online: https://apps.worldagroforestry.org/treedb2/index.php (accessed on 1 July 2024).
- Ibrahim, E.E.; Mohamed, A.E.H.; Khalid, A.; Abdalla, A.N. Hepatoprotective effect of Balanites aegyptiaca (L.) Delile leaves against carbon tetrachloride-induced hepatic damage in rats. Arab. J. Med. Aromat. Plants 2016, 2, 59–67. [Google Scholar]
- Kahsay, T.; Muluget, A.; Unnithan, C.R. Antioxidant and antibacterial activities of Balanites aegyptiaca Delil from Northern Ethiopia. Am. J. Pharmtech Res. 2014, 4, 415–422. [Google Scholar]
- Abdou, H.M.K.; Rabiou, H.; Abdou, L.; Ibrahim, M.M.; Mahamane, A. Conoscenze etnobotaniche e importanza socioculturale dei Balanites Egyptiaca (L.) Del. nel Niger centro-orientale. Scienza dell’Africa 2020, 16, 239–252. [Google Scholar]
- Onyema, A.M.; Chinedu, O.J.; Ahmad, M.S. Evaluation of Balanites aegyptiaca Linna. Dlile, stem bark and synthetic surfactant for surface activity. Am. J. Appl. Chem. 2017, 4, 11–15. [Google Scholar]
- Habou, M.K.A.; Rabiou, H.; Abdou, L.; Mamoudou, B.M.; Mahamane, A. Vegetative propagation of Balanites aegyptiaca (L.) Del. by air layering under Sahelian climate in Niger. Asian J. Res. Agric. For. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Motaal, A.A.; Shaker, S.; Haddad, P.S. Antidiabetic activity of standardized extracts of Balanites aegyptiaca fruits using cell-based bioassays. Pharmacogn. J. 2012, 4, 20–24. [Google Scholar] [CrossRef]
- Abdoulaye, B.; Bechir, A.B.; Mapongmetsem, P.M. Utilités socioéconomiques et culturelles du Balanites aegyptiaca (L.) Del.(Famille Zygophyllaceae) chez les populations locales de la Région du Ouaddaï au Tchad. J. Appl. Biosci. 2017, 111, 10854–10866. [Google Scholar]
- Okia, C.A.; Agea, J.G.; Kwetegyeka, J.; Okiror, P.; Kimondo, J.; Teklehaimanot, Z.; Obua, J. Nutritional value of commonly consumed desert date tree products. Afr. Crop Sci. J. 2013, 21, 657–668. [Google Scholar]
- Elfeel, A.A. Variability in Balanites aegyptiaca var. aegyptiaca seed kernel oil, protein and minerals contents between and within locations. Agric. Biol. J. N. Am. 2010, 1, 170–174. [Google Scholar]
- Al Ashaal, H.A.; Farghaly, A.A.; Abd El Aziz, M.M.; Ali, M.A. Phytochemical investigation and medicinal evaluation of fixed oil of Balanites aegyptiaca fruits (Balantiaceae). J. Ethnopharmacol. 2010, 127, 495–501. [Google Scholar] [CrossRef]
- Chapagain, B.P.; Yehoshua, Y.; Wiesman, Z. Desert date (Balanites aegyptiaca) as an arid land sustainable bioresource for biodiesel. Bioresour. Technol. 2009, 100, 1221–1226. [Google Scholar] [CrossRef]
- Khadra, B.; Ahmed, M.; Somia, B.; Ahmed, B.; Nassima, F. Physico-chemical properties of Balanites aegyptiaca’s seeds and seed oil from southern Algeria. Egypt. J. Chem. 2022, 65, 39–45. [Google Scholar]
- Saini, M.K.; Sharma, P.; Prasad, J.; Kothari, S.L.; Gour, V.S. Quality assessment of oil and biodiesel derived from Balanites aegyptiaca collected from different regions of Rajasthan. Biocatal. Agric. Biotechnol. 2019, 22, 101374. [Google Scholar] [CrossRef]
- Diedhiou, D.; Faye, M.; Candy, L.; Vandenbossche, V.; Vilarem, G.E.; Sock, O.; Rigal, L. Composition and balance of the analytical fractionation of desert date (Balanites aegyptiaca L.) seeds harvested in Senegal. Afr. J. Biotechnol. 2021, 20, 150–158. [Google Scholar]
- Bazongo, P.; Ouédraogo, L.; Samadoulougou-Kafando, P.M.J.; Kiendrebeogo, M.; Barro, N. Physicochemical and biochemical composition of Balanites aegyptiaca seed and seed oil from Burkina Faso. Food Nutr. Sci. 2023, 14, 1206–1220. [Google Scholar]
- El Harkaoui, S.; El Kaourat, A.; El Monfalouti, H.; Kartah, B.E.; Mariod, A.A.; Charrouf, Z.; Rohn, S.; Drusch, S.; Matthäus, B. Chemical composition and geographic variation of cold pressed Balanites aegyptiaca kernel oil. Foods 2024, 13, 1135. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Eid, M.M. Evaluation of Balanites aegyptiaca oil as untraditional source of oil and its antiinflammatory activity. J. Drug Res. Egypt. 2015, 36, 1–11. [Google Scholar]
- Khadra, B.; Ahmed, M.; Somia, B.; Nassima, F.; Asma, A.; Abdelhadi, S.; Chawki, B.; Ahmed, B.; Nafissa, B. Phytochemical components, sun protective properties and antibacterial activity of desert dates (Balanites aegyptiaca) kernel oil. Adv. Food Sci. 2023, 45, 13–20. [Google Scholar]
- Mohammad, M.K.; Al-Rammahi, H.M.; Cogoni, D.; Fenu, G. Conservation need for a plant species with extremely small populations linked to ephemeral streams in adverse desert environments. Water 2022, 14, 2638. [Google Scholar] [CrossRef]
- Hounsou-Dindin, G.; Idohou, R.; Donou Hounsode, M.T.; Adomou, A.C.; Assogbadjo, A.E.; Glèlè Kakaï, R. Climate change effects on desert date Balanites aegyptiaca (L.) Delile in Benin: Implications for conservation and domestication. Nat. Resour. Forum 2024, 48, 3–15. [Google Scholar] [CrossRef]
- Mukhtar, R.B. Effect of rooting media and hormone concentrations on vegetative propagation of Balanites aegyptiaca. J. For. Res. 2019, 30, 73–76. [Google Scholar] [CrossRef]
- Slimani, W.A.; Safi, M.O.; Benmahioul, B. First results of a planting trial of Balanites aegyptiaca in Adrar and prospects for its domestication in southwestern Algeria. Int. J. Environ. Stud. 2023, 80, 742–754. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Last, F.T.; Longman, K.A. Domestication of forest trees: A process to secure the productivity and future diversity of tropical ecosystems. Commonw. For. Rev. 1982, 61, 33–42. [Google Scholar]
- Leakey, R.R.B.; Newton, A.C. Tropical Trees: The Potential for Domestication and the Rebuilding of Forest Resources; HMSO: London, UK, 1994; Volume 29. [Google Scholar]
- Leakey, R.R.B.; Tientcheu Avana, M.-L.; Awazi, N.P.; Assogbadjo, A.E.; Mabhaudhi, T.; Hendre, P.S.; Degrande, A.; Hlahla, S.; Manda, L. The Future of Food: Domestication and Commercialization of Indigenous Food Crops in Africa over the Third Decade (2012–2021). Sustainability 2022, 14, 2355. [Google Scholar] [CrossRef]
- Association Française de Normalisation. Recueil des Normes Françaises des Corps Gras, Graines Oléagineuses et Produits Dérivés, 3rd ed.; AFNOR ed.: Paris, France, 1984. [Google Scholar]
- AOAC. Official Method of Analysis of the Association of Official Analytical Chemist; AOAC International N 934.06; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Costa, R.; Bartolomeo, G.; Saija, E.; Rando, R.; Albergamo, A.; Dugo, G. Determination of alkyl esters content in PDO extra virgin olive oils from Sicily. J. Food Qual. 2017, 3078105. [Google Scholar] [CrossRef]
- Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Potortì, A.G.; Di Bella, G. Effect of filtration process on oxidative stability and minor compounds of the cold-pressed hempseed oil during storage. Antioxidants 2023, 12, 1231. [Google Scholar] [CrossRef]
- Amar, Y.M.; Potortì, A.G.; Albergamo, A.; Litrenta, F.; Rando, R.; Mouad, L.B.; Brigui, J.; Chouaibi, N.; Di Bella, G. Study of the lipid fraction of Moroccan and Italian carobs (Ceratonia siliqua L.). Eur. J. Lipid Sci. Technol. 2024, 2400036. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) No 1348/2013 of 16 December 2013 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2014, 57, 1–28. [Google Scholar]
- Vadalà, R.; Nava, V.; Lo Turco, V.; Potortì, A.G.; Costa, R.; Rando, R.; Ben Mansour, H.; Ben Amor, N.; Beltifa, A.; Santini, A.; et al. Nutritional and health values of Tunisian edible oils from less-used plant sources. Agriculture 2023, 13, 1096. [Google Scholar] [CrossRef]
- Albergamo, A.; Salvo, A.; Carabetta, S.; Arrigo, S.; Di Sanzo, R.; Costa, R.; Dugo, G.; Russo, M. Development of an antioxidant formula based on peanut by-products and effects on sensory properties and aroma stability of fortified peanut snacks during storage. J. Sci. Food Agric. 2021, 101, 638–647. [Google Scholar] [CrossRef]
- Nava, V.; Albergamo, A.; Bartolomeo, G.; Rando, R.; Litrenta, F.; Lo Vecchio, G.; Giorgianni, M.C.; Cicero, N. Monitoring cannabinoids and the safety of the trace element profile of light Cannabis sativa L. from different varieties and geographical origin. Toxics 2022, 10, 758. [Google Scholar] [CrossRef]
- Manji, A.J.; Sarah, E.E.; Modibbo, U.U. Studies on the potentials of Balanites aegyptiaca seed oil as raw material for the production of liquid cleansing agents. Int. J. Phys. Sci. 2013, 8, 1655–1660. [Google Scholar]
- Alil, A.E.; Mohammed, B.; Ali, H.A.A.M.; Malik, I.O.M.; Ali, M.A.E.M.; Hamadnalla, H.M. Physicochemical properties of Balanites aegyptiaca (Laloub) seed oil. J. Plant Biochem. Physiol. 2021, 9, 362. [Google Scholar]
- Ivanova, M.; Hanganu, A.; Dumitriu, R.; Tociu, M.; Ivanov, G.; Stavarache, C.; Popescu, L.; Ghendov-Mosanu, A.; Sturza, R.; Deleanu, C.; et al. Saponification value of fats and oils as determined from 1H-NMR data: The case of dairy fats. Foods 2022, 11, 1466. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Olive Oil, Virgin and Refined, and for Refined Olive-Pomace Oil (CODEX STAN, 33-1981, Amendment n.3-2021); FAO/WHO: Rome, Italy, 1981. [Google Scholar]
- Aremu, M.O.; Andrew, C.; Oko, O.J.; Odoh, R.; Zando, C.; Usman, A.; Akpomie, T. Comparative studies on the physicochemical characteristics and lipid contents of desert date (Balanites aegyptiaca (L.) Del) kernel and pulp oils. Eur. J. Nutr. Food Saf. 2022, 14, 20–30. [Google Scholar] [CrossRef]
- Elbadawi, S.M.A.; Ahmad, E.E.M.; Mariod, A.A.; Mathäus, B. Effects of thermal processing on physicochemical properties and oxidative stability of Balanities aegyptiaca kernels and extracted oil. Grasas Aceites 2017, 68, e184. [Google Scholar] [CrossRef]
- Zang, C.U.; Jock, A.A.; Garba, I.H.; Chindo, I.Y. Physicochemical and phytochemical characterization of seed kernel oil from desert date (Balanites aegyptiaca). J. Chem. Eng. Bioanal. Chem. 2017, 2, 49–61. [Google Scholar]
- Eromosele, I.C.; Eromosele, C.O.; Akintoye, A.O.; Komolafe, T. OCharacterization of oils and chemical analyses of the seeds of wild plants. Plant Foods Hum. Nutr. 1994, 46, 361–365. [Google Scholar] [CrossRef]
- Dalla Nora, F.M.; Oliveira, A.S.; Lucas, B.N.; de Freitas Ferreira, D.; Duarte, F.A.; Mello, R.O.; Cichoski, A.J.; Barin, J.S. Miniaturized, high-throughput and green determination of the saponification value of edible oils using thermal infrared enthalpimetry. Anal. Methods 2018, 10, 3770–3776. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Edible Fats and Oils Not Covered by Individual Standards (CODEX STAN 19-1981, Amendment n. 7–2023); FAO/WHO: Rome, Italy, 1981. [Google Scholar]
- Muhammad, H.S.; Agada, R.; Ogaji, I.J.; Ngwuluka, N.C. Physicochemical characterization and fatty acids composition of four indigenous plant oils. Sci. Afr. 2023, 20, e01669. [Google Scholar] [CrossRef]
- Meng, X.; Sedman, J.; Van De Voort, F.R. Improving the determination of moisture in edible oils by FTIR spectroscopy using acetonitrile extraction. Food Chem. 2012, 135, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission. Report of the 14th Session of the Codex Committee on Fats and Oils; FAO/WHO: Rome, Italy, 1995. [Google Scholar]
- Ichu, C.B.; Nwakanma, H.O. Comparative Study of the physicochemical characterization and quality of edible vegetable oils. Int. J. Res. Inf. Sci. Appl. Tech. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Standard for Named Vegetable Oils (CODEX STAN, 210-1999, Amendment n. 8-2023); FAO/WHO: Rome, Italy, 1999. [Google Scholar]
- Aïssi, V.M.; Soumanou, M.M.; Tchobo, F.P.; Kiki, D. Etude comparative de la qualité des huiles végétales alimentaires raffinées en usage au Bénin. Bull. Inf. Soc. Ouest Afr. Chim. 2009, 6, 25–37. [Google Scholar]
- Ali, H.E.; El-Waseif, M.A. Effect of treated olive fruits by some growth regulators on physiochemical properties of extracted olive oil. Curr. Sci. Int. 2015, 4, 105–116. [Google Scholar]
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol. 2014, 14, 1–11. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Reiter, E.; Jiang, Q.; Christen, S. Anti-inflammatory properties of α-and γ-tocopherol. Mol. Asp. Med. 2007, 28, 668–691. [Google Scholar] [CrossRef] [PubMed]
- Gohil, K.; Vasu, V.T.; Cross, C.E. Dietary α-tocopherol and neuromuscular health: Search for optimal dose and molecular mechanisms continues! Mol. Nutr. Food Res. 2010, 54, 693–709. [Google Scholar] [CrossRef]
- Vardi, M.; Levy, N.S.; Levy, A.P. Vitamin E in the prevention of cardiovascular disease: The importance of proper patient selection. J. Lipid Res. 2013, 54, 2307–2314. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M. Lipid evaluation of cultivated and wild carob (Ceratonia siliqua L.) seed oil growing in Turkey. Sci. Hortic. 2011, 130, 181–184. [Google Scholar] [CrossRef]
- Dabbou, S.; Dabbou, S.; Selvaggini, R.; Urbani, S.; Taticchi, A.; Servili, M.; Hammami, M. Comparison of the chemical composition and the organoleptic profile of virgin olive oil from two wild and two cultivated Tunisian Olea europaea. Chem. Biodiv. 2011, 8, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świgło, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol content in edible plant oils. Pol. J. Food Nutr. Sci. 2007, 57, 157–161. [Google Scholar]
- Khan, S.; Lisa, S.A.; Obaid, M.; Chowdhury, K. Tocopherol content of vegetable oils/fats and their oxidative deterioration during storage. World J. Pharm. Pharm. Sci. 2015, 4, 1537–1548. [Google Scholar]
- Marfil, R.; Giménez, R.; Martínez, O.; Bouzas, P.R.; Rufián-Henares, J.A.; Mesías, M.; Cabrera-Vique, C. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania spinosa, Skeels). Eur. J. Lipid Sci. Technol. 2011, 113, 886–893. [Google Scholar] [CrossRef]
- Han, J.-H.; Yang, Y.-X.; Feng, M.-Y. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed. Environ. Sci. 2008, 21, 449–453. [Google Scholar] [CrossRef]
- Ambavade, S.D.; Misar, A.V.; Ambavade, P.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: A review. Orient. Pharm. Exp. Med. 2014, 14, 193–211. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, D.M.; Toivo, J.I.; Swank, M.A.; Simpkins, A.H. Free and esterified sterol composition of edible oils and fats. J. Food Comp. Anal. 2002, 15, 123–142. [Google Scholar] [CrossRef]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.M. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Comp. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- Smith, T.J. Squalene: Potential chemopreventive agent. Expert Opin. Investig. Drug 2000, 9, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef]
- Rudzińska, M.; Górnaś, P.; Raczyk, M.; Soliven, A. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Nat. Prod. Res. 2017, 31, 84–88. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Ansorena, D.; Astiasarán, I. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non-conventional vegetable oils (echium oil, hempseed oil, and moringa oil). J. Food Sci. 2022, 87, 1489–1499. [Google Scholar] [CrossRef]
- Naziri, E.; Mitić, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol. 2016, 118, 898–905. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and antioxidant potential of cold-pressed oils—Possible strategies to improve oil stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef]
- Zeb, A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int. 2021, 143, 110312. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Parra, L.; Lizama, M.; Seguel, I.; Urzúa, A.; Quiroz, A. Plant flavonoid content modified by domestication. Environ. Entomol. 2017, 46, 1080–1089. [Google Scholar] [CrossRef]
- Liu, R.; Lu, M.; Zhang, T.; Zhang, Z.; Jin, Q.; Chang, M.; Wang, X. Evaluation of the antioxidant properties of micronutrients in different vegetable oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900079. [Google Scholar] [CrossRef]
- Oueslati, A.; Dabbou, S.; Methneni, N.; Montevecchi, G.; Nava, V.; Rando, R.; Bartolomeo, G.; Antonelli, A.; Di Bella, G.; Ben Mansour, H. Pomological and olive oil quality characteristics evaluation under short time irrigation of olive trees cv. chemlali with untreated industrial poultry wastewater. Sustainability 2023, 15, 4198. [Google Scholar] [CrossRef]
- Al-Fartusie, F.S.; Mohssan, S.N. Essential trace elements and their vital roles in human body. Indian J. Adv. Chem. Sci. 2017, 5, 127–136. [Google Scholar]
- Marfil, R.; Cabrera-Vique, C.; Giménez, R.; Bouzas, P.R.; Martínez, O.; Sánchez, J.A. Metal content and physicochemical parameters used as quality criteria in virgin argan oil: Influence of the extraction method. J. Agric. Food Chem. 2008, 56, 7279–7284. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Wolf, W.; Spiess, W.E.L. Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels. Plant Foods Hum. Nutr. 2002, 57, 179–189. [Google Scholar] [CrossRef]
- Ahmed, A.; Abdalgadir, H.; Mustafa, Y.A. Determination of fatty acids and minerals from Balanites aegyptiaca fruit kernel in Heglig Forest West Sudan. Sch. Int. J. Chem. Mater. Sci. 2023, 6, 163–169. [Google Scholar] [CrossRef]
Site | Geographic Coordinates | Altitude | Annual Precipitation | Annual Temperature | Soil |
---|---|---|---|---|---|
National Forest Research Institute (NFRI) Adrar nursery | 27.87718° N 0.27909° W | 257 m | 20.16 mm | 25.3 ± 2.4 °C | Sandy clay |
Matriouene | 27.4800° N 1.1959° E | 250 m |
Parameter | Oil from Domesticated Trees | Oil from Wild Trees |
---|---|---|
Yield (%) | 42.36 ± 2.01 * | 36.17 ± 3.50 * |
Moisture content (%) | 0.35 ± 0.04 | 0.37 ± 0.03 |
Refractive index | 1.471 ± 0.00 | 1.470 ± 0.00 |
Specific gravity | 0.92 ± 0.21 | 0.93 ± 0.35 |
Saponification number (mg KOH/g oil) | 162.69 ± 1.37 * | 157.48 ± 2.83 * |
Free acidity (%) | 0.16 ± 0.04 * | 0.38 ± 0.11 * |
Peroxide value (mEqO2/Kg) | 3.46 ± 0.28 * | 4.60 ± 0.49 * |
FAs | Oil from Domesticated Trees | Oil from Wild Trees |
---|---|---|
C12:0 | 0.20 ± 0.01 * | 0.02 ± 0.01 * |
C14:0 | 0.16 ± 0.01 * | 0.07 ± 0.01 * |
C16:0 | 15.64 ± 0.71 | 15.38 ± 0.73 |
C17:0 | 0.12 ± 0.02 | 0.13 ± 0.03 |
C18:0 | 12.12 ± 0.52 | 11.41 ± 0.43 |
C20:0 | 0.36 ± 0.02 | 0.35 ± 0.02 |
C22:0 | 0.05 ± 0.01 | 0.03 ± 0.02 |
C24:0 | 0.04 ± 0.01 | 0.02 ± 0.02 |
SFAs | 28.70 ± 0.89 | 27.40 ± 1.18 |
C16:1 n-9 | 0.05 ± 0.01 | 0.07 ± 0.01 |
C16:1 n-7 | 0.23 ± 0.03 | 0.24 ± 0.02 |
C17:1 | 0.06 ± 0.01 | 0.05 ± 0.01 |
C18:1 n-9 | 36.03 ± 1.16 | 37.40 ± 1.08 |
C18:1 n-7 | 1.19 ± 0.10 | 1.11 ± 0.07 |
C20:1 n-9 | 0.15 ± 0.02 * | 0.09 ± 0.02 * |
MUFAs | 37.70 ± 1.02 | 38.95 ± 1.14 |
C18:2 n-6 | 33.80 ± 1.9 | 33.59 ± 1.17 |
C18:3 n-6 | 0.02 ± 0.01 | 0.01 ± 0.01 |
C18:3 n-3 | 0.06 ± 0.01 | 0.05 ± 0.01 |
PUFAs | 33.88 ± 1.9 | 33.65 ± 1.17 |
Tocopherol | Oil from Domesticated Trees | Oil from Wild Trees |
---|---|---|
α-tocopherol | 68.41 ± 3.96 | 73.65 ± 3.80 |
γ-tocopherol | 10.82 ± 1.57 * | 15.76 ± 1.83 * |
δ-tocopherol | 6.74 ± 0.47 * | 8.23 ± 0.43 * |
Total tocopherols | 84.98 ± 1.79 * | 97.64 ± 1.70 * |
Sterols | Oil from Domesticated Trees | Oil from Wild Trees |
---|---|---|
Cholesterol | 9.91 ± 1.60 | 13.15 ± 1.47 |
Brassicasterol | 1.88 ± 0.20 * | 2.52 ± 0.24 * |
24-methylene cholesterol | 1.80 ± 0.05 | 1.58 ± 0.17 |
Campesterol | 21.79 ± 0.79 * | 26.63 ± 0.82 * |
Campestanol | 4.24 ± 0.10 | 5.56 ± 0.90 |
Stigmasterol | 268.24 ± 2.95 * | 276.02 ± 3.53 * |
Clerosterol | 0.95 ± 0.06 | 0.95 ± 0.10 |
β-sitosterol | 535.44 ± 4.45 | 539.85 ± 6.30 |
Δ5-avenasterol | 88.64 ± 1.62 | 86.71 ± 1.45 |
Δ5,24-stigmastadienol | 1.50 ± 0.14 | 1.52 ± 0.17 |
Δ7-stigmastenol | 0.52 ± 0.03 | 0.72 ± 0.27 |
Δ7-avenasterol | 0.33 ± 0.04 | 0.40 ± 0.12 |
Total sterols | 935.23 ± 24.67 | 955.92 ± 24.4 |
Oil from Domesticated Trees | Oil from Wild Trees | |
---|---|---|
Squalene | 13.43 ± 2.50 | 15.34 ± 1.82 |
Total polyphenols | 60.52 ± 1.51 * | 67.89 ± 2.09 * |
Element | Oil from Domesticated Trees | Oil from Wild Trees |
---|---|---|
Major elements | ||
Na | 20.52 ± 0.58 | 21.34 ± 0.92 |
Mg | 8.47 ± 0.43 | 9.32 ± 0.27 |
K | 13.39 ± 0.44 | 12.42 ± 0.66 |
Ca | 16.75 ± 0.61 * | 11.68 ± 0.35 * |
Trace elements | ||
Fe | 7.14 ± 0.09 * | 8.75 ± 0.22 * |
Zn | 0.27 ± 0.04 | 0.28 ± 0.06 |
Mn | 0.16 ± 0.03 * | 0.24 ± 0.04 * |
Cr | 0.12 ± 0.02 * | 0.09 ± 0.02 * |
Cu | 0.07 ± 0.02 | 0.04 ± 0.01 |
Ni | 0.04 ± 0.01 | 0.05 ± 0.01 |
Se | 0.06 ± 0.01 * | 0.10 ± 0.02 * |
Pb | 0.02 ± 0.00 * | 0.07 ± 0.02 * |
As | <LOQ | <LOQ |
Cd | <LOQ | <LOQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slimani, W.A.; Albergamo, A.; Rando, R.; Nava, V.; Safi, M.O.; Bensenane, S.M.B.; Lo Turco, V.; Benmahioul, B.; Di Bella, G. Preliminary Evaluation of the Effect of Domestication on the Marketable and Nutritional Quality of B. aegyptiaca (L.) Delile Oil from Algeria. Foods 2024, 13, 2752. https://doi.org/10.3390/foods13172752
Slimani WA, Albergamo A, Rando R, Nava V, Safi MO, Bensenane SMB, Lo Turco V, Benmahioul B, Di Bella G. Preliminary Evaluation of the Effect of Domestication on the Marketable and Nutritional Quality of B. aegyptiaca (L.) Delile Oil from Algeria. Foods. 2024; 13(17):2752. https://doi.org/10.3390/foods13172752
Chicago/Turabian StyleSlimani, Wafaa Amira, Ambrogina Albergamo, Rossana Rando, Vincenzo Nava, Mohamed Ould Safi, Sidi Mohammed Bachir Bensenane, Vincenzo Lo Turco, Benamar Benmahioul, and Giuseppa Di Bella. 2024. "Preliminary Evaluation of the Effect of Domestication on the Marketable and Nutritional Quality of B. aegyptiaca (L.) Delile Oil from Algeria" Foods 13, no. 17: 2752. https://doi.org/10.3390/foods13172752
APA StyleSlimani, W. A., Albergamo, A., Rando, R., Nava, V., Safi, M. O., Bensenane, S. M. B., Lo Turco, V., Benmahioul, B., & Di Bella, G. (2024). Preliminary Evaluation of the Effect of Domestication on the Marketable and Nutritional Quality of B. aegyptiaca (L.) Delile Oil from Algeria. Foods, 13(17), 2752. https://doi.org/10.3390/foods13172752