From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Description of Potato By-Product Sources
2.3. Animals, Diets, and Experimental Design
2.4. Sampling, Data Collection, and Chemical Analysis
2.5. Data Analysis
3. Results
3.1. Description of Results
3.1.1. Growth Performance
3.1.2. Apparent Total Tract Nutrient Digestibility
3.1.3. Ruminal Fermentation
3.1.4. 16S rRNA Gene Analysis of Bacterial Communities
3.1.5. Ruminal Microbiota
3.1.6. Classification Overview
3.1.7. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, M. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef] [PubMed]
- Genís, S.; Verdú, M.; Cucurull, J.; Devant, M. Complete feed versus concentrate and straw fed separately: Effect of feeding method on eating and sorting behavior, rumen acidosis, and digestibility in crossbred Angus bulls fed high-concentrate diets. Anim. Feed Sci. Technol. 2021, 273, 114820. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of vegetable and fruit by-products as functional ingredient and food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Shurson, G.C. “What a waste”—Can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Shurson, G.C.; Urriola, P.E. Sustainable swine feeding programs require the convergence of multiple dimensions of circular agriculture and food systems with One Health. Anim. Front. 2022, 12, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Durst, P.; Bayasgalanbat, N. Promotion of Underutilized Indigenous Food Resources for Food Security and Nutrition in Asia and the Pacific; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Priya, B.N.V.; Saiprasad, G.V.S. “Potato”—Powerhouse for Many Nutrients. Potato Res. 2023, 66, 563–580. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Ye, X.; Chen, S. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Robertson, T.M.; Alzaabi, A.Z.; Robertson, M.D.; Fielding, B.A. Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients 2018, 10, 1764. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations, Statistical Division. 2020. Available online: https://www.fao.org/faostat/zh/#data/QCL (accessed on 10 December 2022).
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- FAO. Technical Platform on the Measurement and Reduction of Food Loss and Waste. 2019. Available online: https://www.fao.org/platform-food-loss-waste/flw-data/en (accessed on 10 December 2022).
- Bradshaw, L.; MacGregor, S.; Olsen, T. Potato by-product feeding in the Pacific Northwest. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 339–347. [Google Scholar] [CrossRef] [PubMed]
- van der Goot, A.J.; Pelgrom, P.J.; Berghout, J.A.; Geerts, M.E.; Jankowiak, L.; Hardt, N.A.; Keijer, J.; Schutyser, M.A.; Nikiforidis, C.V.; Boom, R.M. Concepts for further sustainable production of foods. J. Food Eng. 2016, 168, 42–51. [Google Scholar] [CrossRef]
- Ncobela, C.; Kanengoni, A.; Hlatini, V.; Thomas, R.; Chimonyo, M. A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 2017, 227, 107–117. [Google Scholar] [CrossRef]
- Nelson, M. Utilization and application of wet potato processing coproducts for finishing cattle. J. Anim. Sci. 2010, 88 (Suppl. S13), E133–E142. [Google Scholar] [CrossRef]
- Mishra, T.; Raigond, P.; Thakur, N.; Dutt, S.; Singh, B. Recent updates on healthy phytoconstituents in potato: A nutritional depository. Potato Res. 2020, 63, 323–343. [Google Scholar] [CrossRef]
- Benkeblia, N. Potato Glycoalkaloids: Occurrence, biological activities and extraction for biovalorisation–a review. Int. J. Food Sci. Technol. 2020, 55, 2305–2313. [Google Scholar] [CrossRef]
- Pęksa, A.; Gołubowska, G.; Aniołowski, K.; Lisińska, G.; Rytel, E. Changes of glycoalkaloids and nitrate contents in potatoes during chip processing. Food Chem. 2006, 97, 151–156. [Google Scholar] [CrossRef]
- Offner, A.; Bach, A.; Sauvant, D. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 2003, 106, 81–93. [Google Scholar] [CrossRef]
- Humer, E.; Zebeli, Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim. Feed Sci. Technol. 2017, 226, 133–151. [Google Scholar] [CrossRef]
- Plaizier, J.; Krause, D.; Gozho, G.; McBride, B. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Zunong, M.; Tuerhong, T.; Okamoto, M.; Hongo, A.; Hanada, M. Effects of a potato pulp silage supplement on the composition of milk fatty acids when fed to grazing dairy cows. Anim. Feed Sci. Technol. 2009, 152, 81–91. [Google Scholar] [CrossRef]
- Okine, A.; Hanada, M.; Aibibula, Y.; Okamoto, M. Ensiling of potato pulp with or without bacterial inoculants and its effect on fermentation quality, nutrient composition and nutritive value. Anim. Feed Sci. Technol. 2005, 121, 329–343. [Google Scholar] [CrossRef]
- Nelson, M.; Busboom, J.; Cronrath, J.; Falen, L.; Blankenbaker, A. Effects of graded levels of potato by-products in barley-and corn-based beef feedlot diets: I. Feedlot performance, carcass traits, meat composition, and appearance. J. Anim. Sci. 2000, 78, 1829–1836. [Google Scholar] [CrossRef]
- Charmley, E.; Nelson, D.; Zvomuya, F. Nutrient cycling in the vegetable processing industry: Utilization of potato by-products. Can. J. Soil Sci. 2006, 86, 621–629. [Google Scholar] [CrossRef]
- Radunz, A.; Lardy, G.; Bauer, M.; Marchello, M.; Loe, E.; Berg, P. Influence of steam-peeled potato-processing waste inclusion level in beef finishing diets: Effects on digestion, feedlot performance, and meat quality. J. Anim. Sci. 2003, 81, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Duynisveld, J.; Charmley, E. Potato processing waste in beef finishing diets; effects on performance, carcass and meat quality. Anim. Prod. Sci. 2016, 58, 546–552. [Google Scholar] [CrossRef]
- Bergman, E. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Wolff, S.M.; Ellison, M.J.; Hao, Y.; Cockrum, R.R.; Austin, K.J.; Baraboo, M.; Burch, K.; Lee, H.J.; Maurer, T.; Patil, R. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome 2017, 5, 60. [Google Scholar] [CrossRef]
- Pen, B.; Iwama, T.; Ooi, M.; Saitoh, T.; Kida, K.; Iketaki, T.; Takahashi, J.; Hidari, H. Effect of potato by-products based silage on rumen fermentation, methane production and nitrogen utilization in Holstein steers. Asian-Australas. J. Anim. Sci. 2006, 19, 1283–1290. [Google Scholar] [CrossRef]
- Krause, D.; Nagaraja, T.; Wright, A.; Callaway, T. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 2013, 91, 331–341. [Google Scholar] [CrossRef]
- Hernandez-Sanabria, E.; Goonewardene, L.A.; Wang, Z.; Durunna, O.N.; Moore, S.S.; Guan, L.L. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl. Environ. Microbiol. 2012, 78, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.; Barakat, R.; Elolimy, A.; Salem, A.Z.; Elghandour, M.M.; Monroy, J.C. Synergetic action between the rumen microbiota and bovine health. Microb. Pathog. 2018, 124, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, J.M.; Kieran, T.J.; Seidel, D.S.; Glenn, T.C.; Silveira, M.F.d.; Callaway, T.R.; Stewart, R.L., Jr. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate. PLoS ONE 2020, 15, e0231533. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Beef Cattle. Nutrient Requirements of Beef Cattle; National Academy Press: Washington, DC, USA, 2016; pp. 32–34, 56–60+68+399. [Google Scholar] [CrossRef]
- Van Soest, P.v.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists Washington: Washington, DC, USA, 2002. [Google Scholar]
- Tang, S.; Luo, C. Experiment Course of Plant Physiology; Southwest Normal University Press: Chongqing, China, 2012; p. 9787562158134. [Google Scholar]
- Van Keulen, J.; Young, B. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, J.; Cui, Y.; Wang, L.; Li, Y.; Wang, X.; Min, S.; Wang, H.; Zhang, Q.; Li, P. Effect of Potato Vine and Leaf Mixed Silage to Whole Corn Crops on Rumen Fermentation and the Microbe of Fatten Angus Bulls. Fermentation 2023, 9, 704. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Kulyar, M.F.-e.-A.; Iqbal, M.; Lai, R.; Zhu, H.; Li, K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. Sci. Total Environ. 2023, 856, 159089. [Google Scholar] [CrossRef]
- Friedman, H. Simplified determinations of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 1982, 42, 521–526. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Hindle, V.; Vuuren van, A.; Klop, A.; Mathijssen-Kamman, A.; Van Gelder, A.; Cone, J. Site and extent of starch degradation in the dairy cow–a comparison between in vivo, in situ and in vitro measurements. J. Anim. Physiol. Anim. Nutr. 2005, 89, 158–165. [Google Scholar] [CrossRef]
- Russell, J.B.; O’connor, J.; Fox, D.; Van Soest, P.; Sniffen, C. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Huntington, G.; Harmon, D.; Richards, C. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 2006, 84 (Suppl. S13), E14–E24. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, B.; Johnson, J.; McKinnon, J.; McAllister, T.; Penner, G. Effects of barley and corn as sources of silage and grain on dry matter intake, ruminal fermentation, and total-tract digestibility in growing beef heifers. Can. J. Anim. Sci. 2021, 101, 447–458. [Google Scholar] [CrossRef]
- Johnson, J.A.; Sutherland, B.D.; McKinnon, J.J.; McAllister, T.A.; Penner, G.B. Effect of feeding barley or corn silage with dry-rolled barley, corn, or a blend of barley and corn grain on rumen fermentation, total tract digestibility, and nitrogen balance for finishing beef heifers. J. Anim. Sci. 2020, 98, skaa002. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gong, X.; Huang, Y.; Jiang, M.; Zhan, K.; Lin, M.; Zhao, G. Growth performance, rumen fermentation and inflammatory response on holstein growing cattle treated with low and high non-fibrous carbohydrate to neutral detergent fiber ratio pelleted total mixed ration. Animals 2022, 12, 1036. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, R.; Singh, N.; Kaur, A.; Inouchi, N. Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: A comparative study. J. Food Sci. Technol. 2018, 55, 3799–3808. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Masoero, F.; Ferraretto, L.F.; Hoffman, P.C.; Shaver, R.D. Factors affecting starch utilization in large animal food production system: A review. Starch-Stärke 2014, 66, 72–90. [Google Scholar] [CrossRef]
- Miller-Cushon, E.; DeVries, T. Effect of dietary dry matter concentration on the sorting behavior of lactating dairy cows fed a total mixed ration. J. Dairy Sci. 2009, 92, 3292–3298. [Google Scholar] [CrossRef]
- Omer, H.A.; Abdel-Magid, S.S.; Ahmed, S.M.; Mohamed, M.I.; Awadalla, I. Response to partial replacement of yellow corn with potato processing waste as non-traditional source of energy on the productive performance of Ossimi lambs. Trop. Anim. Health Prod. 2010, 42, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Monteils, V.; Jurjanz, S.; Blanchart, G.; Laurent, F. Kinetics of ruminal degradation of wheat and potato starches in total mixed rations. J. Anim. Sci. 2002, 80, 235–241. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, J.; Tan, Z.; Tang, S.; Sun, Z.; Han, X. In situ ruminal crude protein and starch degradation of three classes of feedstuffs in goats. J. Appl. Anim. Res. 2009, 36, 23–28. [Google Scholar] [CrossRef]
- Susmel, P.; Spanghero, M.; Stefanon, B. Interpretation of rumen degradability of concentrate feeds with a Gompertz model. Anim. Feed Sci. Technol. 1999, 79, 223–237. [Google Scholar] [CrossRef]
- Dijkstra, J. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
- Bevans, D.; Beauchemin, K.; Schwartzkopf-Genswein, K.; McKinnon, J.; McAllister, T. Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. J. Anim. Sci. 2005, 83, 1116–1132. [Google Scholar] [CrossRef]
- Jaeger, S.; Luebbe, M.K.; Macken, C.; Erickson, G.E.; Klopfenstein, T.J.; Fithian, W.; Jackson, D.S. Influence of corn hybrid traits on digestibility and the efficiency of gain in feedlot cattle. J. Anim. Sci. 2006, 84, 1790–1800. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Ke, S.; Chen, X.; Kenéz, Á.; Xu, W.; Wang, D.; Zhang, F.; Li, Y.; Cui, Z. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Anim. Nutr. 2022, 11, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Myer, P.R.; Smith, T.P.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef]
- Ran, T.; Tang, S.; Yu, X.; Hou, Z.; Hou, F.; Beauchemin, K.; Yang, W.; Wu, D. Diets varying in ratio of sweet sorghum silage to corn silage for lactating dairy cows: Feed intake, milk production, blood biochemistry, ruminal fermentation, and ruminal microbial community. J. Dairy Sci. 2021, 104, 12600–12615. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Fields, C.J.; Lepercq, P.; Ruiz, P.; Forano, E.; White, B.A.; Mosoni, P. In vivo competitions between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminoccus albus in a gnotobiotic sheep model revealed by multi-omic analyses. MBio 2021, 12, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Huang, Y.; Luo, H.; Wang, L.; Chen, B.; Zhang, Y.; Deng, K.; Zhao, N.; Lai, A. Effects of replacing hybrid giant napier with sugarcane bagasse and fermented sugarcane bagasse on growth performance, nutrient digestibility, rumen fermentation characteristics, and rumen microorganisms of Simmental crossbred cattle. Front. Microbiol. 2023, 14, 1236955. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, S.; Spillane, C.; Claffey, N.; Smith, P.E.; O’Rourke, T.; Diskin, M.G.; Waters, S.M. Rumen microbiome composition is altered in sheep divergent in feed efficiency. Front. Microbiol. 2020, 11, 1981. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Grizzard, C.; Sismour, E.N.; Bhardwaj, H.L.; Li, Z. Resistant starch content, molecular structure and physicochemical properties of starches in Virginia-grown corn, potato and mungbean. J. Cereals Oilseeds 2013, 4, 10–18. [Google Scholar] [CrossRef]
- Ze, X.; Le Mougen, F.; Duncan, S.H.; Louis, P.; Flint, H.J. Some are more equal than others: The role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 2013, 4, 236–240. [Google Scholar] [CrossRef]
- Gaffney, J.; Embree, J.; Gilmore, S.; Embree, M. Ruminococcus bovis sp. nov., a novel species of amylolytic Ruminococcus isolated from the rumen of a dairy cow. Int. J. Syst. Evol. Microbiol. 2021, 71, 004924. [Google Scholar] [CrossRef]
- Bi, Y.; Zeng, S.; Zhang, R.; Diao, Q.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Z.L.; Guo, L.; Li, F.; Li, F. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl. Anim. Sci. 2021, 5, txab065. [Google Scholar] [CrossRef]
- Hernández, P.A.; Mendoza, G.D.; Castro, A.; Lara, A.; Plata, F.; Martínez, J.; Ferraro, S. Effects of grain level on lamb performance, ruminal metabolism and leptin mRNA expression in perirenal adipose tissue. Anim. Prod. Sci. 2017, 57, 2001–2006. [Google Scholar] [CrossRef]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016, 4, 56. [Google Scholar] [CrossRef]
- Pitta, D.; Indugu, N.; Vecchiarelli, B.; Hennessy, M.; Baldin, M.; Harvatine, K. Effect of 2-hydroxy-4-(methylthio) butanoate (HMTBa) supplementation on rumen bacterial populations in dairy cows when exposed to diets with risk for milk fat depression. J. Dairy Sci. 2020, 103, 2718–2730. [Google Scholar] [CrossRef] [PubMed]
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; van Hal, O.; Virkki, V.; Kummu, M. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
Items 1 | Ground Corn 2 | PBP |
---|---|---|
DM, %DM | 87.05 ± 0.20 | 21.4 ± 0.87 |
CP, %DM | 9.35 ± 0.20 | 8.45 ± 0.36 |
EE, %DM | 3.82 ± 0.17 | 1.44 ± 0.13 |
NDF, %DM | 8.43 ± 0.19 | 5.01 ± 0.15 |
ADF, %DM | 3.22 ± 0.11 | 2.53 ± 0.23 |
Starch, %DM | 72.63 ± 0.62 | 79.56 ± 0.73 |
Ash, %DM | 1.57 ± 0.08 | 2.02 ± 0.05 |
ME 3, MJ/kg DM | 16.18 | 16.19 |
Ingredients | PBP to Replace Corn in Different Proportions 1 | |||
---|---|---|---|---|
0% PBP | 12.84% PBP | 25.65% PBP | 38.44% PBP | |
Ground corn, % | 50.98 | 38.20 | 25.43 | 12.70 |
PBP, % | 0.00 | 12.84 | 25.65 | 38.44 |
Commercial concentrate 2, % | 14.83 | 14.82 | 14.80 | 14.79 |
Corn Silage, % | 26.42 | 26.39 | 26.36 | 26.34 |
Wheat straw, % | 7.76 | 7.75 | 7.74 | 7.74 |
Chemical composition 3 | ||||
CP, %DM | 12.69 ± 0.11 | 12.56 ± 0.08 | 12.30 ± 0.03 | 12.05 ± 0.09 |
EE, %DM | 2.49 ± 0.04 | 2.11 ± 0.02 | 1.60 ± 0.05 | 1.19 ± 0.01 |
NDF, %DM | 30.28 ± 0.62 | 29.34 ± 0.51 | 27.23 ± 0.42 | 25.39 ± 0.71 |
ADF, %DM | 14.11 ± 0.57 | 13.79 ± 0.49 | 13.49 ± 0.17 | 13.24 ± 0.61 |
Ash, %DM | 5.55 ± 0.06 | 5.76 ± 0.07 | 5.83 ± 0.10 | 6.02 ± 0.11 |
Starch, %DM | 41.70 ± 0.53 | 43.84 ± 0.42 | 44.99 ± 0.53 | 46.16 ± 0.80 |
ME 4, MJ/kg DM | 14.18 | 14.22 | 14.25 | 14.30 |
Items 1 | PBP to Replace Corn in Different Proportions 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% PBP | 12.84% PBP | 25.65% PBP | 38.44% PBP | Treatment | Linear | Quadratic | ||
DM (%) | 74.81 a | 74.93 a | 73.57 b | 71.88 c | 0.253 | <0.001 | <0.001 | <0.001 |
CP (%) | 71.29 | 70.29 | 69.05 | 70.66 | 0.448 | 0.434 | 0.478 | 0.199 |
EE (%) | 76.93 | 78.29 | 78.85 | 76.99 | 0.523 | 0.498 | 0.877 | 0.144 |
NDF (%) | 62.19 | 62.79 | 62.84 | 59.29 | 0.882 | 0.535 | 0.338 | 0.307 |
ADF (%) | 60.13 | 60.21 | 63.09 | 60.39 | 0.831 | 0.577 | 0.642 | 0.433 |
Starch (%) | 94.06 a | 93.33 a | 90.01 b | 91.19 b | 0.514 | 0.002 | 0.001 | 0.102 |
Items | PBP to Replace Corn in Different Proportions 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% PBP | 12.84% PBP | 25.65% PBP | 38.44% PBP | Treatment | Linear | Quadratic | ||
pH | 6.63 | 6.12 | 6.12 | 6.18 | 0.077 | 0.076 | 0.078 | 0.061 |
NH3-N, mg/dL 2 | 7.18 | 7.38 | 6.97 | 7.03 | 0.305 | 0.967 | 0.760 | 0.919 |
Acetate, mmol/L | 58.21 | 58.83 | 56.30 | 59.76 | 3.856 | 0.992 | 0.957 | 0.875 |
Propionate, mmol/L | 19.19 | 21.64 | 19.72 | 27.76 | 2.002 | 0.465 | 0.219 | 0.531 |
Isobutyrate, mmol/L | 0.86 | 0.61 | 0.74 | 0.58 | 0.072 | 0.561 | 0.341 | 0.714 |
Butyrate, mmol/L | 9.32 | 12.11 | 12.35 | 10.30 | 0.971 | 0.687 | 0.804 | 0.242 |
Isovalerate, mmol/L | 1.22 | 0.92 | 0.93 | 1.01 | 0.091 | 0.692 | 0.428 | 0.536 |
Valerate, mmol/L | 1.39 | 1.43 | 1.06 | 1.26 | 0.117 | 0.714 | 0.506 | 0.797 |
TVFA 3, mmol/L | 90.19 | 96.00 | 91.20 | 100.46 | 6.463 | 0.952 | 0.696 | 0.919 |
A:P ratio 4 | 3.08 | 2.88 | 2.91 | 2.52 | 0.092 | 0.225 | 0.063 | 0.629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Li, Y.; Wang, H.; Zhang, S.; Deng, J.; Aziz-ur-Rahman, M.; Cui, Y.; Lu, L.; Zhao, W.; Qiu, X.; et al. From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls. Foods 2024, 13, 2771. https://doi.org/10.3390/foods13172771
Shi C, Li Y, Wang H, Zhang S, Deng J, Aziz-ur-Rahman M, Cui Y, Lu L, Zhao W, Qiu X, et al. From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls. Foods. 2024; 13(17):2771. https://doi.org/10.3390/foods13172771
Chicago/Turabian StyleShi, Changxiao, Yingqi Li, Huili Wang, Siyu Zhang, Jiajie Deng, Muhammad Aziz-ur-Rahman, Yafang Cui, Lianqiang Lu, Wenxi Zhao, Xinjun Qiu, and et al. 2024. "From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls" Foods 13, no. 17: 2771. https://doi.org/10.3390/foods13172771
APA StyleShi, C., Li, Y., Wang, H., Zhang, S., Deng, J., Aziz-ur-Rahman, M., Cui, Y., Lu, L., Zhao, W., Qiu, X., He, Y., Cao, B., Abbas, W., Ramzan, F., Ren, X., & Su, H. (2024). From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls. Foods, 13(17), 2771. https://doi.org/10.3390/foods13172771