Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Design
2.3. Nanoemulsion Preparation
2.4. ζ-Potential and Particle Size
2.5. Determination of Vitamin D3
2.6. Stability of Vitamin D3 in a Functional Meat Model System
2.7. Statistical Analysis
3. Results and Discussion
3.1. ζ-Potential, Particle Size, and Vitamin D3 Retention
3.2. Optimization
3.3. Stability of Vitamin D3 in a Meat Batter after Cooking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-López, J.A.; García-Contreras, A.I. Vitamin D and the COVID-19 pandemic. Rev. Mex. Endocrinol. Metab. Nutr. 2020, 7, 95–101. [Google Scholar]
- Akbari, A.R.; Khan, M.; Adeboye, W.; Lee, L.H.H.; Chowdhury, S.I. Ethnicity as a risk factor for vitamin D deficiency and undesirable COVID-19 outcomes. Rev. Med. Virol. 2022, 32, e2291. [Google Scholar] [CrossRef] [PubMed]
- Hawk, J. Safe, mild ultraviolet-B exposure: An essential human requirement for vitamin D and other vital bodily parameter adequacy: A review. Photodermatol. Photoimmunol. Photomed. 2020, 36, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Lavelli, V.; D’Incecco, P.; Pellegrino, L. Vitamin D incorporation in foods: Formulation strategies, stability, and bioaccessibility as affected by the food matrix. Foods 2021, 10, 1989. [Google Scholar] [CrossRef]
- Flores, M.E.; Rivera-Pasquel, M.; Valdez-Sánchez, A.; Cruz-Góngora, V.D.l.; Contreras-Manzano, A.; Shamah-Levy, T.; Villalpando, S. Vitamin D status in Mexican children 1 to 11 years of age: An update from the Ensanut 2018–19. Salud Publ. Mex. 2021, 63, 382–393. [Google Scholar] [CrossRef]
- Contreras-Manzano, A.; Mejía-Rodríguez, F.; Villalpando, S.; Rebollar, R.; Flores-Aldana, M. Estado de vitamina D en mujeres en edad reproductiva, Ensanut 2018–19. Salud Publ. Mex. 2021, 63, 394–400. [Google Scholar] [CrossRef]
- Herrera-Vázquez, A.; Avendaño-Vázquez, E.; Torres-Alarcón, C.G. Deficiencia de vitamina D en adultos mayores con fractura de cadera. Med. Int. Mex. 2019, 35, 669–675. [Google Scholar]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D sources, metabolism, and deficiency: Available compounds and guidelines for its treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- Buttriss, J.; Lanham-New, S. Is a vitamin D fortification strategy needed? Nutr. Bull. 2020, 45, 115. [Google Scholar] [CrossRef]
- Hennessy, Á.; Browne, F.; Kiely, M.; Walton, J.; Flynn, A. The role of fortified foods and nutritional supplements in increasing vitamin D intake in Irish preschool children. Eur. J. Nutr. 2017, 56, 1219–1231. [Google Scholar] [CrossRef]
- Moulas, A.N.; Vaiou, M. Vitamin D fortification of foods and prospective health outcomes. J. Biotechnol. 2018, 285, 91–101. [Google Scholar] [CrossRef]
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Chen, L.; Lv, J.; Pang, Y.; Guo, Y.; Pei, P.; Du, H.; Yang, L.; Millwood, I.Y.; Walters, R.G. Association of red meat consumption, metabolic markers, and risk of cardiovascular diseases. Front. Nut. 2022, 9, 833271. [Google Scholar] [CrossRef] [PubMed]
- Papier, K.; Knuppel, A.; Syam, N.; Jebb, S.A.; Key, T.J. Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 426–437. [Google Scholar] [CrossRef]
- Lima, T.L.S.; Costa, G.F.d.; Alves, R.d.N.; Araújo, C.D.L.d.; Silva, G.F.G.d.; Ribeiro, N.L.; Figueiredo, C.F.V.d.; Andrade, R.O.d. Vegetable oils in emulsified meat products: A new strategy to replace animal fat. Food Sci. Technol. 2022, 42, e103621. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Technologies for the production of meat products with a low sodium chloride content and improved quality characteristics—A review. Foods 2021, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Delgado-Pando, G. Towards more sustainable meat products: Extenders as a way of reducing meat content. Foods 2020, 9, 1044. [Google Scholar] [CrossRef]
- Kang, Z.-L.; Xie, J.-j.; Li, Y.-p.; Song, W.-j.; Ma, H.-J. Effects of pre-emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced-animal fat pork batter. Meat Sci. 2023, 198, 109087. [Google Scholar] [CrossRef]
- Kaynakci, E.; Kilic, B. Effect of replacing beef fat with safflower oil on physicochemical, nutritional and oxidative stability characteristics of wieners. Food Sci. Technol. 2020, 41 (Suppl. 1), 52–59. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, S.; Du, Z.; Chao, M.; O’Quinn, T.; Li, Y. Effect of adding modified pea protein as functional extender on the physical and sensory properties of beef patties. LWT Food Sci. Technol. 2022, 154, 112774. [Google Scholar] [CrossRef]
- Broucke, K.; Van Poucke, C.; Duquenne, B.; De Witte, B.; Baune, M.-C.; Lammers, V.; Terjung, N.; Ebert, S.; Gibis, M.; Weiss, J. Ability of (extruded) pea protein products to partially replace pork meat in emulsified cooked sausages. Innov. Food Sci. Emerg. Technol. 2022, 78, 102992. [Google Scholar] [CrossRef]
- Khajavi, M.Z.; Abhari, K.; Barzegar, F.; Hosseini, H. Functional meat products: The new consumer’s demand. Curr. Nutr. Food Sci. 2020, 16, 260–267. [Google Scholar] [CrossRef]
- Gómez, I.; Sarriés, M.V.; Ibañez, F.C.; Beriain, M.J. Quality characteristics of a low-fat beef patty enriched by polyunsaturated fatty acids and vitamin D3. J. Food Sci. 2018, 83, 454–463. [Google Scholar] [CrossRef]
- Jan, Y.; Al-Keridis, L.A.; Malik, M.; Haq, A.; Ahmad, S.; Kaur, J.; Adnan, M.; Alshammari, N.; Ashraf, S.A.; Panda, B.P. Preparation, modelling, characterization and release profile of vitamin D3 nanoemulsion. LWT Food Sci. Technol. 2022, 169, 113980. [Google Scholar] [CrossRef]
- Sharifi, F.; Jahangiri, M. Investigation of the stability of vitamin D in emulsion-based delivery systems. Chem. Ind. Chem. Eng. Q. 2018, 24, 157–167. [Google Scholar] [CrossRef]
- Khalid, N.; Kobayashi, I.; Wang, Z.; Neves, M.A.; Uemura, K.; Nakajima, M.; Nabetani, H. Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with ergocalciferol using microchannel emulsification. RSC Adv. 2015, 5, 97151–97162. [Google Scholar] [CrossRef]
- Mehmood, T.; Ahmed, A.; Ahmed, Z.; Ahmad, M.S. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology. Food Chem. 2019, 289, 664–670. [Google Scholar] [CrossRef]
- Maurya, V.K.; Aggarwal, M. A phase inversion based nanoemulsion fabrication process to encapsulate vitamin D3 for food applications. J. Steroid Biochem. Mol. Biol. 2019, 190, 88–98. [Google Scholar] [CrossRef]
- Barba, A.A.; Dalmoro, A.; d’Amore, M.; Lamberti, G. Liposoluble vitamin encapsulation in shell–core microparticles produced by ultrasonic atomization and microwave stabilization. LWT Food Sci. Technol. 2015, 64, 149–156. [Google Scholar] [CrossRef]
- Walia, N.; Chen, L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem. 2020, 305, 125475. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Khan, R.S.; Hussain, M.I.; Farooq, M.; Ahmad, A.; Ahmed, I. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-A review. Trends Food Sci. Technol. 2017, 66, 176–186. [Google Scholar] [CrossRef]
- Schoener, A.L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D.J. Fabrication of plant-based vitamin D 3-fortified nanoemulsions: Influence of carrier oil type on vitamin bioaccessibility. Food Funct. 2019, 10, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.L. Role of myofibrillar proteins in water-binding in brine-enhanced meats. Food Res. Int. 2005, 38, 281–287. [Google Scholar] [CrossRef]
- Wang, D.; Qi, B.; Xu, Q.; Zhang, S.; Xie, F.; Li, Y. Effect of salt ions on an ultrasonically modified soybean lipophilic protein nanoemulsion. Int. J. Food Sci. Technol. 2021, 56, 6719–6731. [Google Scholar] [CrossRef]
- Didar, Z.; Hesarinejad, M.A. Preparation of vitamin D3-loaded oil-in-water-in-oil double emulsions using psyllium gum: Optimization using response surface methodology. Chem. Biol. Technol. Agric. 2022, 9, 81. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, X.; Zhao, X.h. Effect of homogenizing pressure on the properties of soy protein isolate-vitamin D3 nanoemulsion. J. Food Process Eng. 2021, 44, e13757. [Google Scholar] [CrossRef]
- Almouazen, E.; Bourgeois, S.; Jordheim, L.P.; Fessi, H.; Briançon, S. Nano-encapsulation of vitamin D 3 active metabolites for application in chemotherapy: Formulation study and in vitro evaluation. Pharm. Res. 2013, 30, 1137–1146. [Google Scholar] [CrossRef]
- Syama, M.; Arora, S.; Gupta, C.; Sharma, A.; Sharma, V. Enhancement of vitamin D2 stability in fortified milk during light exposure and commercial heat treatments by complexation with milk proteins. Food Biosci. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Keršienė, M.; Jasutienė, I.; Eisinaitė, V.; Pukalskienė, M.; Venskutonis, P.R.; Damulevičienė, G.; Knašienė, J.; Lesauskaitė, V.; Leskauskaitė, D. Development of a high-protein yoghurt-type product enriched with bioactive compounds for the elderly. LWT Food Sci. Technol. 2020, 131, 109820. [Google Scholar] [CrossRef]
- Tippetts, M.; Martini, S.; Brothersen, C.; McMahon, D. Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J. Dairy Sci. 2012, 95, 4768–4774. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Cordobés, F.; Guerrero, A.; Puppo, M.C. Influence of protein concentration on the properties of crayfish protein isolated gels. Int. J. Food Prop. 2014, 17, 249–260. [Google Scholar] [CrossRef]
- Liu, K.; Kong, X.-L.; Li, Q.-M.; Zhang, H.-L.; Zha, X.-Q.; Luo, J.-P. Stability and bioavailability of vitamin D3 encapsulated in composite gels of whey protein isolate and lotus root amylopectin. Carbohydr. Polym. 2020, 227, 115337. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.N.; Frislev, H.S.; Pedersen, J.S.; Otzen, D.E. Using protein-fatty acid complexes to improve vitamin D stability. J. Dairy Sci. 2016, 99, 7755–7767. [Google Scholar] [CrossRef]
- Mahmoodani, F.; Perera, C.O.; Abernethy, G.; Fedrizzi, B.; Chen, H. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage. Food Chem. 2018, 261, 149–156. [Google Scholar] [CrossRef]
- Hemery, Y.M.; Fontan, L.; Moench-Pfanner, R.; Laillou, A.; Berger, J.; Renaud, C.; Avallone, S. Influence of light exposure and oxidative status on the stability of vitamins A and D3 during the storage of fortified soybean oil. Food Chem. 2015, 184, 90–98. [Google Scholar] [CrossRef]
- Jakobsen, J.; Knuthsen, P. Stability of vitamin D in foodstuffs during cooking. Food Chem. 2014, 148, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef]
- Melro, E.; Antunes, F.; Cruz, I.; Ramos, P.E.; Carvalho, F.; Alves, L. Morphological, textural and physico-chemical characterization of processed meat products during their shelf life. Food Struct. 2020, 26, 100164. [Google Scholar] [CrossRef]
Coded Values | Experimental Values | Response Variables | |||||||
---|---|---|---|---|---|---|---|---|---|
Run | A | B | C | a A: Oil | b B: Protein | C: Salt | ζ-Potential | Particle Size | c VD3 |
% | % | % | (mV) | (nm) | Retention (%) | ||||
1 | −1 | −1 | −1 | 7.03 | 0.91 | 0.10 | −42.96 | 542 | 60.4 |
2 | +1 | −1 | −1 | 12.97 | 0.91 | 0.10 | −10.97 | 934 | 35.5 |
3 | −1 | +1 | −1 | 7.03 | 2.09 | 0.10 | −33.12 | 559 | 60.2 |
4 | +1 | +1 | −1 | 12.97 | 2.09 | 0.10 | −9.67 | 494 | 38.0 |
5 | −1 | −1 | +1 | 7.03 | 0.91 | 0.40 | −38.91 | 282 | 25.1 |
6 | +1 | −1 | +1 | 12.97 | 0.91 | 0.40 | −4.85 | 1830 | 79.9 |
7 | −1 | +1 | +1 | 7.03 | 2.09 | 0.40 | −43.86 | 215 | 35.1 |
8 | +1 | +1 | +1 | 12.97 | 2.09 | 0.40 | −28.59 | 1256 | 38.2 |
9 | −1.68 | 0 | 0 | 5 | 1.5 | 0.25 | −42.88 | 287 | 26.9 |
10 | +1.68 | 0 | 0 | 15 | 1.5 | 0.25 | −5.07 | 511 | 42.8 |
11 | 0 | −1.68 | 0 | 10 | 0.5 | 0.25 | −8.80 | 1631 | 58.4 |
12 | 0 | +1.68 | 0 | 10 | 2.5 | 0.25 | −26.21 | 791 | 36.2 |
13 | 0 | 0 | −1.68 | 10 | 1.5 | 0.00 | −27.48 | 603 | 38.5 |
14 | 0 | 0 | +1.68 | 10 | 1.5 | 0.50 | −29.92 | 355 | 68.5 |
15 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −30.65 | 940 | 78.2 |
16 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −34.06 | 560 | 60.3 |
17 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −35.28 | 450 | 59.7 |
18 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −32.50 | 961 | 57.2 |
19 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −26.56 | 644 | 50.4 |
20 | 0 | 0 | 0 | 10 | 1.5 | 0.25 | −41.02 | 433 | 58.3 |
ζ-Potential | Particle Size | VD3 Retention | ||||
---|---|---|---|---|---|---|
RC | SE | RC | SE | RC | SE | |
Intercept | −33.22 | 1.95 | 663.1 | 112.9 | 60.62 | 4.61 |
A: a SO | 12.33 * | 1.29 | 241.1 * | 74.9 | 2.76 | 3.06 |
B: b PP | −3.43 * | 1.29 | −181.5 * | 74.9 | −4.89 | 3.06 |
C: Salt | −1.73 | 1.29 | 46.6 | 74.9 | 2.52 | 3.06 |
AB | −3.42 | 1.69 | −120.5 | 97.9 | −6.13 | 4.00 |
AC | −0.76 | 1.69 | 282.8 * | 97.9 | 13.13 * | 4.00 |
BC | −4.98 * | 1.69 | −27.1 | 97.9 | −4.26 | 4.00 |
A2 | 2.50 | 1.26 | −80.1 | 72.9 | −8.65 * | 2.98 |
B2 | 4.79 * | 1.26 | 206.8 * | 72.9 | −4.27 | 2.98 |
C2 | 0.83 | 1.26 | −51.9 | 72.9 | −2.06 | 2.98 |
R2 | 0.93 | 0.79 | 0.74 | |||
p-values | ||||||
Regression | <0.001 | 0.018 | 0.04 | |||
Lack of fit | 0.53 | 0.27 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuñuri-Pacheco, N.; Moreno-García, Y.A.; González-Ríos, H.; Astiazarán-García, H.; López-Franco, Y.L.; Tortoledo-Ortiz, O.; Pérez-Báez, A.J.; Dávila-Ramírez, J.L.; Lizardi-Mendoza, J.; Valenzuela-Melendres, M. Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System. Foods 2024, 13, 2842. https://doi.org/10.3390/foods13172842
Peñuñuri-Pacheco N, Moreno-García YA, González-Ríos H, Astiazarán-García H, López-Franco YL, Tortoledo-Ortiz O, Pérez-Báez AJ, Dávila-Ramírez JL, Lizardi-Mendoza J, Valenzuela-Melendres M. Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System. Foods. 2024; 13(17):2842. https://doi.org/10.3390/foods13172842
Chicago/Turabian StylePeñuñuri-Pacheco, Nallely, Yuvitza Alejandra Moreno-García, Humberto González-Ríos, Humberto Astiazarán-García, Yolanda L. López-Franco, Orlando Tortoledo-Ortiz, Anna Judith Pérez-Báez, José Luis Dávila-Ramírez, Jaime Lizardi-Mendoza, and Martin Valenzuela-Melendres. 2024. "Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System" Foods 13, no. 17: 2842. https://doi.org/10.3390/foods13172842
APA StylePeñuñuri-Pacheco, N., Moreno-García, Y. A., González-Ríos, H., Astiazarán-García, H., López-Franco, Y. L., Tortoledo-Ortiz, O., Pérez-Báez, A. J., Dávila-Ramírez, J. L., Lizardi-Mendoza, J., & Valenzuela-Melendres, M. (2024). Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System. Foods, 13(17), 2842. https://doi.org/10.3390/foods13172842