Production of Long Fermentation Bread with Jabuticaba Peel Flour Added: Technological and Functional Aspects and Impact on Glycemic and Insulinemic Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread Formulation
2.3. Approximate Composition—Jabuticaba Peel Flour and Bread
2.4. Bread Characterization
2.5. Antioxidant Analysis
2.6. Microbiological Analysis
2.7. Clinical Trial
2.7.1. Recruitment of Individuals
2.7.2. Experimental Protocol
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Evaluation and Technological Parameters of the Bread
3.2. Bread Stability (Shelf Life)
3.3. Stability of Antioxidant Compounds after the Fermentation and Baking Processes
3.4. Clinical Trial
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, E.; Soares, M.E.; Ferreira, I.M.P.L.V.O.; Pinho, O. Validation of a Fast Sample Preparation Procedure for Quantification of Sodium in Bread by Flame Photometry. Food Anal. Methods 2012, 5, 430–434. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Ua-Arak, T.; Jakob, F.; Vogel, R.F. Fermentation pH Modulates the Size Distributions and Functional Properties of Gluconobacter albidus TMW 2.1191 Levan. Front. Microbiol. 2017, 8, 807. [Google Scholar] [CrossRef] [PubMed]
- Lancetti, R.; Salvucci, E.; Moiraghi, M.; Pérez, G.T.; Sciarini, L.S. Gluten-free flour fermented with autochthonous starters for sourdough production: Effect of the fermentation process. Food Biosci. 2022, 47, 101723. [Google Scholar] [CrossRef]
- Gu, Y.; Luo, X.; Qian, H.; Li, Y.; Fan, M.; Wang, L. Effects of freeze-dried pure strains to replace type II sourdough in bread production. Food Biosci. 2023, 53, 102752. [Google Scholar] [CrossRef]
- Brandt, M.J. Sourdough products for convenient use in baking. Food Microbiol. 2007, 24, 161–164. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Nunes, P.M.P.; Smolarek, F.S.F.; Kaminski, G.A.T.; Fin, M.T.; Zanin, S.M.W.; Miguel, M.D.; Miguel, O.G. A importância do aproveitamento dos resíduos industriais da semente de citrus. Visao Acad. 2009, 10, 21324. [Google Scholar] [CrossRef]
- Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-Industrial Fruit Byproducts as Health-Promoting Ingredients Used to Supplement Baked Food Products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Veggi, P.C.; Meireles, M.A.A. Supercritical fluid extraction with a modifier of antioxidant compounds from jabuticaba (Myrciaria cauliflora) byproducts: Economic viability. Procedia Food Sci. 2011, 1, 1672–1678. [Google Scholar] [CrossRef]
- Reynertson, K.A.; Yang, H.; Jiang, B.; Basile, M.J.; Kennelly, E.J. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem. 2008, 109, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.T.; Albarelli, J.Q.; Beppu, M.M.; Meireles, M.A.A. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res. Int. 2013, 50, 617–624. [Google Scholar] [CrossRef]
- Destro, T.M.; Prates, D.d.F.; Watanabe, L.S.; Garcia, S.; Biz, G.; Spinosa, W.A. Organic brown sugar and jaboticaba pulp influence on water kefir fermentation. Cienc. Agrotec. 2019, 43, e005619. [Google Scholar] [CrossRef]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Future Pharmacol. 2022, 2, 460–498. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis: Association of Analytical Chemists, 19th ed.; AOAC: Washington DC, USA, 2012; Volume 1. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Robert, H.; Gabriel, V.; Lefebvre, D.; Rabier, P.; Vayssier, Y.; Fontagné-Faucher, C. Study of the behaviour of Lactobacillus plantarum and Leuconostoc starters during a complete wheat sourdough breadmaking process. LWT Food Sci. Technol. 2006, 39, 256–265. [Google Scholar] [CrossRef]
- AACC. AACC Approved Methods of Analysis; AOAC: Washington, DC, USA, 2024. [Google Scholar]
- Ferreira, V.; Fernandes, F.; Carrasco, D.; Hernandez, M.G.; Pinto-Carnide, O.; Arroyo-García, R.; Andrade, P.; Valentão, P.; Falco, V.; Castro, I. Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers. Food Res. Int. 2017, 97, 149–161. [Google Scholar] [CrossRef]
- Da Silva, J.K.; Batista, Â.G.; Cazarin, C.B.B.; Dionísio, A.P.; de Brito, E.S.; Marques, A.T.B.; Maróstica Junior, M.R. Functional tea from a Brazilian berry: Overview of the bioactives compounds. LWT Food Sci. Technol. 2017, 76, 292–298. [Google Scholar] [CrossRef]
- Tarone, A.G.; Silva, E.K.; Barros, H.D.d.F.Q.; Cazarin, C.B.B.; Marostica Junior, M.R. High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of Total Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC) Using Fluorescein as the Fluorescence Probe: First Action 2012.23. J. AOAC Int. 2019, 96, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.F.; Marques, M.C.; Mercadante, A.Z. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011, 126, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Resolução n.12, de 02 Janeiro de 2001. 2001. Available online: https://antigo.anvisa.gov.br/documents/33916/0/Resolu%C3%A7%C3%A3o%20RDC%20n%C2%BA%2012%2C%20de%2002%20de%20janeiro%20de%202001/0fa7518b-92ff-4616-85e9-bf48a6a82b48?version=1.0 (accessed on 17 January 2024).
- Salfinger, Y.; Tortorello, M.L. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington, DC, USA, 2001. [Google Scholar]
- Brasil. Resolução No 466, de 12 de Dezembro de 2012; Ministério da Saúde: Federal District, Brazil, 2012. [Google Scholar]
- McCleary, B.V.; McNally, M.; Rossiter, P.; Collaborators. Measurement of Resistant Starch by Enzymatic Digestion in Starch and Selected Plant Materials: Collaborative Study. J. AOAC Int. 2019, 85, 1103–1111. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef]
- Loubet Filho, P.S.; Baseggio, A.M.; Vuolo, M.M.; Reguengo, L.M.; Telles Biasoto, A.C.; Correa, L.C.; Junior, S.B.; Alves Cagnon, V.H.; Betim Cazarin, C.B.; Maróstica Júnior, M.R. Gut microbiota modulation by jabuticaba peel and its effect on glucose metabolism via inflammatory signaling. Curr. Res. Food Sci. 2022, 5, 382–391. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Bullerman, L.B. Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture. Int. J. Food Microbiol. 2008, 121, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Omedi, J.O.; Huang, J.; Huang, W.; Zheng, J.; Zeng, Y.; Zhang, B.; Zhou, L.; Zhao, F.; Li, N.; Gao, T. Suitability of pitaya fruit fermented by sourdough LAB strains for bread making: Its impact on dough physicochemical, rheo-fermentation properties and antioxidant, antifungal and quality performance of bread. Heliyon 2021, 7, e08290. [Google Scholar] [CrossRef]
- Guijarro-Fuertes, M.; Andrade-Cuvi, M.J.; Bravo-VÁSquez, J.; Ramos-Guerrero, L.; Vernaza, M.G. Andean blueberry (Vaccinium floribundum) bread: Physicochemical properties and bioaccessibility of antioxidants. Food Sci. Technol. 2019, 39, 56–62. [Google Scholar] [CrossRef]
- Arendt, E.K.; Ryan, L.A.M.; Dal Bello, F. Impact of sourdough on the texture of bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.d.S.; Maciel, J.F.; Queiroga, R.d.C.R.d.E.; Lima Neto, E.d.A.; Anjos, U.U.d.; Farias, L.R.G.d. Avaliação físico-química e sensorial de pães de forma enriquecidos com soro de leite em pó. Rev. Inst. Adolfo Lutz 2009, 68, 366–372. [Google Scholar] [CrossRef]
- Granito, M.; Guerra, M. Efecto del uso de diferentes aditivos de panificación en la calidad de panes elaborados con harinas compuestas a base de harina de trigo y germen desgrasado de maíz. Food Sci. Technol. 1997, 17, 181–187. [Google Scholar] [CrossRef]
- Macedo, E.H.B.C.; Santos, G.C.; Santana, M.N.; Jesus, E.F.O.; de Araújo, U.B.; Anjos, M.J.; Pinheiro, A.S.; Carneiro, C.S.; Rodrigues, I.A. Unveiling the physicochemical properties and chemical profile of artisanal jabuticaba wines by bromatological and NMR-based metabolomics approaches. LWT 2021, 146, 111371. [Google Scholar] [CrossRef]
- Ventimiglia, G.; Alfonzo, A.; Galluzzo, P.; Corona, O.; Francesca, N.; Caracappa, S.; Moschetti, G.; Settanni, L. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol. 2015, 51, 57–68. [Google Scholar] [CrossRef]
- Caro, I.; Portales, S.; Gómez, M. Microbial characterization of discarded breads. LWT 2023, 173, 114291. [Google Scholar] [CrossRef]
- Rinaldi, M.; Paciulli, M.; Caligiani, A.; Scazzina, F.; Chiavaro, E. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chem. 2017, 224, 144–152. [Google Scholar] [CrossRef]
- Pérez-Alvarado, O.; Zepeda-Hernández, A.; Garcia-Amezquita, L.E.; Requena, T.; Vinderola, G.; García-Cayuela, T. Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits. Front. Microbiol. 2022, 13, 969460. [Google Scholar] [CrossRef]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 2016, 239, 86–94. [Google Scholar] [CrossRef]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; De Leo, M.; Pistelli, L.; Palla, F.; et al. Bread Fortified with Cooked Purple Potato Flour and Citrus Albedo: An Evaluation of Its Compositional and Sensorial Properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef]
- Mutamima, A.; Fadli, A.; Purnama, I.; Azis, Y.; Izzuddin, M.S. Exploring the potential of fermented papaya as a functional ingredient for sourdough bread: A study on fermentation time and quality of sourdough donuts. J. Ilm. Pertan. 2023, 20, 51–60. [Google Scholar] [CrossRef]
- Emad Mohamed Ali, K.; Weining, H.; Feng, W.; Chun Li, J. Impact of Sorghum and Nabag (Ziziphusspina-Christi) Pulp Fruit Lactic Acid Bacteria Sourdoughs on Fermentation Properties of Dough, Quality and Shelf Life of Wheat Bread. Am. J. Health Res. 2016, 4, 30–38. [Google Scholar] [CrossRef]
- Warminska-Radyko, I.; Laniewska-Moroz, L.; Babuchowski, A. Possibilities for stimulation of Bifidobacterium growth by propionibacteria. Le Lait 2002, 82, 113–121. [Google Scholar] [CrossRef]
- Acerbi, F.; Guillard, V.; Aliani, M.; Guillaume, C.; Gontard, N. Impact of salt concentration, ripening temperature and ripening time on CO2 production of semi-hard cheese with propionic acid fermentation. J. Food Eng. 2016, 177, 72–79. [Google Scholar] [CrossRef]
- Özcelik, S.; Kuley, E.; Özogul, F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT 2016, 73, 536–542. [Google Scholar] [CrossRef]
- de Almeida, P.L.; de Lima, S.N.; Costa, L.L.; de Oliveira, C.C.; Damasceno, K.A.; dos Santos, B.A.; Campagnol, P.C. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage. Meat Sci. 2015, 110, 9–14. [Google Scholar] [CrossRef]
- Oliveira, F.C.d.; Marques, T.R.; Machado, G.H.A.; Carvalho, T.C.L.d.; Caetano, A.A.; Batista, L.R.; Corrêa, A.D. Jabuticaba skin extracts: Phenolic compounds and antibacterial activity. Braz. J. Food Technol. 2018, 21, e2017108. [Google Scholar] [CrossRef]
- Yıltırak, S.; Kocadağlı, T.; Evrim Çelik, E.; Özkaynak Kanmaz, E.; Gökmen, V. Effects of sprouting and fermentation on the formation of Maillard reaction products in different cereals heated as wholemeal. Food Chem. 2022, 389, 133075. [Google Scholar] [CrossRef]
- Troadec, R.; Regnault, S.; Nestora, S.; Jacolot, P.; Niquet-Léridon, C.; Anton, P.M.; Jouquand, C. Effect of fermentation conditions of bread dough on the sensory and nutritional properties of French bread. Eur. Food Res. Technol. 2023, 249, 2749–2762. [Google Scholar] [CrossRef]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough bread: Starch digestibility and postprandial glycemic response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Pasmans, K.; Meex, R.C.R.; van Loon, L.J.C.; Blaak, E.E. Nutritional strategies to attenuate postprandial glycemic response. Obes. Rev. 2022, 23, e13486. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.H.C.; Cunha, M.G.; Alezandro, M.R.; Genovese, M.I. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Res. Int. 2018, 107, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Inada, K.O.P.; Silva, T.B.R.; Lobo, L.A.; Domingues, R.M.C.P.; Perrone, D.; Monteiro, M. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. J. Funct. Foods 2020, 67, 103851. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Res. Int. 2019, 116, 1229–1238. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef]
- Novotni, D.; Curić, D.; Bituh, M.; Colić Barić, I.; Skevin, D.; Cukelj, N. Glycemic index and phenolics of partially-baked frozen bread with sourdough. Int. J. Food Sci. Nutr. 2011, 62, 26–33. [Google Scholar] [CrossRef]
- Graça, C.; Edelmann, M.; Raymundo, A.; Sousa, I.; Coda, R.; Sontag-Strohm, T.; Huang, X. Yoghurt as a starter in sourdough fermentation to improve the technological and functional properties of sourdough-wheat bread. J. Funct. Foods 2022, 88, 104877. [Google Scholar] [CrossRef]
- Canesin, M.R.; Cazarin, C.B.B. Nutritional quality and nutrient bioaccessibility in sourdough bread. Curr. Opin. Food Sci. 2021, 40, 81–86. [Google Scholar] [CrossRef]
- Geraldi, M.V.; Cazarin, C.B.B.; Cristianini, M.; Vasques, A.C.; Geloneze, B.; Maróstica Júnior, M.R. Jabuticaba juice improves postprandial glucagon-like peptide-1 and antioxidant status in healthy adults: A randomized crossover trial. Br. J. Nutr. 2021, 128, 1545–1554. [Google Scholar] [CrossRef]
- Plaza, M.; Batista, Â.G.; Cazarin, C.B.; Sandahl, M.; Turner, C.; Östman, E.; Maróstica Júnior, M.R. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chem. 2016, 211, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Bornet, F.R.; Jardy-Gennetier, A.E.; Jacquet, N.; Stowell, J. Glycaemic response to foods: Impact on satiety and long-term weight regulation. Appetite 2007, 49, 535–553. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Bread Formulation (*) | |||
---|---|---|---|---|
Control | (JPF1) | (JPF2) | (JPF3) | |
Wheat flour | 100.0 | 95.0 | 92.5 | 90.0 |
JPF | - | 5.0 | 7.5 | 10.0 |
Water | 69 | 78 | 78 | 76 |
Orange tree honey | 4.00 | 1.17 | 0.65 | - |
Biological yeast | 2 | 2 | 2 | 2 |
Salt | 1.8 | 1.8 | 1.8 | 1.8 |
Formulation | ||||
---|---|---|---|---|
Parameter | Control | JPF1 | JPF2 | JPF3 |
Protein | 9.9 ± 0.18 b | 10.0 ± 0.001 b | 10.3 ± 0.26 a | 10.4 ± 0.09 a |
Lipids | 1.7 ± 0.07 b | 1.7 ± 0.05 b | 1.8 ± 0.24 a | 1.8 ± 0.27 a |
Ash | 1.1 ± 0.04 c | 2.3 ± 0.02 b | 2.3 ± 0.01 b | 2.5 ± 0.01 a |
Total fiber | 1.0 ± 0.04 c | 1.0 ± 0.02 c | 2.3 ± 0.11 b | 2.9 ± 0.07 a |
Insoluble fiber | 0.8 ± 0.03 c | 1.0 ± 0.002 b | 1.0 ± 0.003 b | 2.0 ± 0.03 a |
Total carbohydrates | 42.47 a | 40.64 b | 40.83 b | 40.88 b |
Formulations | |||||
---|---|---|---|---|---|
Parameters | Days | Control | JPF1 | JPF2 | JPF3 |
pH | 1 | 5.4 ± 0.02 d | 4.7 ± 0.03 c | 4.5 ± 0.02 b | 4.4 ± 0.01 a |
3 | 5.3 ± 0.01 d | 4.7 ± 0.01 c | 4.5 ± 0.01 b | 4.6 ± 0.01 a | |
5 | 5.3 ± 0.02 d | 4.7 ± 0.09 c | 4.5 ± 0.03 b | 4.6 ± 0.01 a | |
7 | n.d. | 4.6 ± 0.08 c | 4.4 ± 0.01 a | 4.5 ± 0.01 b | |
Moisture | 1 | 44.6 ± 0.40 aA | 45.0 ± 0.25 aA | 44.8 ± 0.20 aA | 43.6 ± 0.55 aA |
3 | 43.5 ± 0.90 aA | 44.2 ± 0.76 aA | 43.9 ± 1.29 aA | 40.7 ± 2.03 bB | |
5 | 42.1 ± 0.70 bA | 41.3 ± 0.80 bA | 42.6 ± 0.65 bA | 38.9 ± 0.71 cB | |
7 | 40.7 ± 0.31 cA | 39.3 ± 1.19 cA | 39.0 ±1.30 cA | 37.7 ± 0.55 cB | |
Water activity (aw) | 1 | 0.94 ± 0.02 | 0.94 ± 0.01 | 0.95 ± 0.00 | 0.95 ± 0.00 |
3 | 0.90 ± 0.00 | 0.90 ± 0.00 | 0.90 ± 0.00 | 0.90 ± 0.00 | |
5 | 0.95 ± 0.01 | 0.96 ± 0.00 | 0.96 ± 0.01 | 0.95 ± 0.01 | |
7 | 0.90 ± 0.01 | 0.90 ± 0.00 | 0.90 ± 0.00 | 0.90 ± 0.01 | |
Texture (force/g) | 1 | 1083.12 a | 1363.43 b | 1863.11 d | 1797.79 c |
3 | 2042.10 a | 2194.12 b | 2220.65 c | 2458.54 d | |
5 | 2213.05 a | 2273.96 a | 2737.37 b | 2683.68 b | |
7 | n.d. | 2876.35 a | 2785.61 a | 3106.27 b | |
Color | L | 78.7 ± 0.31 a | 37.7 ± 1.27 b | 31.8 ± 0.32 c | 28.3 ± 0.47 d |
a | 5.2 ± 0.10 a | 44.8 ± 0.61 b | 50.9 ± 0.50 bc | 58.6 ± 0.32 c | |
b | 16.9 ± 0.30 a | 5.4 ± 0.58 b | 4.7 ± 0.41 bc | 4.5 ± 0.15 c | |
C | 17.23 | 25.80 | 45.11 | 63.33 | |
ΔE | 3.9 | 27.9 | 46.6 | 64.7 | |
Specific volume (cm3/g) | 4.0 ± 0.06 a | 3.8 ± 0.08 b | 3.8 ± 0.05 b | 3.8 ± 0.08 b |
Formulations | |||||
---|---|---|---|---|---|
Parameters | Days | Control | JPF1 | JPF2 | JPF3 |
Molds (log CFU/g) | 1 | <1 * | <1 | <1 | <1 |
3 | <1 | <1 | <1 | <1 | |
5 | 2.77 ± 0.60 b | <1 | <1 | <1 | |
7 | 4.80 ± 0.04 a | <1 | <1 | <1 | |
Fungi (log CFU/g) | 1 | <1 | <1 | <1 | <1 |
3 | <1 | <1 | <1 | <1 | |
5 | 4.40 ± 0.07 b | <1 | <1 | <1 | |
7 | 5.47 ± 0.03 a | <1 | <1 | <1 | |
Lactic acid bacteria (log CFU/g) | 1 | <1 | 2.21 ± 0.1 c | 5.99 ± 0.29 c | 1.68 ± 0.33 d |
3 | 6.03 ± 0.30 a | 5.08 ± 0.20 b | 9.08 ± 0.14 b | 5.16 ± 0.37 a | |
5 | 3.74 ± 0.41 c | 4.97 ± 0.09 b | 9.18 ± 0.08 b | 3.89 ± 0.36 c | |
7 | 5.89 ± 0.56 b | 6.46 ± 0.34 a | 10.23 ± 0.72 a | 4.05 ± 0.07 b | |
Yeasts (log CFU/g) | 1 | <1 ** | <1 | <1 | <1 |
3 | <1 | <1 | <1 | <1 | |
5 | 2.89 ± 0.26 b | <1 | <1 | <1 | |
7 | 6.93 ± 0.18 a | 5.48 ± 0.78 a | 1.88 ± 0.69 a | 2.34 ± 0.24 a |
Formulation | ORAC (µmol TE/g) | IAA (x) | TRC (mg GAE/g) | ITRC (x) |
---|---|---|---|---|
Control bread | 123.0 ± 6.241 c | - | 64.1 ± 3.997 d | - |
JPF1 bread | 166.6 ± 4.172 c | 1.35 | 99.9 ± 3.839 c | 1.56 |
JPF2 bread | 373.1 ± 2.960 b | 3.03 | 144.9 ± 1.224 b | 2.26 |
JPF3 bread | 434.5 ± 8.973 a | 3.53 | 171.8 ± 1.894 a | 2.67 |
JPF | 929.8 ± 1.201 | - | 115.8 ± 0.825 | - |
Formulation | Anthocyanin Content |
---|---|
Control bread | NS * |
JPF1 bread | 0.040 ± 0.0002 c |
JPF2 bread | 0.045 ± 0.0005 b |
JPF3 bread | 0.099 ± 0.0009 a |
Parameter | Men (n = 4) | Women (n = 8) |
---|---|---|
Mean ± SD | ||
Age (years) | 30.5 ± 4.04 | 29.9 ± 5.08 |
Weight (kg) | 73.2 ± 3.09 | 62.3 ± 8.22 |
BMI (kg/m2) | 24.3 ± 0.54 | 22.7 ± 1.52 |
Neck circumference | 27.5 ± 0.50 | 29.8 ± 3.25 |
Abdominal circumference | 80.7 ± 8.08 | 76.5 ± 9.96 |
Arm circumference | 33.0 ± 1.00 | 28.5 ± 4.77 |
HOMA-IR | 1.2 ± 0.88 | 1.3 ± 0.80 |
IGIest (μmol/kg per min per pmol) * | ||
Control bread | 112.2 ± 14.97 | |
JPF bread | 88.0 ± 22.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemura, M.R.C.; da Graça, J.S.; Furtado, M.M.; Marques, M.C.; Sant’Ana, A.S.; Maróstica Junior, M.R.; Mariutti, L.R.B.; Geloneze, B.; Cazarin, C.B.B. Production of Long Fermentation Bread with Jabuticaba Peel Flour Added: Technological and Functional Aspects and Impact on Glycemic and Insulinemic Responses. Foods 2024, 13, 2878. https://doi.org/10.3390/foods13182878
Takemura MRC, da Graça JS, Furtado MM, Marques MC, Sant’Ana AS, Maróstica Junior MR, Mariutti LRB, Geloneze B, Cazarin CBB. Production of Long Fermentation Bread with Jabuticaba Peel Flour Added: Technological and Functional Aspects and Impact on Glycemic and Insulinemic Responses. Foods. 2024; 13(18):2878. https://doi.org/10.3390/foods13182878
Chicago/Turabian StyleTakemura, Miriam Regina Canesin, Juliana Silva da Graça, Marianna Miranda Furtado, Marcella Camargo Marques, Anderson S. Sant’Ana, Mário Roberto Maróstica Junior, Lilian Regina Barros Mariutti, Bruno Geloneze, and Cinthia Baú Betim Cazarin. 2024. "Production of Long Fermentation Bread with Jabuticaba Peel Flour Added: Technological and Functional Aspects and Impact on Glycemic and Insulinemic Responses" Foods 13, no. 18: 2878. https://doi.org/10.3390/foods13182878
APA StyleTakemura, M. R. C., da Graça, J. S., Furtado, M. M., Marques, M. C., Sant’Ana, A. S., Maróstica Junior, M. R., Mariutti, L. R. B., Geloneze, B., & Cazarin, C. B. B. (2024). Production of Long Fermentation Bread with Jabuticaba Peel Flour Added: Technological and Functional Aspects and Impact on Glycemic and Insulinemic Responses. Foods, 13(18), 2878. https://doi.org/10.3390/foods13182878