Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Description of Products
2.3. Nixtamalisation
2.4. Population Sampling and Panel Description
2.5. Sensory Analysis
2.5.1. Consumer Liking Rating (Hedonic Evaluation)
2.5.2. Just-about-Right Evaluation
2.5.3. Penalty Analysis
2.6. Survey
2.7. Determination of the Nutrient Content
2.7.1. Determination of the Crude Protein Content
2.7.2. Determination of the Fibre Content
2.7.3. Determination of the Fat Content
2.7.4. Determination of the Mineral Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Demographics
3.2. Sensory Analysis
3.2.1. Panel 1: Vegetarian Nuggets
3.2.2. Panel 2: Vegetarian Burgers
3.2.3. Panel 3: Chip Samples
3.2.4. Panel 4: Flavoured Chips
3.3. Survey
3.4. Comparison of the Nutrient Content to Commercial Maize Chips
3.4.1. Comparison of the Three Samples (Table 11)
3.4.2. Energy Content
3.4.3. Protein Content
3.4.4. Fat Content
3.4.5. Sodium
3.5. Nutrient Content of the Nixtamalised Maize Chip Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Guclu, H. Global Maize Trade and Food Security: Implications from a Social Network Model. Risk Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food and Agriculture Key to Achieving the 2030 Agenda for Sustainable Development; Rome, 2016. Available online: https://www.fao.org/3/a-i5499e.pdf (accessed on 20 January 2023).
- World Health Organization. WHO Multicountry Study on Improving Household Food and Nutrition Security for the Vulnerable: South Africa: A Qualitative Study on Food Security and Caring Patterns of Vulnerable Young Children in South Africa; No. WHO/NHD/00.4; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Drammeh, W.; Hamid, N.A.; Rohana, A.J. Determinants of Household Food Insecurity and Its Association with Child Malnutrition in Sub-Saharan Africa: A Review of the Literature. Curr. Res. Nutr. Food Sci. 2019, 7, 610–623. [Google Scholar] [CrossRef]
- Waha, K.; Accatino, F.; Godde, C.; Rigolot, C.; Bogard, J.; Domingues, J.P.; Gotor, E.; Herrero, M.; Martin, G.; Mason-D’Croz, D.; et al. The Benefits and Trade-Offs of Agricultural Diversity for Food Security in Low- and Middle-Income Countries: A Review of Existing Knowledge and Evidence. Glob. Food Secur. 2022, 33, 100645. [Google Scholar] [CrossRef]
- Goredema-matongera, N.; Ndhlela, T.; Magorokosho, C.; Kamutando, C.N.; van Biljon, A.; Labuschagne, M. Multinutrient Biofortification of Maize (Zea mays L.) in Africa: Current Status, Opportunities and Limitations. Nutrients 2021, 13, 1039. [Google Scholar] [CrossRef]
- Bouis, H.E. Micronutrient Fortification of Plants through Plant Breeding: Can It Improve Nutrition in Man at Low Cost? Proc. Nutr. Soc. 2003, 62, 403–411. [Google Scholar] [CrossRef]
- UNICEF. What You Need to Know about Malnutrition & Feeding Children|UNICEF South Africa. South Africa. Available online: https://www.unicef.org/southafrica/stories/what-you-need-know-about-malnutrition-feeding-children (accessed on 7 August 2024).
- Masipa, T.S. The Impact of Climate Change on Food Security in South Africa: Current Realities and Challenges Ahead. Jamba J. Disaster Risk Stud. 2017, 9, a411. [Google Scholar] [CrossRef]
- Hart, T.G.B. Exploring Definitions of Food Insecurity and Vulnerability: Time to Refocus Assessments. Agrekon 2009, 48, 362–383. [Google Scholar] [CrossRef]
- Van Den Berg, L.; Walsh, C.M. Household Food Insecurity in South Africa from 1999 to 2021: A Metrics Perspective. Public Health Nutr. 2023, 26, 2183–2199. [Google Scholar] [CrossRef]
- Leibbrandt, M.; Woolard, I.; Woolard, C. Poverty and Inequality Dynamics in South Africa: Post-Apartheid Developments in the Light of the Long-Run Legacy. S. Afr. Econ. Policy Under Democr. 2009, 10, 270–300. [Google Scholar]
- Stats SA. National Poverty Lines. Available online: https://www.statssa.gov.za/ (accessed on 21 September 2023).
- Alberts, J.; Rheeder, J.; Gelderblom, W.; Shephard, G.; Burger, H.M. Rural Subsistence Maize Farming in South Africa: Risk Assessment and Intervention Models for Reduction of Exposure to Fumonisin Mycotoxins. Toxins 2019, 11, 334. [Google Scholar] [CrossRef]
- Maziya-Dixon, B.; Kling, J.G.; Menkir, A.; Dixon, A. Genetic Variation in Total Carotene, Iron, and Zinc Contents of Maize and Cassava Genotypes. Food Nutr. Bull. 2000, 21, 419–422. [Google Scholar] [CrossRef]
- Govender, L. Nutritional Composition and Acceptance of a Complimentary Food Made with Provitamin A-Biofortified Maise; University of KwaZulu-Natal: Pietermaritzburg, South Africa, 2014. [Google Scholar]
- Abidoye, B.O.; Mabaya, E. Adoption of Genetically Modified Crops in South Africa: Effects on Wholesale Maize Prices. Agrekon 2014, 53, 104–123. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Modi, A.T. Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global Maize Production, Utilization, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Beshir, A.R. Zinc Biofortification of Maize (Zea mays L.): Status and Challenges. Plant Breeding 2019, 138, 1–28. [Google Scholar] [CrossRef]
- Bell, V.; Rodrigues, A.R.; Ferrão, J.; Varzakas, T.; Fernandes, T.H. The Policy of Compulsory Large-Scale Food Fortification in Sub-Saharan Africa. Foods 2024, 13, 2438. [Google Scholar] [CrossRef]
- Lalani, B.; Bechoff, A.; Bennett, B. Which Choice of Delivery Model(s)Works Best to Deliver Fortified Foods? Nutrients 2019, 11, 1594. [Google Scholar] [CrossRef]
- UNICEF. Child Food Poverty: Nutrition Deprivation in Early Childhood. Child Nutrition Report; UNICEF: New York, NY, USA, 2024; Available online: www.unicef.org (accessed on 20 October 2020).
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African Maize-Based Foods—Processing Practices, Challenges and Opportunities. Food Rev. Int. 2019, 35, 609–639. [Google Scholar] [CrossRef]
- Palacios-Rojas, N.; McCulley, L.; Kaeppler, M.; Titcomb, T.J.; Gunaratna, N.S.; Lopez-Ridaura, S.; Tanumihardjo, S.A. Mining Maize Diversity and Improving Its Nutritional Aspects within Agro-Food Systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1809–1834. [Google Scholar] [CrossRef]
- Argun, M.S.; Argun, M.E. Treatment and Alternative Usage Possibilities of a Special Wastewater: Nejayote. J. Food Process Eng. 2018, 41, e12609. [Google Scholar] [CrossRef]
- Odukoya, J.O.; De Saeger, S.; De Boevre, M.; Adegoke, G.O.; Audenaert, K.; Croubels, S.; Antonissen, G.; Vermeulen, K.; Gbashi, S.; Njobeh, P.B. Effect of Selected Cooking Ingredients for Nixtamalization on the Reduction of Fusarium Mycotoxins in Maize and Sorghum. Toxins 2021, 13, 27. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Cereal Grains. Properties, Processing and Nutritional Attributes; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bressani, R.; Turcios, J.C.; de Ruiz, A.S.C. Nixtamalization Effects on the Contents of Phytic Acid, Calcium, Iron and Zinc in the Whole Grain, Endosperm and Germ of Maize. Food Sci. Technol. Int. 2002, 8, 81–86. [Google Scholar] [CrossRef]
- Escalante-Aburto, A.; Mariscal-Moreno, R.M.; Santiago-Ramos, D.; Ponce-García, N. An Update of Different Nixtamalization Technologies, and Its Effects on Chemical Composition and Nutritional Value of Corn Tortillas. Food Rev. Int. 2020, 36, 456–498. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African Maize-Based Foods: Technological Perspectives to Increase the Food and Nutrition Security Impacts of Maize Breeding Programmes. Glob. Food Sec. 2018, 17, 48–56. [Google Scholar] [CrossRef]
- Naggayi, M.; Kaaya, A.N.; Kauffman, J.; Narrod, C.; Atukwase, A. Enhancing Nutritional Benefits and Reducing Mycotoxin Contamination of Maize through Nixtamalization. J. Biol. Sci. 2020, 20, 153–162. [Google Scholar] [CrossRef]
- Palacios-Pola, G.; Perales, H.; Estrada Lugo, E.I.J.; Figueroa-Cárdenas, J. de D. Nixtamal Techniques for Different Maize Races Prepared as Tortillas and Tostadas by Women of Chiapas, Mexico. J. Ethn. Foods 2022, 9, 2. [Google Scholar] [CrossRef]
- Popper, R. Use of Just-About-Right Scales in Consumer Research. In Novel Techniques in Sensory Characterization and Consumer Profiling; Valera, P., Ares, G., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 143–145. [Google Scholar]
- South African Grain Laboratory. Maize-Crop-Quality-Report-2021–2022. Pretoria. 2023. Available online: https://sagl.co.za/wp-content/uploads/Maize-Crop-Quality-Report-2021-2022.pdf (accessed on 3 August 2024).
- Barbut, S. Frying—Effect of Coating on Crust Microstructure, Color, and Texture of Lean Meat Portions. Meat. Sci. 2013, 93, 269–274. [Google Scholar] [CrossRef]
- Brita. Chickpea Nuggets. Food with Feeling. Available online: https://foodwithfeeling.com/chickpea-nuggets/ (accessed on 16 February 2023).
- Allrecipes. Homemade Crispy Hash Browns Recipe. Available online: https://www.allrecipes.com/recipe/57783/emilys-famous-hash-browns/ (accessed on 16 February 2023).
- Seman, D.L.; Boler, D.D.; Carr, C.C.; Dikeman, M.E.; Owens, C.M.; Keeton, J.T.; Pringle, T.D.; Sindelar, J.J.; Woerner, D.R.; de Mello, A.S.; et al. Meat Science Lexicon. Meat Muscle Biol. 2018, 2. [Google Scholar] [CrossRef]
- Mu, L. Homemade Black Bean Veggie Burgers Recipe. Allrecipes. Available online: https://www.allrecipes.com/recipe/85452/homemade-black-bean-veggie-burgers/ (accessed on 16 February 2023).
- Andrews, A. Easiest Vegan Chickpea Burgers—Loving It Vegan. Lovingitvegan. Available online: https://lovingitvegan.com/easiest-vegan-chickpea-burgers/ (accessed on 16 February 2023).
- McMahon. What are Potato Chips? DelightedCooking. Available online: https://www.delightedcooking.com/what-are-potato-chips.htm (accessed on 5 October 2022).
- Brown, A. Understanding Food Principles and Preparation, 6th ed.; Cengage Learning: Boston, MA, USA, 2019. [Google Scholar]
- Fikry, M.; Khalifa, I.; Sami, R.; Khojah, E.; Ismail, K.A.; Dabbour, M. Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology. Foods 2021, 10, 2567. [Google Scholar] [CrossRef]
- Zaghi, A.N.; Barbalho, S.M.; Guiguer, E.L.; Otoboni, A.M. Frying Process: From Conventional to Air Frying Technology. Food Rev. Int. 2019, 35, 763–777. [Google Scholar] [CrossRef]
- Andrés, A.; Arguelles, Á.; Castelló, M.L.; Heredia, A. Mass Transfer and Volume Changes in French Fries During Air Frying. Food Bioproc. Tech. 2013, 6, 1917–1924. [Google Scholar] [CrossRef]
- Valderrama-Bravo, C.; Rojas-Molina, A.; Gutiérrez-Cortez, E.; Rojas-Molina, I.; Oaxaca-Luna, A.; De la Rosa-Rincón, E.; Rodríguez-García, M.E. Mechanism of Calcium Uptake in Corn Kernels during the Traditional Nixtamalization Process: Diffusion, Accumulation and Percolation. J. Food Eng. 2010, 98, 126–132. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the Phytochemicals Profile of Instant Corn Flours Obtained by Traditional Nixtamalization and Ohmic Heating Process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef]
- Andrews, W.H.; Hammack, T.S. BAM: Food Sampling/Preparation of Sample Homogenate; Rockville. 2003. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-food-samplingpreparation-sample-homogenate (accessed on 16 February 2023).
- Lim, J. Hedonic Scaling: A Review of Methods and Theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Sensory Evaluation Practices, 5th ed.; Academic Press: San Diego, CA, USA, 2020. [Google Scholar] [CrossRef]
- Li, B.; Hayes, J.E.; Ziegler, G.R. Just-about-Right and Ideal Scaling Provide Similar Insights into the Influence of Sensory Attributes on Liking. Food Qual. Prefer. 2014, 37, 71–78. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Narayanan, P.; Chinnasamy, B.; Jin, L.; Clark, S. Use of Just-about-Right Scales and Penalty Analysis to Determine Appropriate Concentrations of Stevia Sweeteners for Vanilla Yogurt. J. Dairy Sci. 2014, 97, 3262–3272. [Google Scholar] [CrossRef]
- Pagès, J.; Berthelo, S.; Brossier, M.; Gourret, D. Statistical Penalty Analysis. Food Qual. Prefer. 2014, 32, 16–23. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 6th ed.; Pearson: Harlow, UK, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, UT, USA, 2005. [Google Scholar]
- Zietsman, C. Physical Form of Maize Grain in Finishing Rations of Ram Lambs; University of the Free State: Bloemfontein, South Africa, 2008. [Google Scholar]
- Sosulski, F.W.; Imafidon, G.I. Amino Acid Composition and Nitrogen-to-Protein Conversion Factors for Animal and Plant Foods. J. Agric. Food Chem. 1990, 38, 1351–1356. [Google Scholar] [CrossRef]
- Roberson, J.B.; Van Soest, P.J. The Detergent System of Analysis and Its Application to Human Foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theader, O.D., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Slaone-Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Park, P.W.; Goins, R.E. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists International: Arlington, TX, USA, 1990. [Google Scholar]
- Flame Photometry (Procedure): Advanced Analytical Chemistry Virtual Lab: Chemical Sciences: Amrita Vishwa Vidyapeetham Virtual Lab. Available online: https://vlab.amrita.edu/?sub=2&brch=294&sim=1351&cnt=2 (accessed on 13 March 2023).
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, UT, USA, 1997. [Google Scholar]
- XLSTAT. Sensory Solution; Addinsoft: Paris, France, 2019. [Google Scholar]
- Laureati, M.; Cattaneo, C.; Lavelli, V.; Bergamaschi, V.; Riso, P.; Pagliarini, E. Application of the Check-All-That-Apply Method (CATA) to Get Insights on Children’s Drivers of Liking of Fiber-Enriched Apple Purees. J. Sens. Stud. 2017, 32, e12253. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- WebFX. Color Psychology: How It’s Used in Marketing [Infographic]. Psychology of Color. Available online: www.webfx.com/blog/web-design/psychology-of-color-infographic/ (accessed on 5 January 2024).
- Spence, C.; Wan, X.; Woods, A.; Velasco, C.; Deng, J.; Youssef, J.; Deroy, O. On Tasty Colours and Colourful Tastes? Assessing, Explaining, and Utilizing Crossmodal Correspondences between Colours and Basic Tastes. Flavour 2015, 4, 23. [Google Scholar] [CrossRef]
- Maina, J.W. Analysis of the Factors That Determine Food Acceptability. Pharma Innov. J. 2018, 7, 253–257. [Google Scholar]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory Attributes of Edible Insects and Insect-Based Foods—Future Outlooks for Enhancing Consumer Appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Piha, S.; Pohjanheimo, T.; Lähteenmäki-Uutela, A.; Křečková, Z.; Otterbring, T. The Effects of Consumer Knowledge on the Willingness to Buy Insect Food: An Exploratory Cross-Regional Study in Northern and Central Europe. Food Qual. Prefer. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Si, Z.; Scott, S.; McCordic, C. Wet Markets, Supermarkets and Alternative Food Sources: Consumers’ Food Access in Nanjing, China. Can. J. Dev. Stud. 2019, 40, 78–96. [Google Scholar] [CrossRef]
- East, R.; Hammond, K.; Lomax, W. Measuring the Impact of Positive and Negative Word of Mouth on Brand Purchase Probability. Int. J. Res. Mark. 2008, 25, 215–224. [Google Scholar] [CrossRef]
- Méndez-Montealvo, G.; García-Suárez, F.J.; Paredes-López, O.; Bello-Pérez, L.A. Effect of Nixtamalization on Morphological and Rheological Characteristics of Maize Starch. J. Cereal Sci. 2008, 48, 420–425. [Google Scholar] [CrossRef]
- Simba. Simba Fritos Barbeque Flavour. Available online: https://simba.co.za/flavour?flavour=fritos-barbeque (accessed on 11 August 2023).
- Simba. Simba Doritos Sweet Chilli Pepper Flavour. Available online: https://simba.co.za/flavour?flavour=doritos-sweet-chilli-pepper (accessed on 11 August 2023).
- Van Heerden. Understanding Food Labels: Portions, Energy. News24. Available online: https://www.news24.com/life/archive/Understanding-food-labels-portions-energy-20120721 (accessed on 11 August 2023).
- Bouchon, P.; Aguilera, J.M.; Pyle, D.L. Structure Oil-Absorption Relationships during Deep-Fat Frying. J. Food Sci. 2003, 68, 2711–2716. [Google Scholar] [CrossRef]
- Dana, D.; Saguy, I.S. Review: Mechanism of Oil Uptake during Deep-Fat Frying and the Surfactant Effect-Theory and Myth. Adv. Colloid Interface Sci. 2006, 128–130, 267–272. [Google Scholar] [CrossRef]
- Yildiz, A.; Koray Palazoǧlu, T.; Erdoǧdu, F. Determination of Heat and Mass Transfer Parameters during Frying of Potato Slices. J. Food Eng. 2007, 79, 11–17. [Google Scholar] [CrossRef]
- Yang, J.; Martin, A.; Richardson, S.; Wu, C.H. Microstructure Investigation and Its Effects on Moisture Sorption in Fried Potato Chips. J. Food Eng. 2017, 214, 117–128. [Google Scholar] [CrossRef]
- Ziaiifar, A.M.; Courtois, F.; Trystram, G. Porosity Development and Its Effect on Oil Uptake during Frying Process. J. Food Process Eng. 2010, 33, 191–212. [Google Scholar] [CrossRef]
- Asokapandian, S.; Swamy, G.J.; Hajjul, H. Deep Fat Frying of Foods: A Critical Review on Process and Product Parameters. Crit. Rev. Food Sci. Nutr. 2019, 60, 3400–3413. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Molina, I.; Gutiérrez, E.; Cortés-Acevedo, M.E.; Falcón, A.; Bressani, R.; Rojas, A.; Ibarra, C.; Pons-Hernández, J.L.; Guzmán-Maldonado, S.H.; Cornejo-Villegas, A.; et al. Analysis of Quality Protein Changes in Nixtamalized QPM Flours as a Function of the Steeping Time. Cereal Chem. 2008, 85, 409–416. [Google Scholar] [CrossRef]
- Sefa-Dedeh, S.; Cornelius, B.; Sakyi-Dawson, E.; Afoakwa, E.O. Effect of Nixtamalization on the Chemical and Functional Properties of Maize. Food Chem. 2004, 86, 317–324. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative Technologies to Manage Aflatoxins in Foods and Feeds and the Profitability of Application—A Review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Sunico, D.J.A.; Rodriguez, F.M.; Tuaño, A.P.P.; Mopera, L.E.; Atienza, L.M.; Juanico, C.B. Physicochemical and Nutritional Properties of Nixtamalized Quality Protein Maize Flour and Its Potential as Substitute in Philippine Salt Bread. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 1–15. [Google Scholar] [CrossRef]
- Amegbor, I.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M. Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa. Foods 2022, 11, 898. [Google Scholar] [CrossRef]
- Jiang, H.; Hettiararchchy, N.S.; Horax, R. Quality and Estimated Glycemic Profile of Baked Protein-Enriched Corn Chips. J. Food Sci. Technol. 2019, 56, 2855–2862. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, S.; Hernandez-Jaimes, C.; Escalona-Buendia, H.B.; Bello-Perez, L.A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Effects of CaCO3 Treatment on the Morphology, Crystallinity, Rheology and Hydrolysis of Gelatinized Maize Starch Dispersions. Food Chem. 2016, 207, 139–147. [Google Scholar] [CrossRef]
- Brannan, R.G.; Pettit, K. Reducing the Oil Content in Coated and Deep-fried Chicken Using Whey Protein. Lipid Technol. 2015, 27, 131–133. [Google Scholar] [CrossRef]
- Dourado, C.; Pinto, C.; Barba, F.J.; Lorenzo, J.M.; Delgadillo, I.; Saraiva, J.A. Innovative Non-Thermal Technologies Affecting Potato Tuber and Fried Potato Quality. Trends Food Sci. Technol. 2019, 88, 274–289. [Google Scholar] [CrossRef]
- Liberty, J.T.; Dehghannya, J.; Ngadi, M.O. Effective Strategies for Reduction of Oil Content in Deep-Fat Fried Foods: A Review. Trends Food Sci. Technol. 2019, 92, 172–183. [Google Scholar] [CrossRef]
- Shaker, M.A. Comparison between Traditional Deep-Fat Frying and Air-Frying for Production of Healthy Fried Potato Strips. Int. Food Res. J. 2015, 22, 1557–1563. [Google Scholar]
- Hofman, K.J.; Lee, R. Intersectional Case Study: Successful Sodium Regulation in South Africa; Regional Office for Africa, World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Department of Health. Foodstuffs, Cosmetics and Disinfectants Act: Regulations: Reduction of Sodium in Certain Foodstuffs and Related Matters: Amendment|South African Government. Available online: https://www.gov.za/documents/notices/foodstuffs-cosmetics-and-disinfectants-act-regulations-reduction-sodium-certain-1 (accessed on 18 January 2023).
- Government Gazette. The Regulations Relating to the Reduction of Sodium in Certain Foodstuffs and Related Matters. Available online: https://www.gov.za/sites/default/files/gcis_document/201710/41164gon1071.pdf (accessed on 21 February 2024).
- Suri, D.J.; Tanumihardjo, S.A. Effects of Different Processing Methods on the Micronutrient and Phytochemical Contents of Maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 2016, 15, 912–926. [Google Scholar] [CrossRef]
- Trejo-Gonzalez, A.; Fería-Morales, A.; Wild-Altamirano, C. The Role of Lime in the Alkaline Treatment of Corn for Tortilla Preparation. In Modifications in Proteins; Feeney, R.E., Whitaker, J.R., Eds.; ACS Publications: Washington, DC, USA, 1982; Volume 198, pp. 245–263. [Google Scholar] [CrossRef]
- Bohn, T.; Davidsson, L.; Walczyk, T.; Hurrell, R.F. Phytic Acid Added to White-Wheat Bread Inhibits Fractional Apparent Magnesium Absorption in Humans 1-3. Am. J. Clin. Nutr. 2004, 79, 418–441. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Viteri, F.V.; Lonnerdal, B.; Young, K.A.; Raboy, V.; Brown, K.H. Effect of Genetically Modified. Low-Phytic Acid Maize on Absorption of Iron from Tortillas. Am. J. Clin. Nutr. 1998, 68, 1123–1127. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Vats, P.; Banerjee, U.C. Production Studies and Catalytic Properties of Phytases (Myo-Inositolhexakisphosphate Phosphohydrolases): An Overview. Enzym. Microb. Technol. 2004, 35, 3–14. [Google Scholar] [CrossRef]
- Hambidge, M.; Krebs, N.F.; Westcott, J.L.; Sian, L.; Miller, L.V.; Peterson, K.L.; Raboy, V. Absorption of Calcium from Tortilla Meals Prepared from Low-Phytate Maize 1-3. 2005. Available online: www.graphpad.com (accessed on 23 February 2024).
- Proulx, A.K.; Reddy, M.B. Fermentation and Lactic Acid Addition Enhance Iron Bioavailability of Maize. J. Agric. Food Chem. 2007, 55, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.; Pu, S.; Jones, P.J. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef]
- Hamilton, H.A.; Newton, R.; Auchterlonie, N.A.; Müller, D.B. Systems Approach to Quantify the Global Omega-3 Fatty Acid Cycle. Nat. Food 2020, 1, 59–62. [Google Scholar] [CrossRef]
- Alberdi-Cedeño, J.; Molina, M.; Yahuaca-Júarez, B.; Ibargoitia, M.L.; Guillén, M.D. Changes Provoked by Nixtamalization and Tortilla Making in the Lipids of Two Corn Varieties. A Study by 1H NMR. Food Chem. 2020, 313, 126079. [Google Scholar] [CrossRef]
- Whelan, J.; Fritsche, K. Linoleic Acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef]
- Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic Acid: Between Doubts and Certainties. Biochimie 2014, 96, 14–21. [Google Scholar] [CrossRef]
- Khan, S.; Pandey, I.A.; Khan, K.; Khan, S.; Choudhary, S.; Pandey, A.; Thomas, G. Sunflower Oil: Efficient Oil Source for Human Consumption. Emer. Life Sci. Res. 2015, 1, 1–3. [Google Scholar]
- Preciado-Ortíz, R.E.; Vázquez-Carrillo, M.G.; de Dios Figueroa-Cárdenas, J.; Guzmán-Maldonado, S.H.; Santiago-Ramos, D.; Topete-Betancourt, A. Fatty Acids and Starch Properties of High-Oil Maize Hybrids during Nixtamalization and Tortilla-Making Process. J. Cereal Sci. 2018, 83, 171–179. [Google Scholar] [CrossRef]
Nuggets | Burgers | Original Chips | Flavoured Chips | Questionnaire | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age | n | % | n | % | n | % | n | % | n | % | |
≤35 | 57.0 | 72.2 | 64.0 | 77.1 | 59.0 | 79.7 | 71.0 | 71.7 | 140.0 | 75.3 | |
>35 | 22.0 | 27.8 | 19.0 | 22.9 | 15.0 | 20.3 | 28.0 | 28.3 | 38.0 | 20.4 | |
Not disclosed | 8.0 | 4.3 | |||||||||
Total | 79.0 | 100.0 | 83.0 | 100.0 | 74.0 | 100.0 | 99.0 | 100.0 | 178.0 | 95.7 | |
Gender | |||||||||||
Male | 14.0 | 17.7 | 14.0 | 16.9 | 13.0 | 17.6 | 14.0 | 14.1 | 32.0 | 17.2 | |
Female | 65.0 | 82.3 | 69.0 | 83.1 | 61.0 | 82.4 | 83.0 | 83.8 | 145.0 | 78.0 | |
Other | 1.0 | 1.0 | 1.0 | 0.5 | |||||||
Not disclosed | 1.0 | 1.0 | 8.0 | 4.3 | |||||||
Total | 79.0 | 100.0 | 83.0 | 100.0 | 74.0 | 100.0 | 99.0 | 100.0 | 186.0 | 100.0 |
Vegetarian Nuggets | Vegetarian Burgers | Original and Flavoured Maize Chips | ||
---|---|---|---|---|
Aroma | Spicy | Spicy | Oily/corn/starch | |
5 | Much too spicy | Much too spicy | Much too strong | |
4 | Somewhat too spicy | Somewhat too spicy | Somewhat too strong | |
3 | Just-about-right | Just-about-right | Just-about-right | |
2 | Somewhat too bland | Somewhat too bland | Somewhat too low | |
1 | Much too bland | Much too bland | Much too low | |
Appearance | Colour | Colour | Colour | |
5 | Much too brown | Much too brown | Much too brown | |
4 | Somewhat too brown | Somewhat too brown | Somewhat too brown | |
3 | Just-about-right | Just-about-right | Just-about-right | |
2 | Somewhat dull | Somewhat dull | Somewhat dull | |
1 | Much too dull | Much too dull | Much too dull | |
Taste | Savoury | Savoury | Savoury | |
5 | Much too savoury | Much too savoury | Much too savoury | |
4 | Somewhat too savoury | Somewhat too savoury | Somewhat too savoury | |
3 | Just-about-right | Just-about-right | Just-about-right | |
2 | Somewhat too bland | Somewhat too bland | Somewhat too bland | |
1 | Much too bland | Much too bland | Much too bland | |
Mouthfeel | Crunchy | Soft | Crispy | |
5 | Much too crunchy | Much too soft | Much too crispy | |
4 | Somewhat too crunchy | Somewhat too soft | Somewhat too crispy | |
3 | Just-about-right | Just-about-right | Just-about-right | |
2 | Somewhat too soft | Somewhat too hard | Somewhat too soft | |
1 | Much too soft | Much too hard | Much too soft |
Product | Sample | Overall Liking Hedonic Scaling ± SD |
---|---|---|
Nuggets | Maize | 6.80 b ± 1.57 |
(n = 79) | Potato | 6.41 b ± 1.7 |
Chickpea | 5.29 a ± 1.83 | |
Burgers | Maize | 5.98 c ± 1.93 |
(n = 83) | Black bean | 6.67 d ± 1.40 |
Chickpea | 6.06 cd ± 1.74 | |
Original chips | Deep-fried | 7.47 e ± 1.06 |
(n = 74) | Air-fried 1 | 5.43 f ± 1.77 |
Air-fried 2 | 5.48 f ± 1.69 | |
Flavoured chips | Chutney | 7.35 g ± 1.37 |
(n = 99) | Sweet tomato | 7.23 g ± 1.37 |
Aroma | Appearance | Taste | Mouthfeel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | ||
Maize nugget | JAR % | 22.8 | 65.8 | 11.4 | 15.2 | 81.0 | 3.8 | 20.2 | 64.6 | 15.2 | 40.0 | 54.4 | 7.6 |
Mean drop | 1.2 * | 1.7 | 1.0 | 1.7 * | 1.9 | 1.6 | 1.1 * | 2.4 | |||||
Penalty | 1.4 | 1.2 | 1.7 | 1.3 | |||||||||
p-value | 0.00 | 0.01 | <0.00 | <0.00 | |||||||||
Potato nugget | JAR % | 6.3 | 58.2 | 35.5 | 3.8 | 58.2 | 38.0 | 5.1 | 62 | 32.9 | 6.3 | 49.4 | 44.3 |
Mean drop | 0 | 1.6 * | 0 | 1.5 * | 0.7 | 2.2 * | 1.2 | 1.6 * | |||||
Penalty | 1.3 | 1.3 | 2.0 | 1.6 | |||||||||
p-value | 0.00 | 0.00 | <0.00 | <0.00 | |||||||||
Chickpea nugget | JAR % | 5.1 | 32.9 | 62.0 | 17.7 | 36.7 | 45.6 | 12.7 | 31.6 | 55.7 | 22.8 | 51.9 | 25.3 |
Mean drop | 1.0 | 1.9 * | 0.3 | 1.7 * | 1.3 | 2.0 * | 1.0 | 1.4 * | |||||
Penalty | 1.8 | 1.3 | 1.9 | 1.2 | |||||||||
p-value | <0.00 | 0.00 | <0.00 | <0.00 |
Aroma | Appearance | Taste | Mouthfeel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | ||
Maize burger | JAR % | 9.4 | 56.5 | 34.1 | 1.2 | 72.9 | 25.9 | 20.0 | 50.6 | 29.4 | 1.2 | 42.4 | 56.5 |
Mean drop | 0.5 | 1.0 * | 0 | 1.4 * | 1.6 * | 2.5 * | 2.9 | 1.6 * | |||||
Penalty | 0.9 | 1.3 | 2.1 | 1.9 | |||||||||
p-value | 0.03 | 0.01 | <0.00 | <0.00 | |||||||||
Black bean burger | JAR % | 30.6 | 58.8 | 10.6 | 64.7 | 31.8 | 3.5 | 20.0 | 57.6 | 22.4 | 28.3 | 52.9 | 18.8 |
Mean drop | 1.3 * | 1.6 | 0.9 * | 1.7 | 1.7 * | 1.4 * | 1.2 * | 1.7 | |||||
Penalty | 1.3 | 1.0 | 1.5 | 1.4 | |||||||||
p-value | <0.00 | 0.00 | <0.00 | 0.00 | |||||||||
Chickpea burger | JAR % | 5.9 | 50.6 | 43.5 | 36.5 | 54.1 | 9.4 | 5.9 | 35.3 | 58.8 | 27.1 | 52.9 | 20.0 |
Mean drop | 2.5 | 1.2 * | 1.0 * | 2.1 | 1.8 | 1.7 * | 2.1 * | 1.6 * | |||||
Penalty | 1.4 | 1.3 | 1.7 | 1.9 | |||||||||
p-value | 0.00 | 0.00 | <0.00 | <0.00 |
Aroma | Appearance | Taste | Mouthfeel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | ||
Deep-fried | JAR % | 21.5 | 73.4 | 5.1 | 29.1 | 51.9 | 19.0 | 5.1 | 75.9 | 19.0 | 15.2 | 83.5 | 1.3 |
Mean drop | 0.3 | 0.6 | 0.1 | 0.0 | 0.0 | 0.7 | 0.5 | 0.5 | |||||
Penalty | 0.3 | 0.0 | 0.5 | 0.4 | |||||||||
p-value | 0.3 | 0.9 | 0.05 | 0.2 | |||||||||
Air-fried 1 | JAR % | 21.5 | 40.5 | 38.0 | 2.5 | 35.4 | 62.0 | 12.7 | 27.9 | 59.5 | 24.0 | 49.4 | 26.6 |
Mean drop | 1.9 * | 1.8 * | 2.6 | 1.8 * | 1.9 | 2.4 * | 1.05 | 1.00 | |||||
Penalty | 1.8 | 1.8 | 2.3 | 1.0 | |||||||||
p-value | <0.00 | <0.00 | <0.00 | 0.01 | |||||||||
Air-fried 2 | JAR % | 21.5 | 39.3 | 39.2 | 1.3 | 50.6 | 48.1 | 8.9 | 29.1 | 62.0 | 20.3 | 30.4 | 49.3 |
Mean drop | 1.2 * | 0.7 | 3.0 | 0.9 * | 1.8 | 1.6 * | 0.9 | 1.3 * | |||||
Penalty | 0.9 | 1.0 | 1.7 | 1.2 | |||||||||
p-value | 0.02 | 0.01 | <0.00 | 0.00 |
Aroma | Appearance | Taste | Mouthfeel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | Not Enough | JAR | Too High | ||
Chutney flavour chips | JAR % | 14.1 | 70.7 | 15.2 | 26.3 | 72.7 | 1.0 | 12.1 | 78.8 | 9.1 | 16.2 | 74.7 | 9.1 |
Mean drop | 1.1 | 1.1 | 1.6 * | 1.8 | 1.5 | 1.5 | 1.5 | 0.7 | |||||
Penalty | 1.1 | 1.6 | 1.5 | 1.2 | |||||||||
p-value | 0.00 | <0.00 | <0.00 | 0.00 | |||||||||
Tomato flavour chips | JAR % | 5.1 | 73.7 | 21.2 | 1.0 | 71.7 | 27.3 | 26.3 | 68.7 | 5.0 | 29.3 | 64.7 | 6.0 |
Mean drop | 0.4 | 0.6 | 1.5 | 0.8 * | 1.6 * | 1.7 | 1.6 * | 1.6 | |||||
Penalty | 0.8 | 0.6 | 1.6 | 1.6 | |||||||||
p-value | 0.00 | 0.07 | <0.00 | <0.00 |
Question | Do not Like at All | Do not Like | Neither Like or Dislike | Like | Like it Very Much | Missing Values | Total | |
---|---|---|---|---|---|---|---|---|
I liked the appearance of the product | n | 1 | 8 | 67 | 68 | 38 | 4 | 186 |
% | 0.5 | 4.4 | 36.8 | 37.4 | 20.9 | 100 | ||
I liked the aroma of the product | n | 1 | 15 | 66 | 69 | 29 | 6 | 186 |
% | 0.6 | 8.3 | 36.7 | 38.3 | 16.1 | 100 | ||
I liked how the product tasted | n | 1 | 14 | 68 | 61 | 31 | 11 | 186 |
% | 0.6 | 8.0 | 38.9 | 34.9 | 17.7 | 100 | ||
I liked the texture of the product | n | 0 | 22 | 53 | 72 | 31 | 8 | 186 |
% | 0.0 | 12.4 | 29.8 | 40.4 | 17.4 | 100 |
Question | Strongly Disagree | Disagree | Neither Agree or Disagree | Agree | Strongly Agree | Missing Values | Total | |
---|---|---|---|---|---|---|---|---|
I will eat this food product again | n | 1 | 10 | 28 | 96 | 47 | 4 | 186 |
% | 0.5 | 5.5 | 15.4 | 52.7 | 25.8 | 100 | ||
I will purchase this product in a grocery store | n | 3 | 28 | 40 | 69 | 41 | 5 | 186 |
% | 1.7 | 15.5 | 22.1 | 38.1 | 22.7 | 100 | ||
I will prepare this product for my family | n | 4 | 34 | 39 | 69 | 34 | 6 | 186 |
% | 2.2 | 18.9 | 21.7 | 38.3 | 18.9 | 100 | ||
I will order this product in a restaurant | n | 12 | 48 | 37 | 53 | 28 | 8 | 186 |
% | 6.7 | 27.0 | 20.8 | 29.8 | 15.7 | 100 | ||
I will recommend this product to my friends and family | n | 4 | 25 | 39 | 77 | 35 | 6 | 186 |
% | 2.2 | 13.9 | 21.7 | 42.8 | 19.4 | 100 |
Statement I Would Eat Nixtamalised Products if…… | Strongly Disagree | Disagree | Neither Agree or Disagree | Agree | Strongly Agree | Missing Values | Total | |
---|---|---|---|---|---|---|---|---|
…these products were given to me for free | n | 13 | 43 | 53 | 48 | 28 | 1 | 186 |
% | 7.0 | 23.2 | 28.6 | 25.9 | 15.1 | 100 | ||
…I had more knowledge about the health benefits of nixtamalised maize than I do at present | n | 5 | 24 | 35 | 82 | 39 | 1 | 186 |
% | 2.7 | 13.0 | 18.9 | 44.3 | 21.1 | 100 | ||
…they were available for purchase in my local supermarket | n | 9 | 20 | 36 | 90 | 30 | 1 | 186 |
% | 4.9 | 10.8 | 19.5 | 48.6 | 16.2 | 100 | ||
…my friends and family use nixtamalised maize products | n | 14 | 35 | 45 | 65 | 23 | 4 | 186 |
% | 7.7 | 19.2 | 24.7 | 35.7 | 12.6 | 100 | ||
…nixtamalised maize meal is cheaper than other maize meal or maize kernels | n | 2 | 25 | 91 | 47 | 18 | 3 | 186 |
% | 1.1 | 13.7 | 49.7 | 25.7 | 9.8 | 100 | ||
…nixtamalised maize meal is similarly priced compared to other maize meal | n | 2 | 11 | 91 | 65 | 15 | 2 | 186 |
% | 1.1 | 6.0 | 49.5 | 35.3 | 8.2 | 100 | ||
…I did not have access to any other food | n | 8 | 32 | 50 | 62 | 32 | 2 | 186 |
% | 4.3 | 17.4 | 27.2 | 33.7 | 17.4 | 100 |
Nutrient | Nixtamalised Maize Chips (n = 3) | Commercial Maize Chip 1 | Commercial Maize Chip 2 |
---|---|---|---|
Energy (kJ/100 g) | 2303 | 1944 | 2142 |
Crude Protein (g/100 g) | 6.64 | 6.70 | 6.20 |
Total Fats (FA’s) (g/100 g) | 23.72 | 20.70 | 31.00 |
Saturated fat (% of total fats) | 11.47 | 8.3 | 12.2 |
Sodium (mg/100 g) | 706.67 | 634.00 | 685.00 |
Nutrient | ||
---|---|---|
Fibre | Neutral detergent fibre (g/100 g) | 15.87 |
Acid detergent fibre (g/100 g) | 1.32 | |
Minerals | Calcium (mg/100 g) | 163.33 |
Magnesium (mg/100 g) | 53.67 | |
Sodium (mg/100 g) | 706.67 | |
Potassium (mg/100 g) | 154.33 | |
Phosphorus (mg/100 g) | 566.00 | |
Fats | Total fat content (%) | 23.7 |
Fatty acids ratios (% of total fats) | Saturated fatty acids (SFA) | 11.47 |
Monounsaturated fatty acids (MUFA) | 39.93 | |
Polyunsaturated fatty acids ratio (PUFA) | 48.58 | |
Omega-6 fatty acids | 48.41 | |
Omega-3 fatty acids | 0.17 | |
PUFA:SFA | 4.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colbert, T.; Bothma, C.; Pretorius, W.; du Toit, A. Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis. Foods 2024, 13, 2896. https://doi.org/10.3390/foods13182896
Colbert T, Bothma C, Pretorius W, du Toit A. Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis. Foods. 2024; 13(18):2896. https://doi.org/10.3390/foods13182896
Chicago/Turabian StyleColbert, Taylon, Carina Bothma, Wilben Pretorius, and Alba du Toit. 2024. "Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis" Foods 13, no. 18: 2896. https://doi.org/10.3390/foods13182896
APA StyleColbert, T., Bothma, C., Pretorius, W., & du Toit, A. (2024). Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis. Foods, 13(18), 2896. https://doi.org/10.3390/foods13182896