DNA Metabarcoding Approach as a Potential Tool for Supporting Official Food Control Programs: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acceptance
2.2. DNA Extraction, Purification and Sequencing
2.3. Data Processing, Taxonomic Assignment, and Composition Assessment
3. Results
3.1. Animal Composition
3.2. Plant Composition
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbarossa, C.; De Pelsmacker, P.; Moons, I.; Marcati, A. The Influence of Country-of-Origin Stereotypes on Consumer Responses to Food Safety Scandals: The Case of the Horsemeat Adulteration. Food Qual. Prefer. 2016, 53, 71–83. [Google Scholar] [CrossRef]
- Premanandh, J. Horse Meat Scandal—A Wake-up Call for Regulatory Authorities. Food Control 2013, 34, 568–569. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M. Food Frauds: Global Incidents and Misleading Situations. Trends Food Sci. Technol. 2021, 114, 424–442. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products. Off. J. Eur. Union 2017, 60, L95. [Google Scholar]
- Lawrence, S.; Elliott, C.; Huisman, W.; Dean, M.; Van Ruth, S. The 11 Sins of Seafood: Assessing a Decade of Food Fraud Reports in the Global Supply Chain. Comp. Rev. Food Sci. Food Safe 2022, 21, 3746–3769. [Google Scholar] [CrossRef]
- Paternò, A.; Verginelli, D.; Bonini, P.; Misto, M.; Quarchioni, C.; Dainese, E.; Peddis, S.; Fusco, C.; Vinciguerra, D.; Marchesi, U. In-House Validation and Comparison of Two Wheat (Triticum aestivum) Taxon-Specific Real-Time PCR Methods for GMO Quantification Supported by Droplet Digital PCR. Food Anal. Methods 2018, 11, 1281–1290. [Google Scholar] [CrossRef]
- Paracchini, V.; Petrillo, M.; Lievens, A.; Kagkli, D.-M.; Angers-Loustau, A. Nuclear DNA Barcodes for Cod Identification in Mildly-Treated and Processed Food Products. Food Addit. Contam. Part A 2019, 36, 1–14. [Google Scholar] [CrossRef]
- Cottenet, G.; Blancpain, C.; Chuah, P.F.; Cavin, C. Evaluation and Application of a next Generation Sequencing Approach for Meat Species Identification. Food Control 2020, 110, 107003. [Google Scholar] [CrossRef]
- Dobrovolny, S.; Blaschitz, M.; Weinmaier, T.; Pechatschek, J.; Cichna-Markl, M.; Indra, A.; Hufnagl, P.; Hochegger, R. Development of a DNA Metabarcoding Method for the Identification of Fifteen Mammalian and Six Poultry Species in Food. Food Chem. 2019, 272, 354–361. [Google Scholar] [CrossRef]
- Giusti, A.; Malloggi, C.; Lonzi, V.; Forzano, R.; Meneghetti, B.; Solimeo, A.; Tinacci, L.; Armani, A. Metabarcoding for the Authentication of Complex Seafood Products: The Fish Burger Case. J. Food Compos. Anal. 2023, 123, 105559. [Google Scholar] [CrossRef]
- Hawkins, J.; De Vere, N.; Griffith, A.; Ford, C.R.; Allainguillaume, J.; Hegarty, M.J.; Baillie, L.; Adams-Groom, B. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLoS ONE 2015, 10, e0134735. [Google Scholar] [CrossRef] [PubMed]
- Mottola, A.; Piredda, R.; Lorusso, L.; Armani, A.; Di Pinto, A. Preliminary Study on Species Authentication in Poultry Meat Products by Next-Generation Sequencing. Food Control 2023, 145, 109459. [Google Scholar] [CrossRef]
- Preckel, L.; Brünen-Nieweler, C.; Denay, G.; Petersen, H.; Cichna-Markl, M.; Dobrovolny, S.; Hochegger, R. Identification of Mammalian and Poultry Species in Food and Pet Food Samples Using 16S rDNA Metabarcoding. Foods 2021, 10, 2875. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.-R.; Wang, N.; Hu, R.-R.; Zhang, J.-K.; Han, J.-X.; Chen, Y. Application of next Generation Sequencing for Species Identification in Meat and Poultry Products: A DNA Metabarcoding Approach. Food Control 2019, 101, 173–179. [Google Scholar] [CrossRef]
- Mottola, A.; Piredda, R.; Lorusso, L.; Ranieri, L.; Intermite, C.; Barresi, C.; Galli, C.; Di Pinto, A. Decoding Seafood: Multi-Marker Metabarcoding for Authenticating Processed Seafood. Foods 2024, 13, 2382. [Google Scholar] [CrossRef]
- Riaz, T.; Shehzad, W.; Viari, A.; Pompanon, F.; Taberlet, P.; Coissac, E. ecoPrimers: Inference of New DNA Barcode Markers from Whole Genome Sequence Analysis. Nucleic Acids Res. 2011, 39, e145. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Gielly, L.; Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C.; Willerslev, E. Power and Limitations of the Chloroplast trnL (UAA) Intron for Plant DNA Barcoding. Nucleic Acids Res. 2007, 35, e14. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Barbuto, M.; Galimberti, A.; Ferri, E.; Labra, M.; Malandra, R.; Galli, P.; Casiraghi, M. DNA Barcoding Reveals Fraudulent Substitutions in Shark Seafood Products: The Italian Case of “Palombo” (Mustelus spp.). Food Res. Int. 2010, 43, 376–381. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN Analysis of Metagenomic Data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.L.; Burgess, K.S.; Botsch, J.C.; Dobbs, E.K.; Read, T.D.; Brosi, B.J. Quantitative and Qualitative Assessment of Pollen DNA Metabarcoding Using Constructed Species Mixtures. Mol. Ecol. 2019, 28, 431–455. [Google Scholar] [CrossRef]
- Wickham, H. Getting Started with Ggplot2. In ggplot2; Use R!; Springer International Publishing: Cham, Switzerland, 2016; pp. 11–31. ISBN 978-3-319-24275-0. [Google Scholar]
- Naaum, A.M.; Shehata, H.R.; Chen, S.; Li, J.; Tabujara, N.; Awmack, D.; Lutze-Wallace, C.; Hanner, R. Complementary Molecular Methods Detect Undeclared Species in Sausage Products at Retail Markets in Canada. Food Control 2018, 84, 339–344. [Google Scholar] [CrossRef]
- Robson, K.; Dean, M.; Brooks, S.; Haughey, S.; Elliott, C. A 20-Year Analysis of Reported Food Fraud in the Global Beef Supply Chain. Food Control 2020, 116, 107310. [Google Scholar] [CrossRef]
- Trevisani, M.; Fedrizzi, G.; Diegoli, G. Chemical Hazards in Meat and Associated Monitoring Activities. In Chemical Hazards in Foods of Animal Origin; Smulders, F.J.M., Rietjens, I.M.C.M., Rose, M., Eds.; Brill|Wageningen Academic: Leiden, The Netherlands, 2019; pp. 315–340. ISBN 978-90-8686-877-3. [Google Scholar]
- Ballin, N.Z. Authentication of Meat and Meat Products. Meat Sci. 2010, 86, 577–587. [Google Scholar] [CrossRef]
- Clonan, A.; Wilson, P.; Swift, J.A.; Leibovici, D.G.; Holdsworth, M. Red and Processed Meat Consumption and Purchasing Behaviours and Attitudes: Impacts for Human Health, Animal Welfare and Environmental Sustainability. Public Health Nutr. 2015, 18, 2446–2456. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Man, Y.B.C.; Sazili, A.Q. Halal Authenticity Issues in Meat and Meat Products. Meat Sci. 2012, 91, 207–214. [Google Scholar] [CrossRef]
- Hamidi, K. How Do Rodents Play Role in Transmission of Foodborne Diseases? Nutr. Food Sci. Int. J. 2018, 6, 555683. [Google Scholar] [CrossRef]
- Fraga, T.R.; Carvalho, E.; Isaac, L.; Barbosa, A.S. Leptospira and Leptospirosis. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1849–1871. ISBN 978-0-12-818619-0. [Google Scholar]
- Kamath, R.; Swain, S.; Pattanshetty, S.; Nair, N.S. Studying Risk Factors Associated with Human Leptospirosis. J. Glob. Infect. Dis. 2014, 6, 3. [Google Scholar] [CrossRef]
- Yadeta, W.; Michael, B.G.; Abdela, N. Leptospirosis in Animal and Its Public Health Implications: A Review. World Appl. Sci. J. 2016, 6, 845–853. [Google Scholar]
- Hoffmann, B.; Münch, S.; Schwägele, F.; Neusüß, C.; Jira, W. A Sensitive HPLC-MS/MS Screening Method for the Simultaneous Detection of Lupine, Pea, and Soy Proteins in Meat Products. Food Control 2017, 71, 200–209. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 54, L304. [Google Scholar]
- Lavine, E.; Ben-Shoshan, M. Anaphylaxis to Hidden Pea Protein: A Canadian Pediatric Case Series. J. Allergy Clin. Immunol. Pract. 2019, 7, 2070–2071. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Marsh, J.T.; Koppelman, S.J.; Kabourek, J.L.; Johnson, P.E.; Baumert, J.L. A Perspective on Pea Allergy and Pea Allergens. Trends Food Sci. Technol. 2021, 116, 186–198. [Google Scholar] [CrossRef]
- Bouzaid, H.; Zinedine, A.; Mazzah, A.; Ayam, I.M.; Chahdi, F.O.; Haoudi, A.; Rodi, Y.K.; Sfaira, M.; Zarrouk, A.; Errachidi, F. Quantitative and Qualitative Analysis and Evaluation of Antioxidant Activity of Phenolic Compounds Extracted from Apiaceae Family Spices. Ecol. Eng. 2024, 4, 45–56. [Google Scholar] [CrossRef]
- Wang, X.-J.; Luo, Q.; Li, T.; Meng, P.-H.; Pu, Y.-T.; Liu, J.-X.; Zhang, J.; Liu, H.; Tan, G.-F.; Xiong, A.-S. Origin, Evolution, Breeding, and Omics of Apiaceae: A Family of Vegetables and Medicinal Plants. Hortic. Res. 2022, 9, uhac076. [Google Scholar] [CrossRef]
- Abdallah, E.M. Black Pepper Fruit (Piper nigrum L.) as Antibacterial Agent: A Mini-Review. J. Bacteriol. Mycol. Open Access 2018, 6, 141–145. [Google Scholar] [CrossRef]
- Martínez, L.; Cilla, I.; Antonio Beltrán, J.; Roncalés, P. Effect of Capsicum annuum (Red Sweet and Cayenne) and Piper Nigrum (Black and White) Pepper Powders on the Shelf Life of Fresh Pork Sausages Packaged in Modified Atmosphere. J. Food Sci. 2006, 71, S48–S53. [Google Scholar] [CrossRef]
- Marrone, R.; Smaldone, G.; Ambrosio, R.L.; Festa, R.; Ceruso, M.; Chianese, A.; Anastasio, A. Effect of Beetroot (Beta vulgaris) Extract on Black Angus Burgers Shelf Life. Ital. J. Food Saf. 2021, 10, 9031. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Pollonio, M.A.R.; Sepúlveda, N.; Andres, S.C.; Reyes, J.; Santos, E.M.; Lorenzo, J.M. Beta vulgaris as a Natural Nitrate Source for Meat Products: A Review. Foods 2021, 10, 2094. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Commission Regulation (EU) No 601/2014 of 4 June 2014 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the food categories of meat and the use of certain food additives in meat preparations. Off. J. Eur. Union 2014, 57, L166. [Google Scholar]
- Cottenet, G.; Cavin, C.; Blancpain, C.; Chuah, P.F.; Pellesi, R.; Suman, M.; Nogueira, S.; Gadanho, M. A DNA Metabarcoding Workflow to Identify Species in Spices and Herbs. J. AOAC Int. 2022, 106, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Publications Office of the European Union. Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods. Off. J. Eur. Union 2008, 51, L354. [Google Scholar]
- Klapper, R.; Velasco, A.; Döring, M.; Schröder, U.; Sotelo, C.G.; Brinks, E.; Muñoz-Colmenero, M. A next-generation sequencing approach for the detection of mixed species in canned tuna. Food Chem. X 2023, 17, 100560. [Google Scholar] [CrossRef]
- Lorusso, L.; Shum, P.; Piredda, R.; Mottola, A.; Maiello, G.; Cartledge, E.L.; Neave, E.F.; Di Pinto, A.; Mariani, S. Mismanagement and poor transparency in the European processed seafood supply revealed by DNA metabarcoding. Food Res. Int. 2024, 194, 114901. [Google Scholar] [CrossRef]
- Ren, J.; Deng, T.; Huang, W.; Chen, Y.; Ge, Y. A Digital PCR Method for Identifying and Quantifying Adulteration of Meat Species in Raw and Processed Food. PLoS ONE 2017, 12, e0173567. [Google Scholar] [CrossRef]
Sample ID | Name of the Food | Packaging | Ingredients Declared | Replicates ID | Molecular Identifications | ||
---|---|---|---|---|---|---|---|
Animal | Plant | Animal | Plant | ||||
S | Sausage salt and pepper | Prepacked | Swine | Flavourings Pepper Spices | S1 | Sus scrofa (100%) | Pisum sativum (93%) Piper spp. (6.6%) Trifolium spp. (0.3%) Apioideae (0.04%) Beta spp. (0.01%) |
S2 | Sus scrofa (100%) | Pisum sativum (87.2%) Piper spp. (12.5%) Trifolium spp. (0.3%) Apioideae (0.04%) Beta spp. (0.01%) | |||||
M | Minced adult beef | Vacuum-packed | Bovine | Natural Flavourings | M1 | Bos taurus (69.9%) Ovis aries (29.6%) Murinae (0.32%) Caprinae (0.09%) Sus scrofa (0.13%) | Apioideae (92%) Beta spp. (5%) Allium spp. (2%) Pisum sativum (0.9%) |
M2 | Bos taurus (79.8%) Ovis aries (19.8%) Murinae (0.33%) Caprinae (0.06%) | Apioideae (95.5%) Beta spp. (2.3%) Allium spp. (1.3%) Pisum sativum (0.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mottola, A.; Intermite, C.; Piredda, R.; Lorusso, L.; Ranieri, L.; Carpino, S.; Celano, G.V.; Di Pinto, A. DNA Metabarcoding Approach as a Potential Tool for Supporting Official Food Control Programs: A Case Study. Foods 2024, 13, 2941. https://doi.org/10.3390/foods13182941
Mottola A, Intermite C, Piredda R, Lorusso L, Ranieri L, Carpino S, Celano GV, Di Pinto A. DNA Metabarcoding Approach as a Potential Tool for Supporting Official Food Control Programs: A Case Study. Foods. 2024; 13(18):2941. https://doi.org/10.3390/foods13182941
Chicago/Turabian StyleMottola, Anna, Chiara Intermite, Roberta Piredda, Lucilia Lorusso, Lucia Ranieri, Stefania Carpino, Gaetano Vitale Celano, and Angela Di Pinto. 2024. "DNA Metabarcoding Approach as a Potential Tool for Supporting Official Food Control Programs: A Case Study" Foods 13, no. 18: 2941. https://doi.org/10.3390/foods13182941
APA StyleMottola, A., Intermite, C., Piredda, R., Lorusso, L., Ranieri, L., Carpino, S., Celano, G. V., & Di Pinto, A. (2024). DNA Metabarcoding Approach as a Potential Tool for Supporting Official Food Control Programs: A Case Study. Foods, 13(18), 2941. https://doi.org/10.3390/foods13182941