Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables
Abstract
:1. Introduction
2. Machine Learning Algorithms Commonly Used in Food Preservation
2.1. Traditional Machine Learning Algorithms
2.2. Deep Learning (DL)
- (1)
- It has self-learning functions. For example, when realizing image recognition, just input many different image templates and corresponding recognition results into the artificial neural network, and the network will learn to recognize similar images through self-learning function. The self-learning function is of great significance for prediction. In the future, artificial neural networks will provide economic prediction, market prediction, and benefit prediction for humans, which has strong reference value for current shelf life prediction research. Researchers can use appearance images or spectral images of fruits and vegetables as inputs to achieve perfect control of fruit and vegetable quality and accurate prediction of shelf life without damaging them. Ripeness plays a crucial role in the quality and shelf life of apricots. Mozaffari et al. collected laser backscatter images of apricots at 650 nm and established artificial neural networks (ANNs), partial least squares regression (PLSR), and principal component analysis artificial neural networks (PCA-ANNs) models. The extracted images were used as model inputs to predict the quality parameters of apricots. The results indicate that there is a high correlation between backscatter images and quality parameters during the ripening process of apricots. The laser backscatter imaging methods can successfully predict the quality characteristics during the ripening process of apricots, and the ANN model has more accurate prediction performance than PLSR [49].
- (2)
- Equipped with an associative storage function. This association can be achieved using a feedback network of an artificial neural network.
- (3)
- The ability to search for optimized solutions at high speed. Finding an optimal solution to a complex problem often requires a significant amount of computation. By utilizing a feedback-type artificial neural network designed for a specific problem and exerting the high-speed computing power of the computer, it is possible to quickly find the optimal solution [50,51].
3. Application of Machine Learning to Food Shelf Life Prediction
3.1. Predicting Shelf Life Based on Storage Environment
3.2. Predicting Shelf Life Based on Physiological and Biochemical Indicators
4. The Application of ML in Extending the Shelf Life of Fruits and Vegetables
4.1. Screening of Potential Key Freshness Indicators
4.2. Non-Destructive and Rapid Detection of Freshness of Fruits and Vegetables
5. Outlook and Challenges
- (1)
- Optimization and selection of model parameters
- (2)
- Expansion of data samples and selection of models
- (3)
- Multi-model fusion
- (4)
- The combination of deep learning and non-destructive testing technology
- (5)
- Combination of deep learning and intelligent food supply chain system
- (6)
- Machine learning combined with quantum computing
- (7)
- The development of explainable AI (XAI) in the field of machine learning for predicting food quality
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Liu, M.H.; Sun, Y. Overview of Food Preservation and Traceability Technology in the Smart Cold Chain System. Foods 2023, 12, 2881. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste. Extent, Causes and Prevention; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Liu, G. Food Losses and Food Waste in China. In OECD Food, Agriculture and Fisheries Papers; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Cui, F.; Zheng, S.; Wang, D.; Tan, X.; Li, Q.; Li, J.; Li, T. Recent advances in shelf life prediction models for monitoring food quality. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1257–1284. [Google Scholar] [CrossRef]
- Sánchez-García, F.; Hernández, I.; Palacios, V.M.; Roldán, A.M. Freshness Quality and Shelf Life Evaluation of the Seaweed Ulva rigida through Physical, Chemical, Microbiological, and Sensory Methods. Foods 2021, 10, 181. [Google Scholar] [CrossRef]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Khaled, A.Y.; Parrish, C.A.; Adedeji, A. Emerging nondestructive approaches for meat quality and safety evaluation-A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3438–3463. [Google Scholar] [CrossRef]
- Ahmad, I.; Jeenanunta, C.; Chanvarasuth, P.; Komolavanij, S. Prediction of Physical Quality Parameters of Frozen Shrimp (Litopenaeus vannamei): An Artificial Neural Networks and Genetic Algorithm Approach. Food Bioprocess Technol. 2014, 7, 1433–1444. [Google Scholar] [CrossRef]
- Liu, P.H.; Qiao, Y.C.; Hou, B.R.; Xi, Z.T.; Hu, Y.H. Building kinetic models to determine moisture content in apples and predicting shelf life based on spectroscopy. J. Food Process Eng. 2021, 44, e13907. [Google Scholar] [CrossRef]
- Ruan, S.; Zhu, T.; Zuo, C.; Peng, J.; Liu, L.; Lan, W.; Pan, L.; Tu, K. Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods 2024, 13, 2367. [Google Scholar] [CrossRef]
- Fu, Z.T.; Zhao, S.; Zhang, X.S.; Polovka, M.; Wang, X. Quality Characteristics Analysis and Remaining Shelf Life Prediction of Fresh Tibetan Tricholoma matsutake under Modified Atmosphere Packaging in Cold Chain. Foods 2019, 8, 136. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Bakhshipour, A.; de la Guardia, M. Prediction of banana quality indices from color features using support vector regression. Talanta 2016, 148, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Chen, Y.F.; Shen, L.G.; Li, R.J.; Xu, X.C.; Hong, H.C.; Lin, H.J.; Chen, J.R. Quantification of interfacial energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN artificial neural networks. J. Colloid Interface Sci. 2020, 565, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, Z.; Jia, Z.; Hou, M.; Yang, X.; Ying, X.; Ji, Z. Artificial neural network-based shelf life prediction approach in the food storage process: A review. Crit. Rev. Food Sci. Nutr. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Acharya, S.; Dandigunta, B.; Sagar, H.; Rani, J.; Priyadarsini, M.; Verma, S.; Kushwaha, J.; Fageria, P.; Lahiri, P.; Chattopadhyay, P.; et al. Analyzing Milk Foam Using Machine Learning for Diverse Applications. Food Anal. Methods 2022, 15, 3365–3378. [Google Scholar] [CrossRef]
- Jimenez-Carvelo, A.M.; Gonzalez-Casado, A.; Bagur-Gonzalez, M.G.; Cuadros-Rodriguez, L. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity—A review. Food Res. Int. 2019, 122, 25–39. [Google Scholar] [CrossRef]
- Kumar, V.; Azamathulla, H.M.; Sharma, K.V.; Mehta, D.J.; Maharaj, K.T. The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability 2023, 15, 10543. [Google Scholar] [CrossRef]
- Ji, H.Z.; Pu, D.D.; Yan, W.J.; Zhang, Q.C.; Zuo, M.; Zhang, Y.Y. Recent advances and application of machine learning in food flavor prediction and regulation. Trends Food Sci. Technol. 2023, 138, 738–751. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Yang, Z.W.; Miao, N.; Zhang, X.; Li, Q.S.; Wang, Z.Q.; Li, C.H.; Sun, X.; Lan, Y.B. Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea. Food Control 2021, 121, 107068. [Google Scholar] [CrossRef]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Lozano, J.; Gancarz, M.; Lazuka, E.; Lagod, G. Determining the shelf life and quality changes of potatoes (Solanum tuberosum) during storage using electronic nose and machine learning. PLoS ONE 2023, 18, e0284612. [Google Scholar] [CrossRef]
- Tian, H.X.; Liu, H.; He, Y.J.; Chen, B.; Xiao, L.Z.; Fei, Y.G.; Wang, G.Z.; Yu, H.Y.; Chen, C. Combined application of electronic nose analysis and back-propagation neural network and random forest models for assessing yogurt flavor acceptability. J. Food Meas. Charact. 2020, 14, 573–583. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Men, H.; Shi, Y.; Fu, S.L.; Jiao, Y.N.; Qiao, Y.; Liu, J.J. Mining Feature of Data Fusion in the Classification of Beer Flavor Information Using E-Tongue and E-Nose. Sensors 2017, 17, 1656. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.L.; Gu, Y.; Zhang, J.; Zhang, L. Milk Source Identification and Milk Quality Estimation Using an Electronic Nose and Machine Learning Techniques. Sensors 2020, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
- DuBrava, S.; Mardekian, J.; Sadosky, A.; Bienen, E.J.; Parsons, B.; Hopps, M.; Markman, J. Using Random Forest Models to Identify Correlates of a Diabetic Peripheral Neuropathy Diagnosis from Electronic Health Record Data. Pain Med. 2017, 18, 107–115. [Google Scholar] [CrossRef]
- Wunderlich, P.; Pauli, D.; Neumaier, M.; Wisser, S.; Danneel, H.J.; Lohweg, V.; Dorksen, H. Enhancing Shelf Life Prediction of Fresh Pizza with Regression Models and Low Cost Sensors. Foods 2023, 12, 1347. [Google Scholar] [CrossRef]
- Li, K.; Onoda, K.; Kumazaki, T. Modeling Taste Score of Rice By Data Mining from Physicochemical Parameters. In Proceedings of the Irago Conference on 360 Degree Outlook on Critical Scientific and Technological Challenges for a Sustainable Society, Chofu, Japan, 1–2 November 2016. [Google Scholar]
- Saville, R.; Kazuoka, T.; Shimoguchi, N.N.; Hatanaka, K. Recognition of Japanese Sake Quality Using Machine Learning Based Analysis of Physicochemical Properties. J. Am. Soc. Brew. Chem. 2022, 80, 146–154. [Google Scholar] [CrossRef]
- Hanif, S.; Wijaya, D.R.; Wikusna, W. K-Nearest Neighbors Algorithm for Prediction Shelf Life of Rice Based on Electronic Nose Dataset. In Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 8–10 April 2021; pp. 116–120. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar]
- Chyzhyk, D.; Savio, A.; Grana, M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015, 68, 23–33. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Yu, Y.L.; Gu, J.; Liu, H.P. An Efficient Method for Traffic Sign Recognition Based on Extreme Learning Machine. IEEE Trans. Cybern. 2017, 47, 920–933. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Wu, J.; Zhou, C.; Cai, Z.H. Instance cloned extreme learning machine. Pattern Recognit. 2017, 68, 52–65. [Google Scholar] [CrossRef]
- Liu, X.Y.; Gao, C.H.; Li, P. A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 2012, 33, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xu, W.D.; Chen, Q.S. Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis. Food Chem. 2020, 319, 126584. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.T.; Wang, X.P.; Zhang, J.C.; Xia, J.; Zhang, X.S. Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics. Food Control 2023, 145, 109496. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.; He, L.P.; Li, C.Q.; Zhu, Q.J.; Zeng, X.F. Quality Changes and Shelf-Life Prediction of Cooked Cured Ham Stored at Different Temperatures. J. Food Prot. 2021, 84, 1252–1264. [Google Scholar] [CrossRef]
- Owoyemi, A.; Holder, T.; Porat, R.; Lichter, A.; Koenigstein, N.; Salzer, Y. Temperature interruptions harm the quality of stored ‘Rustenburg’ navel oranges and development of dynamic shelf-life prediction models. Postharvest Biol. Technol. 2023, 204, 112458. [Google Scholar] [CrossRef]
- Mao, S.C.; Zhou, J.P.; Hao, M.; Ding, A.Z.; Li, X.; Wu, W.J.; Qiao, Y.; Wang, L.; Xiong, G.Q.; Shi, L. BP neural network to predict shelf life of channel catfish fillets based on near infrared transmittance (NIT) spectroscopy. Food Packag. Shelf Life 2023, 35, 101025. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Howell, K.; Dunshea, F.R. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.G.; Low, M.Y.; Zhou, W.B. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 2018, 71, 202–215. [Google Scholar] [CrossRef]
- Mozaffari, M.; Sadeghi, S.; Asefi, N. Prediction of the quality properties and maturity of apricot by laser light backscattering imaging. Postharvest Biol. Technol. 2022, 186, 111842. [Google Scholar] [CrossRef]
- Wang, P.; Tian, H.L.; Tan, F.L.; Liu, Y.F.; Yu, B.; Zhan, P. Impact of commercial processing on volatile compounds and sensory profiles of flat peach juices by PLSR and BP network. J. Food Process. Preserv. 2020, 44, e14575. [Google Scholar] [CrossRef]
- Yu, P.G.; Low, M.Y.; Zhou, W.B.A. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages. Food Res. Int. 2018, 103, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.T.; Hsueh, M.C.; Hung, S.P.; Lu, J.M.; Peng, J.H.; Chen, S.F. Prediction of specialty coffee flavors based on near-infrared spectra using machine- and deep-learning methods. J. Sci. Food Agric. 2021, 101, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Matyushin, D.D.; Sholokhova, A.Y.; Buryak, A.K. A deep convolutional neural network for the estimation of gas chromatographic retention indices. J. Chromatogr. A 2019, 1607, 460395. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, T.; Yang, H.C.; Chen, E.M. An AI-powered Electronic Nose System with Fingerprint Extraction for Aroma Recognition of Coffee Beans. Micromachines 2022, 13, 1313. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.J.; He, Y. Application of Deep Learning in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef]
- Xavier, P.; Rodrigues, P.M.; Silva, C.L.M. Shelf-Life Management and Ripening Assessment of ‘Hass’ Avocado (Persea americana) Using Deep Learning Approaches. Foods 2024, 13, 1150. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, Y.X.; Li, B.; Zhao, C.J.; Li, G.L. Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks. Comput. Electron. Agric. 2021, 181, 105931. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhao, Z.L.; Tian, R.L.; Gao, S.B.; Niu, Y.D.; Liu, H.L. Exploration of total synchronous fluorescence spectroscopy combined with pre-trained convolutional neural network in the identification and quantification of vegetable oil. Food Chem. 2021, 335, 127640. [Google Scholar] [CrossRef]
- Rauf, H.T.; Lali, M.I.U.; Zahoor, S.; Shah, S.Z.H.; Rehman, A.; Bukhari, S.A.C. Visual features based automated identification of fish species using deep convolutional neural networks. Comput. Electron. Agric. 2019, 167, 105075. [Google Scholar] [CrossRef]
- Estrada-Perez, L.V.; Pradana-Lopez, S.; Perez-Calabuig, A.M.; Mena, M.L.; Cancilla, J.C.; Torrecilla, J.S. Thermal imaging of rice grains and flours to design convolutional systems to ensure quality and safety. Food Control 2021, 121, 107572. [Google Scholar] [CrossRef]
- Khairi, M.T.M.; Ibrahim, S.; Yunus, M.A.M.; Faramarzi, M. Noninvasive techniques for detection of foreign bodies in food: A review. J. Food Process Eng. 2018, 41, e12808. [Google Scholar] [CrossRef]
- Liu, M.H.; Liu, M.H.; Bai, L.; Shang, W.; Ren, R.H.; Zhao, Z.Y.; Sun, Y. Establishing a Berry Sensory Evaluation Model Based on Machine Learning. Foods 2023, 12, 3502. [Google Scholar] [CrossRef] [PubMed]
- Aherwadi, N.; Mittal, U.; Singla, J.; Jhanjhi, N.Z.; Yassine, A.; Hossain, M.S. Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms. Electronics 2022, 11, 4100. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, X.L.; Shen, J.; Xiao, G.; Hong, H.C.; Lin, H.J.; Wu, F.Y.; Liao, B.Q. New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Sci. Total Environ. 2021, 772, 145534. [Google Scholar] [CrossRef]
- Xiong, Y.T.; Ohashi, S.; Nakano, K.; Jiang, W.Z.; Takizawa, K.; Iijima, K.; Maniwara, P. Application of the radial basis function neural networks to improve the nondestructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces. J. Food Eng. 2021, 298, 110417. [Google Scholar] [CrossRef]
- Shi, C.; Qian, J.P.; Zhu, W.Y.; Liu, H.; Han, S.; Yang, X.T. Nondestructive determination of freshness indicators for tilapia fillets stored at various temperatures by hyperspectral imaging coupled with RBF neural networks. Food Chem. 2019, 275, 497–503. [Google Scholar] [CrossRef]
- Amini, S.; Taki, M.; Rohani, A. Applied improved RBF neural network model for predicting the broiler output energies. Appl. Soft Comput. 2020, 87, 106006. [Google Scholar] [CrossRef]
- Zhixin, J.; Ce, S.; Jiaran, Z.; Zengtao, J. Comparison of freshness prediction method for salmon fillet during different storage temperatures. J. Sci. Food Agric. 2021, 101, 4987–4994. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.Q.; Wei, Y.G.; An, D. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel. Food Chem. 2022, 370, 131047. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Deng, F.; Yue, X.H. Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty. Neurocomputing 2020, 396, 487–494. [Google Scholar] [CrossRef]
- Liu, X.B.; Qiao, Y.L.; Xiong, Y.H.; Cai, Z.H.; Liu, P. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation. Sci. China-Inf. Sci. 2020, 63, 140306. [Google Scholar] [CrossRef]
- Feng, H.H.; Zhang, M.J.; Zhang, L.W.; Chen, B.Q.; Zhang, X.S. Evaluation of dynamic stress level and physiological change for live salmon in waterless and low-temperature transportation. Aquaculture 2021, 544. [Google Scholar] [CrossRef]
- Park, S.Y.; Kang, M.; Yun, S.-M.; Eun, J.-B.; Shin, B.-S.; Chun, H.H. Changes and machine learning-based prediction in quality characteristics of sliced Korean cabbage (Brassica rapa L. pekinensis) kimchi: Combined effect of nano-foamed structure film packaging and subcooled storage. LWT 2022, 171, 114122. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, M.; Adhikari, B. Prediction of storage quality of fresh-cut green peppers using artificial neural network. Int. J. Food Sci. Technol. 2012, 47, 1586–1592. [Google Scholar] [CrossRef]
- Li, Y.; Chu, X.Q.; Fu, Z.T.; Feng, J.Y.; Mu, W.S. Shelf life prediction model of postharvest table grape using optimized radial basis function (RBF) neural network. Br. Food J. 2019, 121, 2919–2936. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, M.; Bhandari, B.; Guo, Z.M. A novel method using MOS electronic nose and ELM for predicting postharvest quality of cherry tomato fruit treated with high pressure argon. Comput. Electron. Agric. 2018, 154, 411–419. [Google Scholar] [CrossRef]
- Qiao, J.P.; Guo, M.C.; Wu, Y.; Gao, J.; Yue, Z.C. Research on Strawberry Cold Chain Transportation Quality Perception Method Based on BP Neural Network. Appl. Sci. 2022, 12, 8872. [Google Scholar] [CrossRef]
- Srinivasagan, R.; Mohammed, M.; Alzahrani, A. TinyML-Sensor for Shelf Life Estimation of Fresh Date Fruits. Sensors 2023, 23, 7081. [Google Scholar] [CrossRef]
- Qiu, S.S.; Wang, J.; Tang, C.; Du, D.D. Comparison of ELM, RF, and SVM on E-nose and E-tongue to trace the quality status of mandarin (Citrus unshiu Marc.). J. Food Eng. 2015, 166, 193–203. [Google Scholar] [CrossRef]
- Wang, N.N.; Yang, Y.C.; Sun, D.W.; Pu, H.B.; Zhu, Z.W. Shelf-Life Prediction of ‘Gros Michel’ Bananas with Different Browning Levels Using Hyperspectral Reflectance Imaging. Food Anal. Methods 2015, 8, 1173–1184. [Google Scholar] [CrossRef]
- Liu, D.Y.; Lv, F.; Wang, C.C.; Wang, G.L.; Zhang, H.T.; Guo, J.T. Classification of early mechanical damage over time in pears based on hyperspectral imaging and transfer learning. J. Food Sci. 2023, 88, 3022–3035. [Google Scholar] [CrossRef] [PubMed]
- Brasil, Y.L.; Cruz-Tirado, J.P.; Barbin, D.F. Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning. Food Control 2022, 131, 108418. [Google Scholar] [CrossRef]
- Suzuki, M.; Masuda, K.; Asakuma, H.; Takeshita, K.; Baba, K.; Kubo, Y.; Ushijima, K.; Uchida, S.; Akagi, T. Deep Learning Predicts Rapid Over-softening and Shelf Life in Persimmon Fruits. Hortic. J. 2022, 91, 408–415. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, M.; Adhikari, B.; Guo, Z.M. Nondestructive Detection of Postharvest Quality of Cherry Tomatoes Using a Portable NIR Spectrometer and Chemometric Algorithms. Food Anal. Methods 2019, 12, 914–925. [Google Scholar] [CrossRef]
- Du, J.; Zhang, M.; Teng, X.X.; Wang, Y.C.; Law, C.L.; Fang, D.C.; Liu, K. Evaluation of vegetable sauerkraut quality during storage based on convolution neural network. Food Res. Int. 2023, 164, 112420. [Google Scholar] [CrossRef]
- Gholami, R.; Nategh, N.A.; Rabbani, H. Evaluation the effects of temperature and packaging conditions on the quality of button mushroom during storage using e-nose system. J. Food Sci. Technol. Mysore 2023, 60, 1355–1366. [Google Scholar] [CrossRef]
- Cho, B.H.; Koseki, S. Determination of banana quality indices during the ripening process at different temperatures using smartphone images and an artificial neural network. Sci. Hortic. 2021, 288, 110382. [Google Scholar] [CrossRef]
- Gorzelany, J.; Belcar, J.; Kuzniar, P.; Niedbala, G.; Pentos, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200. [Google Scholar] [CrossRef]
- Choi, J.Y.; Seo, K.; Cho, J.S.; Moon, K.D. Applying convolutional neural networks to assess the external quality of strawberries. J. Food Compos. Anal. 2021, 102, 104071. [Google Scholar] [CrossRef]
- Koyama, K.; Tanaka, M.; Cho, B.H.; Yoshikawa, Y.; Koseki, S. Predicting sensory evaluation of spinach freshness using machine learning model and digital images. PLoS ONE 2021, 16, e0248769. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.J.; Poblete-Echeverría, C.; Nieuwoudt, H.H.; Botha, N.; Opara, U.L. Classification of Browning on Intact Table Grape Bunches Using Near-Infrared Spectroscopy Coupled with Partial Least Squares-Discriminant Analysis and Artificial Neural Networks. Front. Plant Sci. 2021, 12, 768046. [Google Scholar] [CrossRef] [PubMed]
- Bhole, V.; Kumar, A. A Transfer Learning-based Approach to Predict the Shelf life of Fruit. Intel. Artif. Iberoamerical J. Artif. Intell. 2021, 24, 102–120. [Google Scholar] [CrossRef]
- Yu, S.H.; Lan, H.P.; Li, X.L.; Zhang, H.; Zeng, Y.; Niu, H.; Niu, X.Y.; Xiao, A.L.; Liu, Y. Prediction method of shelf life of damaged Korla fragrant pears. J. Food Process Eng. 2021, 44, e13902. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhu, D.S.; Ren, X.J.; Shen, Y.S.; Cao, X.H.; Liu, H.; Li, J.R. Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis. Food Chem. 2022, 394, 133526. [Google Scholar] [CrossRef]
- Mohammed, M.; Srinivasagan, R.; Alzahrani, A.; Alqahtani, N.K. Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres. Sustainability 2023, 15, 2871. [Google Scholar] [CrossRef]
- Alden, K.M.; Omid, M.; Rajabipour, A.; Tajeddin, B.; Firouz, M.S. Quality and shelf-life prediction of cauliflower under modified atmosphere packaging by using artificial neural networks and image processing. Comput. Electron. Agric. 2019, 163, 104861. [Google Scholar] [CrossRef]
- Selvan, S.S.; Mohapatra, D.; Anakkallan, S.; Kate, A.; Tripathi, M.K.; Singh, K.; Kar, A. Oxidation kinetics and ANN model for shelf life estimation of pearl millet (Pennisetum glaucum L.) grains during storage. J. Food Process. Preserv. 2022, 46, e17218. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Buryak, A.K. Gas Chromatographic Retention Index Prediction Using Multimodal Machine Learning. IEEE Access 2020, 8, 223140–223155. [Google Scholar] [CrossRef]
- Zhu, S.; Feng, L.; Zhang, C.; Bao, Y.; He, Y. Identifying Freshness of Spinach Leaves Stored at Different Temperatures Using Hyperspectral Imaging. Foods 2019, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Yu, S.; Dong, R.; Pan, F.; Liang, D. Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging. Int. J. Food Prop. 2020, 23, 269–281. [Google Scholar] [CrossRef]
- Sohrabi, M.M.; Ahmadi, E.; Monavar, H.M. Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage. J. Food Meas. Charact. 2018, 12, 949–966. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Zhao, M.; O’Donnell, C.; Sun, D.-W. Nondestructive quality evaluation of banana slices during microwave vacuum drying using spectral and imaging techniques. Drying Technol. 2018, 36, 1542–1553. [Google Scholar] [CrossRef]
- Md Saleh, R.; Kulig, B.; Arefi, A.; Hensel, O.; Sturm, B. Prediction of total carotenoids, color, and moisture content of carrot slices during hot air drying using non-invasive hyperspectral imaging technique. J. Food Process. Preserv. 2022, 46, e16460. [Google Scholar] [CrossRef]
- You, L.; Guo, Y.; Luo, R.; Fan, Y.; Zhang, T.; Hu, Q.; Bo, S. Spoilage Marker Metabolites and Pathway Analysis in Chilled Tan Sheep Meat Based on GC-MS. Food Sci. Technol. Res. 2018, 24, 635–651. [Google Scholar] [CrossRef]
- Welzenbach, J.; Neuhoff, C.; Looft, C.; Schellander, K.; Tholen, E.; Große-Brinkhaus, C. Different Statistical Approaches to Investigate Porcine Muscle Metabolome Profiles to Highlight New Biomarkers for Pork Quality Assessment. PLoS ONE 2016, 11, e0149758. [Google Scholar] [CrossRef]
- Ramírez-Acosta, S.; Arias-Borrego, A.; Gómez-Ariza, J.L.; García-Barrera, T. Metabolomic study of bioactive compounds in strawberries preserved under controlled atmosphere based on GC-MS and DI-ESI-QqQ-TOF-MS. Phytochem. Anal. 2019, 30, 198–207. [Google Scholar] [CrossRef]
- Colantonio, V.; Ferra, L.F.V.; Tieman, D.M.; Bliznyuk, N.; Sims, C.; Klee, H.J.; Munoz, P.; Resende, M.F.R. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. USA 2022, 119, e2115865119. [Google Scholar] [CrossRef]
- Benmouna, B.; García-Mateos, G.; Sabzi, S.; Fernandez-Beltran, R.; Parras-Burgos, D.; Molina-Martínez, J.M. Convolutional Neural Networks for Estimating the Ripening State of Fuji Apples Using Visible and Near-Infrared Spectroscopy. Food Bioprocess Technol. 2022, 15, 2226–2236. [Google Scholar] [CrossRef]
- Lam, M.B.; Nguyen, T.H.; Chung, W.Y. Deep Learning-Based Food Quality Estimation Using Radio Frequency-Powered Sensor Mote. IEEE Access 2020, 8, 88360–88371. [Google Scholar] [CrossRef]
- Ferreira, M.V.D.; de Moraes, I.A.; Passos, R.V.L.; Barbin, D.F.; Barbosa, J.L. Determination of pitaya quality using portable NIR spectroscopy and innovative low-cost electronic nose. Sci. Hortic. 2023, 310, 111784. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Esquerre, C.A.; Nunes, C.M.D.; O’Donnell, C.P. A decision support tool for shelf-life determination of strawberries using hyperspectral imaging technology. Biosyst. Eng. 2022, 221, 105–117. [Google Scholar] [CrossRef]
- García, M.R.; Ferez-Rubio, J.A.; Vilas, C. Assessment and Prediction of Fish Freshness Using Mathematical Modelling: A Review. Foods 2022, 11, 2312. [Google Scholar] [CrossRef]
Principle | Method | Predictor | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
Traditional Dynamics | Chemical kinetics | Total plate count (TPC) | Simple form, suitable for various shelf life predictions | Usually used in conjunction with the Arrhenius equation, only considering the effect of temperature on quality changes | [10] |
Microbial kinetics | Specific spoilage organism | In addition to temperature, the impact of environmental factors such as humidity and pH value on shelf life was also considered | Microbial indicators are highly correlated with changes in food quality and are not suitable for predicting the shelf life of fresh food with shorter storage times | [11] | |
Machine Learning | BP neural network, Support Vector Regression Machine | Sensory, physicochemical, and microbiological indicators | No need to understand the specific underlying principles that cause food quality decay, reducing errors caused by insufficient research on the principles | Unable to express and analyze the internal relationship between input and output | [12,13] |
Food Products | Machine Learning Algorithms | Predication Basis | Reference |
---|---|---|---|
Cauliflower | RF, XGBoost | Different packaging conditions and temperatures | [74] |
fresh-cut green peppers | BP | O2, CO2, temperature, humidity | [75] |
Table grape | BP, RBF | storage temperature, relative humidity, sensory average score, peel hardness, SSC, weight loss rate, rotting rate, fragmentation rate, and color difference | [76] |
cherry tomatoes | ELM, PLSR | The data on e-nose | [77] |
Strawberries | BP | O2, CO2, temperature, humidity | [78] |
Fresh Date Fruits | RNN | pH, TSS, sugar, tannin, and MC | [79] |
Citrus | ELM, RF, SVM | The data on Electronic Tongue and Electronic Nose | [80] |
Banana | BP, RBF | image features and average spectra | [81] |
Pears | CNN | hyperspectral imaging | [82] |
quail eggs | PLS, SVM | NIR spectroscopy | [83] |
blueberries | SVM, CNN | Ten physical and chemical flavor indices of blueberries (such as catalase, flavonoids, and soluble solids) | [63] |
Persimmon | CNN, BP | RGB image | [84] |
cherry tomatoes | PLS, SVM, ELM | NIR spectroscopy | [85] |
sauerkraut | CNN | The photos of Sample from different periods | [86] |
mushroom | SVM, ANN, PLS | Different packaging conditions and temperatures | [87] |
Banana | ANN | Mobile image and appearance color characteristics | [88] |
Large cranberry | ANN, SVM | storage time and storage temperatures | [89] |
Strawberries | CNN | RGB image | [90] |
Spinach | ANN, SVM | Digital images | [91] |
Table grape | PLS, ANN | Near-infrared (NIR) spectroscopy | [92] |
Food Products | Purpose of the Study | Input Indicator | Machine Learning Models | Reference |
---|---|---|---|---|
Spinach | The freshness identification of spinach preserved at different temperatures for different durations | Hyperspectral images | PLS, SVM, ELM | [100] |
Strawberries | Evaluation of storage time | Visible/near-infrared hyperspectral images | PLS, RF, SVM | [101] |
grape tomatoes | Estimate total soluble solids (TSS), titratable acidity (TA), and pH of the grape tomatoes | Fiber optic spectroscopy | PLS | [102] |
banana slices | Predict moisture content, hardness, and fracturability of banana slices | Near-infrared hyperspectral images, chemometrics | PLS, SVM | [103] |
carrot slices | Prediction of total carotenoids, color, and moisture content of carrot slices | Vis–NIR hyperspectral images | PLS | [104] |
broccoli heads | Nondestructive prediction of the shelf life of broccoli heads | Hyperspectral images | ANN | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Bai, L.; Wang, R.; Ying, S. Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables. Foods 2024, 13, 3025. https://doi.org/10.3390/foods13193025
Li D, Bai L, Wang R, Ying S. Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables. Foods. 2024; 13(19):3025. https://doi.org/10.3390/foods13193025
Chicago/Turabian StyleLi, Dawei, Lin Bai, Rong Wang, and Sun Ying. 2024. "Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables" Foods 13, no. 19: 3025. https://doi.org/10.3390/foods13193025
APA StyleLi, D., Bai, L., Wang, R., & Ying, S. (2024). Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables. Foods, 13(19), 3025. https://doi.org/10.3390/foods13193025