Effects of Changes in Pectin Constitution on Optical Properties and Firmness of Peach Flesh during Storage
Abstract
:1. Introduction
- (i)
- explore the internal variation and relationship between optical properties and the firmness and pectin compositions (water-soluble pectin, protopectin, and the protopectin index) of peach flesh tissues;
- (ii)
- identify the specific optical absorption and scattering parameters related to the firmness and pectin changes during the postharvest tissue softening;
- (iii)
- develop efficient prediction models to determine these quality characteristics.
2. Materials and Methods
2.1. Sample Preparation
2.2. Single Integrating Sphere System
2.3. System Calibration
2.4. Measurement of Optical Properties
2.5. Firmness Characterization
2.6. Measurement of Pectin Constitution
2.7. Data Analysis
3. Results and Discussion
3.1. Changes in Peach Firmness and Pectin Constitution
3.2. Optical Properties
3.2.1. Absorption Coefficient
3.2.2. Reduced Scattering Coefficient
3.3. Relationships among Firmness, Pectin Constitution, and Optical Properties
3.3.1. Relationship of Firmness with the Pectin Constitution
3.3.2. Correlations between Absorption Coefficient, Firmness, and Pectin Constitution
3.3.3. Correlations between Reduced Scattering Coefficient, Firmness, and Pectin Constitution
3.4. Prediction of Peach Firmness and Pectin Constitution Based on Optical Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustafa, M.; Bassi, D.; Corre, M.; Lino, L.; Signoret, V.; Quilot-Turion, B.; Cirilli, M. Phenotyping Brown Rot Susceptibility in Stone Fruit: A Literature Review with Emphasis on Peach. Horticulturae 2021, 7, 115. [Google Scholar] [CrossRef]
- Haji, T.; Yaegaki, H.; Yamaguchi, M. Inheritance and Expression of Fruit Texture Melting, Non-Melting and Stony Hard in Peach. Sci. Hortic. 2005, 105, 241–248. [Google Scholar] [CrossRef]
- Jantra, C. Development of a Handheld Precision Penetrometer System for Fruit Firmness Measurement. Postharvest Biol. Technol. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Lan, W.; Hui, X.; Nicolai, B.; Verboven, P.; Qin, J.; Renard, C.; Jaillais, B.; Tu, K.; Bureau, S.; Pan, L. Visualizing the Structural and Chemical Heterogeneity of Fruit and Vegetables Using Advanced Imaging Techniques: Fundamentals, Instrumental Aspects, Applications and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2024. [Google Scholar] [CrossRef]
- Toivonen, P.; Brummell, D. Biochemical Bases of Appearance and Texture Changes in Fresh-Cut Fruit and Vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Landahl, S.; Belie, N.D.; Baerdemaeker, J.D.; Peirs, A.; Nicolaï, B. Non-Destructive and Destructive Firmness Measurements on Apples and Peaches. IFAC Proc. Vol. 2000, 33, 297–302. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Yang, H.; Sun, X.; Liu, H.; Gong, X.; Jiang, C.; Ding, C. Changes in Firmness, Pectin Content and Nanostructure of Two Crisp Peach Cultivars after Storage. LWT-Food Sci. Technol. 2010, 43, 26–32. [Google Scholar] [CrossRef]
- Ghanei Ghooshkhaneh, N.; Golzarian, M.R.; Mollazade, K. VIS-NIR Spectroscopy for Detection of Citrus Core Rot Caused by Alternaria Alternata. Food Control 2023, 144, 109320. [Google Scholar] [CrossRef]
- Rizzolo, A.; Vanoli, M.; Spinelli, L.; Torricelli, A. Sensory Characteristics, Quality and Optical Properties Measured by Time-Resolved Reflectance Spectroscopy in Stored Apples. Postharvest Biol. Technol. 2010, 58, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J. Advanced Chemometrics toward Robust Spectral Analysis for Fruit Quality Evaluation. Trends Food Sci. Technol. 2024, 150, 104612. [Google Scholar] [CrossRef]
- Zaccanti, G.; Del Bianco, S.; Martelli, F. Measurements of Optical Properties of High-Density Media. Appl. Opt. 2003, 42, 4023–4030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, C.; Yang, F. Optical Properties of Blueberry Flesh and Skin and Monte Carlo Multi-Layered Simulation of Light Interaction with Fruit Tissues. Postharvest Biol. Technol. 2019, 150, 28–41. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Chen, K. Assessment of Tomato Soluble Solids Content and pH by Spatially-Resolved and Conventional Vis/NIR Spectroscopy. J. Food Eng. 2018, 236, 19–28. [Google Scholar] [CrossRef]
- Prahl, S.; Vangemert, M.; Welch, A. Determining the Optical-Properties of Turbid Media by Using the Adding-Doubling Method. Appl. Opt. 1993, 32, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Van Beers, R.; Aernouts, B.; Watté, R.; Schenk, A.; Nicolaï, B.; Saeys, W. Effect of Maturation on the Bulk Optical Properties of Apple Skin and Cortex in the 500–1850 Nm Wavelength Range. J. Food Eng. 2017, 214, 79–89. [Google Scholar] [CrossRef]
- Rowe, P.; Künnemeyer, R.; McGlone, A.; Talele, S.; Martinsen, P.; Seelye, R. Relationship between Tissue Firmness and Optical Properties of “Royal Gala” Apples from 400 to 1050 Nm. Postharvest Biol. Technol. 2014, 94, 89–96. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M.; Mollazade, K. Prediction of Quality Attributes and Ripeness Classification of Bananas Using Optical Properties. Sci. Hortic. 2016, 212, 171–182. [Google Scholar] [CrossRef]
- Ma, C.; Feng, L.; Pan, L.; Wei, K.; Liu, Q.; Tu, K.; Zhao, L.; Peng, J. Relationships between Optical Properties of Peach Flesh with Firmness and Tissue Structure during Storage. Postharvest Biol. Technol. 2020, 163, 111134. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Zhou, D.; Pan, L.; Tu, K. Differences in Commercial Quality and Carotenoids Profile of Yellow- and White-Fleshed Nectarine Fruit during Low Temperature Storage and the Regulation of Carotenoids by Sugar. Postharvest Biol. Technol. 2023, 197, 112206. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Q.; Zhu, T.; Li, T.; Fan, G.; Li, X.; Wu, C. Effects of Ultraviolet C on the Quality and Aroma Volatile in Peach Fruit during Postharvest Storage. Food Chem. 2024, 456, 139906. [Google Scholar] [CrossRef]
- You, S.; Jiang, M.; Lan, W.; Chen, M.; Bai, B.; Zhang, L.; Tu, K.; Song, L.; Pan, L. Assessment of the Optical Properties with Physicochemical Properties and Cell Wall Polysaccharides of ‘Korla’ Pear Flesh during Alternaria Alternata-Induced Disease Development. Food Chem. 2023, 409, 135302. [Google Scholar] [CrossRef] [PubMed]
- Shinya, P.; Contador, L.; Predieri, S.; Rubio, P.; Infante, R. Peach Ripening: Segregation at Harvest and Postharvest Flesh Softening. Postharvest Biol. Technol. 2013, 86, 472–478. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, R.; Wang, X. Evaluation of Fungal Infection in Peaches Based on Optical and Microstructural Properties. Postharvest Biol. Technol. 2020, 165, 111181. [Google Scholar] [CrossRef]
- Koziol, A.; Cybulska, J.; Pieczywek, P.; Zdunek, A. Changes of Pectin Nanostructure and Cell Wall Stiffness Induced in Vitro by Pectinase. Carbohydr. Polym. 2017, 161, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, L.; An, H.; Yang, H.; Sun, X.; Liu, H.; Yao, Y.; Li, L. The Nanostructure of Hemicellulose of Crisp and Soft Chinese Cherry (Prunus Pseudocerasus L.) Cultivars at Different Stages of Ripeness. LWT-Food Sci. Technol. 2009, 42, 125–130. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Y.; Lin, Y.; Lin, M.; Chen, Y.; Wang, H.; Lin, H. A Novel Chitosan Alleviates Pulp Breakdown of Harvested Longan Fruit by Suppressing Disassembly of Cell Wall Polysaccharides. Carbohydr. Polym. 2019, 217, 126–134. [Google Scholar] [CrossRef]
- Ruru, D.; Yingqing, H.; Yan, Q.; Qidong, C.; Lei, C. Measuring Pure Water Absorption Coefficient in the Near-Infrared. Int. J. Remote Sens. 2012, 16, 192–206. [Google Scholar]
- Qin, J.; Lu, R. Measurement of the Absorption and Scattering Properties of Turbid Liquid Foods Using Hyperspectral Imaging. Appl. Spectro. 2007, 61, 388–396. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Measurement of the Optical Properties of Fruits and Vegetables Using Spatially Resolved Hyperspectral Diffuse Reflectance Imaging Technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
- Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of Optical Properties of Fruits and Vegetables: A Review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Yang, S.; Guo, W.; Wang, J.; Li, S.; Zeng, S. Optical Properties of Melon Tissues and Monte Carlo Simulation of Light Propagation through Melon Fruit. Postharvest Biol. Technol. 2024, 207, 112616. [Google Scholar] [CrossRef]
- Cen, H.; Lu, R.; Mendoza, F.; Ariana, D. Assessing Multiple Quality Attributes of Peaches Using Optical Absorption and Scattering Properties. Trans. ASABE 2012, 55, 647–657. [Google Scholar] [CrossRef]
- Saeys, W.; Velazco-Roa, M.A.; Thennadil, S.N.; Ramon, H.; Nicolaï, B.M. Optical Properties of Apple Skin and Flesh in the Wavelength Range from 350 to 2200 Nm. Appl. Opt. 2008, 47, 908. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fu, X.; Rao, X.; Fang, Z. Assessing Firmness and SSC of Pears Based on Absorption and Scattering Properties Using an Automatic Integrating Sphere System from 400 to 1150 Nm. Postharvest Biol. Technol. 2016, 121, 62–70. [Google Scholar] [CrossRef]
- Cen, H.; Lu, R.; Mendoza, F.; Beaudry, R.M. Relationship of the Optical Absorption and Scattering Properties with Mechanical and Structural Properties of Apple Tissue. Postharvest Biol. Technol. 2013, 85, 30–38. [Google Scholar] [CrossRef]
- Vanoli, M.; Rizzolo, A.; Grassi, M.; Farina, A.; Pifferi, A.; Spinelli, L.; Torricelli, A. Time-Resolved Reflectance Spectroscopy Nondestructively Reveals Structural Changes in “Pink Lady®” Apples during Storage. Procedia Food Sci. 2011, 1, 81–89. [Google Scholar] [CrossRef]
- Bobelyn, E.; Serban, A.-S.; Nicu, M.; Lammertyn, J.; Nicolai, B.M.; Saeys, W. Postharvest Quality of Apple Predicted by NIR-Spectroscopy: Study of the Effect of Biological Variability on Spectra and Model Performance. Postharvest Biol. Technol. 2010, 55, 133–143. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Chen, Z.; Han, D. Development of Multi-Cultivar Models for Predicting the Soluble Solid Content and Firmness of European Pear (Pyrus communis L.) Using Portable Vis-NIR Spectroscopy. Postharvest Biol. Technol. 2017, 129, 143–151. [Google Scholar] [CrossRef]
Firmness | Total Pectin | Water-Soluble Pectin | Proto-Pectin | PI | |
---|---|---|---|---|---|
Firmness | 1 | −0.268 | −0.895 ** | 0.901 ** | 0.948 ** |
Total pectin | 1 | 0.587 * | −0.269 | −0.333 | |
Water-soluble pectin | 1 | −0.876 * | −0.897 ** | ||
Proto-pectin | 1 | 0.971 ** | |||
PI | 1 |
Firmness | Total Pectin | Water-Soluble Pectin | Proto-Pectin | PI | |
---|---|---|---|---|---|
Firmness | 1 | 0.347 | −0.681 * | 0.903 * | 0.912 ** |
Total pectin | 1 | 0.343 | 0.545 | 0.100 | |
Water-soluble pectin | 1 | 0.601 * | −0.816 ** | ||
Proto-pectin | 1 | 0.897 ** | |||
PI | 1 |
Parameters | Wavelength (nm) | Equation | R2 | |
---|---|---|---|---|
Baifeng | Firmness | 660 | y = 0.022x + 0.499 | 0.950 |
950 | y = 0.0216x + 0.369 | 0.946 | ||
1203 | y = 0.0134x + 0.623 | 0.917 | ||
1453 | y = 0.0089x + 0.497 | 0.830 | ||
PI | 660 | y = 0.262x + 0.442 | 0.982 | |
950 | y = 0.257x + 0.312 | 0.922 | ||
1203 | y = 0.160x + 0.588 | 0.876 | ||
1453 | y = 0.104x − 0.477 | 0.764 | ||
Xiahui 8 | Firmness | 660 | y = 0.013x + 0.737 | 0.935 |
950 | y = 0.012x + 0.561 | 0.951 | ||
1203 | y = 0.014x + 0.681 | 0.969 | ||
1453 | y = 0.0126x + 0.450 | 0.987 | ||
PI | 660 | y = 0.201x + 0.695 | 0.964 | |
950 | y = 0.186x + 0.523 | 0.970 | ||
1203 | y = 0.237x + 0.61 | 0.956 | ||
1453 | y = 0.211x + 0.392 | 0.926 |
Wavelength | Parameters | Optical Property | Calibration | Validation | |||
---|---|---|---|---|---|---|---|
(nm) | Rc2 | RMSEC | Rp2 | RMSEP | |||
Baifeng | 600–1050 | Firmness | μa | 0.774 | 3.594 | 0.766 | 3.817 |
μ′s | 0.802 | 2.820 | 0.850 | 2.930 | |||
Water-soluble pectin | μa | 0.821 | 0.024 | 0.779 | 0.026 | ||
μ′s | 0.797 | 0.026 | 0.795 | 0.027 | |||
Protopectin | μa | 0.745 | 0.024 | 0.715 | 0.026 | ||
μ’s | 0.803 | 0.021 | 0.765 | 0.022 | |||
PI | μa | 0.653 | 0.421 | 0.650 | 0.366 | ||
μ′s | 0.852 | 0.268 | 0.811 | 0.290 | |||
1100–1650 | Firmness | μa | 0.680 | 4.608 | 0.668 | 4.593 | |
μ′s | 0.856 | 3.093 | 0.854 | 3.085 | |||
Water-soluble pectin | μa | 0.712 | 0.032 | 0.702 | 0.042 | ||
μ′s | 0.670 | 0.034 | 0.642 | 0.033 | |||
Protopectin | μa | 0.750 | 0.025 | 0.705 | 0.050 | ||
μ’s | 0.752 | 0.026 | 0.738 | 0.028 | |||
PI | μa | 0.721 | 0.361 | 0.690 | 0.357 | ||
μ′s | 0.816 | 0.293 | 0.812 | 0.319 | |||
Xiahui 8 | 600–1050 | Firmness | μa | 0.765 | 5.79 | 0.761 | 5.888 |
μ′s | 0.848 | 4.7 | 0.845 | 4.436 | |||
Water-soluble pectin | μa | 0.710 | 0.055 | 0.687 | 0.056 | ||
μ′s | 0.751 | 0.048 | 0.704 | 0.064 | |||
Protopectin | μa | 0.608 | 0.065 | 0.590 | 0.030 | ||
μ′s | 0.723 | 0.053 | 0.714 | 0.051 | |||
PI | μa | 0.691 | 0.453 | 0.691 | 0.565 | ||
μ′s | 0.758 | 0.413 | 0.751 | 0.449 | |||
1100–1650 | Firmness | μa | 0.684 | 5.456 | 0.668 | 8.248 | |
μ′s | 0.870 | 4.076 | 0.863 | 4.253 | |||
Water-soluble pectin | μa | 0.630 | 0.050 | 0.615 | 0.048 | ||
μ′s | 0.634 | 0.049 | 0.630 | 0.057 | |||
Protopectin | μa | 0.740 | 0.047 | 0.712 | 0.038 | ||
μ′s | 0.796 | 0.042 | 0.778 | 0.057 | |||
PI | μa | 0.738 | 0.360 | 0.709 | 0.362 | ||
μ′s | 0.835 | 0.299 | 0.802 | 0.403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ma, C.; He, H.; Tu, K.; Lan, W.; Pan, L. Effects of Changes in Pectin Constitution on Optical Properties and Firmness of Peach Flesh during Storage. Foods 2024, 13, 3042. https://doi.org/10.3390/foods13193042
Chen X, Ma C, He H, Tu K, Lan W, Pan L. Effects of Changes in Pectin Constitution on Optical Properties and Firmness of Peach Flesh during Storage. Foods. 2024; 13(19):3042. https://doi.org/10.3390/foods13193042
Chicago/Turabian StyleChen, Xiao, Chen Ma, Hongju He, Kang Tu, Weijie Lan, and Leiqing Pan. 2024. "Effects of Changes in Pectin Constitution on Optical Properties and Firmness of Peach Flesh during Storage" Foods 13, no. 19: 3042. https://doi.org/10.3390/foods13193042
APA StyleChen, X., Ma, C., He, H., Tu, K., Lan, W., & Pan, L. (2024). Effects of Changes in Pectin Constitution on Optical Properties and Firmness of Peach Flesh during Storage. Foods, 13(19), 3042. https://doi.org/10.3390/foods13193042