A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Effects, Practical Applications, and Environmental Preservation of EMFs Related to Biological Systems
3.2. EMF Mechanisms in Biological Systems
3.2.1. Magnetosensitivity
3.2.2. Cellular Biophysical Properties
3.2.3. Reactive Oxygen Species (ROS)
3.2.4. Gene Expression and Epigenetic Modifications
Mechanism | Description | Examples and Implications | References |
---|---|---|---|
Magnetosensitivity | Organisms are equipped with magnetosensitive structures that enable them to sense and react to magnetic fields. These structures enable orientation and navigation within magnetic fields and the detection of magnetic field changes. | Magnetite crystals or protein complexes act as magnetic sensors. | [85] |
Organisms can orient themselves within magnetic fields and detect changes in magnetic fields. | [45,46,47] | ||
Changes in Cellular Biophysical Properties | Magnetic fields induce electric currents in tissues and conductive fluids, influencing cellular processes. Induced currents affect ion transport, cell signaling, and the regulation of physiological processes. Localized heat generation influences metabolic activities and cellular functions. | Magnetic fields influence ion transport across cell membranes. | [64] |
They affect cell signaling and physiological regulation. | [11,12] | ||
They generate localized heat within tissues. | [86] | ||
Changes in Protein Conformation | Magnetic fields cause conformational changes in proteins, leading to modifications in their structure and function. The interaction between magnetic fields and paramagnetic centers in proteins leads to modifications in enzyme activity, ligand binding, and protein stability. | They alter enzyme activity, ligand binding, and protein stability. They impact metabolic pathways, signal transduction, and gene expression. | [61,62,63] |
Reactive Oxygen Species (ROS) Production | Biological systems experience modulation of ROS generation due to magnetic fields. ROS plays a pivotal role in cell signaling and oxidative stress. Magnetic fields influence the electron transfer processes and enzymatic activities responsible for ROS generation and elimination. | Magnetic fields modulate the production of ROS molecules. They influence cellular homeostasis and physiological processes. | [69,70,71] |
Gene Expression and Epigenetic Modifications | Magnetic fields influence gene expression and epigenetic modifications, regulating cellular functions. They modulate the expression of specific genes, leading to changes in cellular functions and phenotypic traits. Magnetic fields also impact epigenetic modifications to DNA. | They modulate gene expression patterns and cellular functions. | [78,79,81] |
They lead to long-term changes in cell behavior and phenotypic traits. | [87] |
3.3. Electromagnetic Field Interactions in Biotechnological Processes
3.3.1. Bacterial and Microalgae Processes
3.3.2. Fungal and Yeast Processes
3.4. Influence of EMFs on Cocoa Fermentation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, X.; Zhao, L.; Dong, W.; Mo, H.; Ba, T.; Li, T.; Guan, D.; Zhao, W.; Wang, N.; Ma, Z.; et al. Revealing the Mechanisms of Alkali-Based Magnetic Nanosheets Enhanced Hydrogen Production from Dark Fermentation: Comparison between Mesophilic and Thermophilic Conditions. Bioresour. Technol. 2022, 343, 126141. [Google Scholar] [CrossRef]
- de Andrade, C.M.; Cogo, A.J.D.; Perez, V.H.; dos Santos, N.F.; Okorokova-Façanha, A.L.; Justo, O.R.; Façanha, A.R. Increases of Bioethanol Productivity by S. Cerevisiae in Unconventional Bioreactor under ELF-Magnetic Field: New Advances in the Biophysical Mechanism Elucidation on Yeasts. Renew. Energy 2021, 169, 836–842. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.; Wang, M.; Zhang, Z.; Feng, Y. Enhancement of Magnetic Field on Fermentative Hydrogen Production by Clostridium Pasteurianum. Bioresour. Technol. 2021, 341, 125764. [Google Scholar] [CrossRef]
- Cheng, J.; Li, H.; Ding, L.; Zhou, J.; Song, W.; Li, Y.-Y.; Lin, R. Improving Hydrogen and Methane Co-Generation in Cascading Dark Fermentation and Anaerobic Digestion: The Effect of Magnetite Nanoparticles on Microbial Electron Transfer and Syntrophism. Chem. Eng. J. 2020, 397, 125394. [Google Scholar] [CrossRef]
- Qu, G.; Lv, P.; Cai, Y.; Tu, C.; Ma, X.; Ning, P. Enhanced Anaerobic Fermentation of Dairy Manure by Microelectrolysis in Electric and Magnetic Fields. Renew. Energy 2020, 146, 2758–2765. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, Y.; Sasmal, S. Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Curr. Microbiol. 2022, 79, 395. [Google Scholar] [CrossRef]
- Li, C.; Hu, Z.; Gao, Y.; Ma, Y.; Pan, X.; Li, X.; Liu, S.; Chu, B. Bioeffects of Static Magnetic Fields on the Growth and Metabolites of C. Pyrenoidosa and T. Obliquus. J. Biotechnol. 2022, 351, 1–8. [Google Scholar] [CrossRef]
- Tang, H.; Wang, P.; Wang, H.; Fang, Z.; Yang, Q.; Ni, W.; Sun, X.; Liu, H.; Wang, L.; Zhao, G.; et al. Effect of Static Magnetic Field on Morphology and Growth Metabolism of Flavobacterium Sp. M1-14. Bioprocess Biosyst. Eng. 2019, 42, 1923–1933. [Google Scholar] [CrossRef]
- Santini, S.J.; Cordone, V.; Falone, S.; Mijit, M.; Tatone, C.; Amicarelli, F.; Di Emidio, G. Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxidative Med. Cell. Longev. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Morabito, C.; Rovetta, F.; Bizzarri, M.; Mazzoleni, G.; Fanò, G.; Mariggiò, M.A. Modulation of Redox Status and Calcium Handling by Extremely Low Frequency Electromagnetic Fields in C2C12 Muscle Cells: A Real-Time, Single-Cell Approach. Free. Radic. Biol. Med. 2010, 48, 579–589. [Google Scholar] [CrossRef]
- Zablotskii, V.; Polyakova, T.; Lunov, O.; Dejneka, A. How a High-Gradient Magnetic Field Could Affect Cell Life. Sci. Rep. 2016, 6, 37407. [Google Scholar] [CrossRef]
- Zablotskii, V.; Polyakova, T.; Dejneka, A. Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells 2021, 11, 81. [Google Scholar] [CrossRef]
- Rashidieh, B.; Madjid Ansari, A.; Behdani, M.; Darvishi, B.; Habibi-Anbouhi, M. Extremely Low Frequency Magnetic Field Enhances Expression of a Specific Recombinant Protein in Bacterial Host. Anal. Biochem. 2022, 652, 114745. [Google Scholar] [CrossRef]
- Consensus AI Consensus NLP. Available online: https://consensus.app/search/ (accessed on 3 September 2024).
- Canvas. Canvas. Available online: https://www.canvas.com (accessed on 3 September 2024).
- Microsoft Bing Image Creator AI. Available online: https://www.bing.com/images/create (accessed on 3 September 2024).
- Yang, B.; Yu, Q.; Zhang, Y. Applying Dynamic Magnetic Field to Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. Environ. Sci. Technol. 2023, 57, 2138–2148. [Google Scholar] [CrossRef]
- Ermolaeva, S.A.; Parfenov, V.A.; Karalkin, P.A.; Khesuani, Y.D.; Domnin, P.A. Experimentally Created Magnetic Force in Microbiological Space and On-Earth Studies: Perspectives and Restrictions. Cells 2023, 12, 338. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; dos Santos, A.F.A.; Cardoso, B.A.; da Silva Santos, T.S.; de Campos-Takaki, G.M.; Porto, T.S.; Porto, C.S. Production, Kinetic/Thermodynamic Study, and Evaluation of the Influence of Static Magnetic Field on Kinetic Parameters of β-Fructofuranosidase from Aspergillus Tamarii Kita UCP 1279 Produced by Solid-State Fermentation. BioTech 2023, 12, 21. [Google Scholar] [CrossRef]
- Gholamian-Hamadan, M.; Behzad, M.; Molaei, S.; Zarei Ghane, Z.; Talebi-Ghane, E.; Zamani, A. Effect of 50-Hz Magnetic Fields on the Expression of Activation-Induced Deaminase, B-Cell Lymphoma 6 and Serum Levels of Interleukin-6, Interleukin-21. Int. J. Radiat. Biol. 2023, 99, 1456–1462. [Google Scholar] [CrossRef]
- Mshenskaya, N.S.; Grinberg, M.A.; Kalyasova, E.A.; Vodeneev, V.A.; Ilin, N.V.; Slyunyaev, N.N.; Mareev, E.A.; Sinitsyna, Y.V. The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants. Plants 2023, 12, 826. [Google Scholar] [CrossRef]
- Fei, F.; Zhang, P.; Li, X.; Wang, S.; Feng, E.; Wan, Y.; Xie, C. Effect of Static Magnetic Field on Marine Mollusc Elysia Leucolegnote. Front. Mol. Biosci. 2023, 9, 1103648. [Google Scholar] [CrossRef]
- Kozyrskiy, V.V.; Savchenko, V.V.; Sinyavskiy, A.Y. Pre-Sowing Treatment of Leguminous Crop Seeds with a Magnetic Field. Agric. Mach. Technol. 2019, 13, 21–26. [Google Scholar] [CrossRef]
- Saletnik, B.; Saletnik, A.; Słysz, E.; Zaguła, G.; Bajcar, M.; Puchalska-Sarna, A.; Puchalski, C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022, 27, 5823. [Google Scholar] [CrossRef]
- El-Shafik El-Zawily, A.; Meleha, M.; El-Sawy, M.; El-Attar, E.-H.; Bayoumi, Y.; Alshaal, T. Application of Magnetic Field Improves Growth, Yield and Fruit Quality of Tomato Irrigated Alternatively by Fresh and Agricultural Drainage Water. Ecotoxicol. Environ. Saf. 2019, 181, 248–254. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; Hu, S.; Han, T.; He, S.; Zhang, G.; He, M.; Lin, X. Bioeffect of Static Magnetic Field on Photosynthetic Bacteria: Evaluation of Bioresources Production and Wastewater Treatment Efficiency. Water Environ. Res. 2020, 92, 1131–1141. [Google Scholar] [CrossRef]
- Madondo, N.I.; Kweinor Tetteh, E.; Rathilal, S.; Bakare, B.F. Effect of an Electromagnetic Field on Anaerobic Digestion: Comparing an Electromagnetic System (ES), a Microbial Electrolysis System (MEC), and a Control with No External Force. Molecules 2022, 27, 3372. [Google Scholar] [CrossRef]
- Ferrada, P.; Rodríguez, S.; Serrano, G.; Miranda-Ostojic, C.; Maureira, A.; Zapata, M. An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications. Appl. Sci. 2020, 10, 531. [Google Scholar] [CrossRef]
- Anaya, M.; Gámez-Espinosa, E.; Valdés, O.; Guzmán, T.; Borrego, S. Effect of the Oscillating Magnetic Field on Airborne Fungal. Arch. Microbiol. 2021, 203, 2139–2145. [Google Scholar] [CrossRef]
- Jancik-Prochazkova, A.; Mayorga-Martinez, C.C.; Vyskočil, J.; Pumera, M. Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal. ACS Appl. Mater. Interfaces 2022, 14, 45545–45552. [Google Scholar] [CrossRef]
- Tan, K.-J.; Morikawa, S.; Phillips, K.R.; Ozbek, N.; Hatton, T.A. Redox-Active Magnetic Composites for Anionic Contaminant Removal from Water. ACS Appl. Mater. Interfaces 2022, 14, 8974–8983. [Google Scholar] [CrossRef]
- Mansouri, A.; Abbes, C.; Landoulsi, A. Combined Intervention of Static Magnetic Field and Growth Rate of Microbacterium Maritypicum CB7 for Benzo (a) Pyrene Biodegradation. Microb. Pathog. 2017, 113, 40–44. [Google Scholar] [CrossRef]
- Tan, L.; Mu, G.; Shao, Y.; Ning, S.; Shi, S. Combined Enhancement Effects of Static Magnetic Field (SMF) and a Yeast Candida tropicalis SYF-1 on Continuous Treatment of Acid Red B by Activated Sludge under Hypersaline Conditions. J. Chem. Technol. Biotechnol. 2020, 95, 840–849. [Google Scholar] [CrossRef]
- Saletnik, B.; Zaguła, G.; Saletnik, A.; Bajcar, M.; Słysz, E.; Puchalski, C. Effect of Magnetic and Electrical Fields on Yield, Shelf Life and Quality of Fruits. Appl. Sci. 2022, 12, 3183. [Google Scholar] [CrossRef]
- Kang, T.; Her, J.-Y.; Hoptowit, R.; Wall, M.M.; Jun, S. Investigation of the Effect of Oscillating Magnetic Field on Fresh-Cut Pineapple and Agar Gel as a Model Food during Supercooling Preservation. Trans ASABE 2019, 62, 1155–1161. [Google Scholar] [CrossRef]
- Costantini, E.; Sinjari, B.; D’Angelo, C.; Murmura, G.; Reale, M.; Caputi, S. Human Gingival Fibroblasts Exposed to Extremely Low-Frequency Electromagnetic Fields: In Vitro Model of Wound-Healing Improvement. Int. J. Mol. Sci. 2019, 20, 2108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.W.; Graham, K.; Prato, F.S.; McKay, J.; Forster, P.M.; Moulin, D.E.; Chari, S. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial Using a Low-Frequency Magnetic Field in the Treatment of Musculoskeletal Chronic Pain. Pain Res. Manag. 2007, 12, 249–258. [Google Scholar] [CrossRef]
- Vidal-Dourado, M.; Conforto, A.B.; Caboclo, L.O.S.F.; Scaff, M.; Guilhoto, L.M.D.F.F.; Yacubian, E.M.T. Magnetic Fields in Noninvasive Brain Stimulation. Neuroscientist 2014, 20, 112–121. [Google Scholar] [CrossRef]
- Paolucci, T.; Pezzi, L.; Centra, A.M.; Giannandrea, N.; Bellomo, R.G.; Saggini, R. Electromagnetic Field Therapy: A Rehabilitative Perspective in the Management of Musculoskeletal Pain—A Systematic Review. J. Pain Res. 2020, 13, 1385–1400. [Google Scholar] [CrossRef]
- Ercan, I.; Tombuloglu, H.; Alqahtani, N.; Alotaibi, B.; Bamhrez, M.; Alshumrani, R.; Ozcelik, S.; Kayed, T.S. Magnetic Field Effects on the Magnetic Properties, Germination, Chlorophyll Fluorescence, and Nutrient Content of Barley (Hordeum vulgare L.). Plant Physiol. Biochem. 2022, 170, 36–48. [Google Scholar] [CrossRef]
- Ben Yakir-Blumkin, M.; Loboda, Y.; Schächter, L.; Finberg, J.P.M. Static Magnetic Field Exposure In Vivo Enhances the Generation of New Doublecortin-Expressing Cells in the Sub-Ventricular Zone and Neocortex of Adult Rats. Neuroscience 2020, 425, 217–234. [Google Scholar] [CrossRef]
- Chen, L.; Ye, A.; Liu, X.; Lu, J.; Xie, Q.; Guo, Y.; Sun, W. Combined Effect of Co-Exposure to Di (2-Ethylhexyl) Phthalates and 50-Hz Magnetic-Fields on Promoting Human Amniotic Cells Proliferation. Ecotoxicol. Environ. Saf. 2021, 224, 112704. [Google Scholar] [CrossRef]
- Kyriacou, C.P.; Rosato, E. Genetic Analysis of Cryptochrome in Insect Magnetosensitivity. Front. Physiol. 2022, 13, 928416. [Google Scholar] [CrossRef]
- Monteil, C.L.; Lefevre, C.T. Magnetoreception in Microorganisms. Trends Microbiol. 2020, 28, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Warrant, E.J. Unravelling the Enigma of Bird Magnetoreception. Nature 2021, 594, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Naisbett-Jones, L.C.; Putman, N.F.; Scanlan, M.M.; Noakes, D.L.G.; Lohmann, K.J. Magnetoreception in Fishes: The Effect of Magnetic Pulses on Orientation of Juvenile Pacific Salmon. J. Exp. Biol. 2020, 223, jeb222091. [Google Scholar] [CrossRef] [PubMed]
- Begall, S.; Malkemper, E.P.; Červený, J.; Němec, P.; Burda, H. Magnetic Alignment in Mammals and Other Animals. Mamm. Biol. 2013, 78, 10–20. [Google Scholar] [CrossRef]
- Alphandéry, E. Applications of Magnetotactic Bacteria and Magnetosome for Cancer Treatment: A Review Emphasizing on Practical and Mechanistic Aspects. Drug Discov. Today 2020, 25, 1444–1452. [Google Scholar] [CrossRef]
- Rosso, G.; Young, P.; Shahin, V. Mechanosensitivity of Embryonic Neurites Promotes Their Directional Extension and Schwann Cells Progenitors Migration. Cell. Physiol. Biochem. 2017, 44, 1263–1270. [Google Scholar] [CrossRef]
- Clites, B.L.; Pierce, J.T. Identifying Cellular and Molecular Mechanisms for Magnetosensation. Annu. Rev. Neurosci. 2017, 40, 231–250. [Google Scholar] [CrossRef]
- Xing, W.; Hu, H.; Zhang, Y.; Zhao, D.; Wang, W.; Pan, H.; Zhang, S.; Yan, L. Magnetotactic Bacteria Diversity of and Magnetism Contribution to Sediment in Wudalianchi Volcanic Barrier Lakes, NE China. Sci. Total Environ. 2020, 718, 137348. [Google Scholar] [CrossRef]
- Barbic, M. Possible Magneto-Mechanical and Magneto-Thermal Mechanisms of Ion Channel Activation in Magnetogenetics. Elife 2019, 8, e45807. [Google Scholar] [CrossRef]
- Natan, E.; Vortman, Y. The Symbiotic Magnetic-Sensing Hypothesis: Do Magnetotactic Bacteria Underlie the Magnetic Sensing Capability of Animals? Mov. Ecol. 2017, 5, 22. [Google Scholar] [CrossRef]
- Natan, E.; Fitak, R.R.; Werber, Y.; Vortman, Y. Correction to ‘Symbiotic Magnetic Sensing: Raising Evidence and Beyond’. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20200348. [Google Scholar] [CrossRef] [PubMed]
- Parigi, G.; Ravera, E.; Luchinat, C. Paramagnetic Effects in NMR for Protein Structures and Ensembles: Studies of Metalloproteins. Curr. Opin. Struct. Biol. 2022, 74, 102386. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.M.; Wang, M.; Polenova, T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. In Protein NMR: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–35. [Google Scholar]
- Han, Z.; Cai, M.; Cheng, J.-H.; Sun, D.-W. Effects of Electric Fields and Electromagnetic Wave on Food Protein Structure and Functionality: A Review. Trends Food Sci. Technol. 2018, 75, 1–9. [Google Scholar] [CrossRef]
- Noble, B.B.; Todorova, N.; Yarovsky, I. Electromagnetic Bioeffects: A Multiscale Molecular Simulation Perspective. Phys. Chem. Chem. Phys. 2022, 24, 6327–6348. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Chen, S.; Wang, X.; Zhong, L. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence. Int. J. Mol. Sci. 2016, 17, 1130. [Google Scholar] [CrossRef] [PubMed]
- Wasak, A.; Drozd, R.; Jankowiak, D.; Rakoczy, R. Rotating Magnetic Field as Tool for Enhancing Enzymes Properties—Laccase Case Study. Sci. Rep. 2019, 9, 3707. [Google Scholar] [CrossRef]
- van den Noort, M.; de Boer, M.; Poolman, B. Stability of Ligand-Induced Protein Conformation Influences Affinity in Maltose-Binding Protein. J. Mol. Biol. 2021, 433, 167036. [Google Scholar] [CrossRef]
- Emamdadi, N.; Gholizadeh, M.; Housaindokht, M.R. Investigation of Static Magnetic Field Effect on Horseradish Peroxidase Enzyme Activity and Stability in Enzymatic Oxidation Process. Int. J. Biol. Macromol. 2021, 170, 189–195. [Google Scholar] [CrossRef]
- Stenström, O.; Diehl, C.; Modig, K.; Akke, M. Ligand-Induced Protein Transition State Stabilization Switches the Binding Pathway from Conformational Selection to Induced Fit. Proc. Natl. Acad. Sci. USA 2024, 121, e2317747121. [Google Scholar] [CrossRef]
- Rubio Ayala, M.; Syrovets, T.; Hafner, S.; Zablotskii, V.; Dejneka, A.; Simmet, T. Spatiotemporal Magnetic Fields Enhance Cytosolic Ca 2+ Levels and Induce Actin Polymerization via Activation of Voltage-Gated Sodium Channels in Skeletal Muscle Cells. Biomaterials 2018, 163, 174–184. [Google Scholar] [CrossRef]
- Kroupová, J.; Bártová, E.; Fojt, L.; Strašák, L.; Kozubek, S.; Vetterl, V. Low-Frequency Magnetic Field Effect on Cytoskeleton and Chromatin. Bioelectrochemistry 2007, 70, 96–100. [Google Scholar] [CrossRef]
- Wu, X.; Du, J.; Song, W.; Cao, M.; Chen, S.; Xia, R. Weak Power Frequency Magnetic Fields Induce Microtubule Cytoskeleton Reorganization Depending on the Epidermal Growth Factor Receptor and the Calcium Related Signaling. PLoS ONE 2018, 13, e0205569. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Z.-Y.; Yang, C.-J.; Lian, H.-Y.; Cai, P. Gene Expression and Reproductive Abilities of Male Drosophila Melanogaster Subjected to ELF–EMF Exposure. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013, 758, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X. Magnetic Fields and Reactive Oxygen Species. Int. J. Mol. Sci. 2017, 18, 2175. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yu, B.; Song, C.; Wang, J.; Zhang, L.; Ji, X.; Wang, Y.; Fang, Y.; Liao, Z.; Wei, M.; et al. Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells 2022, 11, 443. [Google Scholar] [CrossRef]
- Roy, Z.; Bansal, R.; Siddiqui, L.; Chaudhary, N. Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases. Curr. Pharm. Biotechnol. 2023, 24, 1265–1276. [Google Scholar] [CrossRef]
- Luo, X.; Chen, M.; Duan, Y.; Duan, W.; Zhang, H.; He, Y.; Yin, C.; Sun, G.; Sun, X. Chemoprotective Action of Lotus Seedpod Procyanidins on Oxidative Stress in Mice Induced by Extremely Low-Frequency Electromagnetic Field Exposure. Biomed. Pharmacother. 2016, 82, 640–648. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Shi, Z. Effect of Extremely Low Frequency Electromagnetic Field on the Pathogenicity of Magnaporthe Oryzae. Sci. Total Environ. 2023, 870, 161939. [Google Scholar] [CrossRef]
- Sola-Leyva, A.; Jabalera, Y.; Chico-Lozano, M.A.; Carrasco-Jiménez, M.P.; Iglesias, G.R.; Jimenez-Lopez, C. Reactive Oxygen Species (ROS) Production in HepG2 Cancer Cell Line through the Application of Localized Alternating Magnetic Field. J. Mater. Chem. B 2020, 8, 7667–7676. [Google Scholar] [CrossRef]
- Sharpe, M.A.; Baskin, D.S.; Pichumani, K.; Ijare, O.B.; Helekar, S.A. Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells. Front. Oncol. 2021, 11, 768758. [Google Scholar] [CrossRef]
- Zadeh-Haghighi, H.; Simon, C. Magnetic Field Effects in Biology from the Perspective of the Radical Pair Mechanism. J. R. Soc. Interface 2022, 19, 20220325. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Dawood, M.F.A.; Hassanpour, H.; Rezayian, M.; Younes, N.A. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. Biology 2020, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Guo, X.; Dai, C.; Zhou, Z.; Sun, H.; Zhong, Y.; Sheng, H.; Zhang, C.; Yao, J. Magnetically Boosted Generation of Intracellular Reactive Oxygen Species toward Magneto-Photodynamic Therapy. J. Phys. Chem. B 2022, 126, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.K.; Galland, P. Effects of Weak Static Magnetic Fields on the Gene Expression of Seedlings of Arabidopsis thaliana. J. Plant Physiol. 2018, 231, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ortner, V.; Kaspar, C.; Halter, C.; Töllner, L.; Mykhaylyk, O.; Walzer, J.; Günzburg, W.H.; Dangerfield, J.A.; Hohenadl, C.; Czerny, T. Magnetic Field-Controlled Gene Expression in Encapsulated Cells. J. Control. Release 2012, 158, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Kimsa-Dudek, M.; Synowiec-Wojtarowicz, A.; Krawczyk, A.; Kruszniewska-Rajs, C.; Gola, J. A Static Magnetic Field Changes the Expression Profile of the Transforming Growth Factor β Family Genes in Human Cells That Have Been Treated with Fluoride Ions. Cytokine 2021, 143, 155537. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Li, S.; Zhang, X.; Zhang, X.; Ma, F. Productivity of γ-Linoleic Acid by Oleaginous Fungus Cunninghamella Echinulata Using a Pulsed High Magnetic Field. Food Biosci. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Giorgi, G.; Del Re, B. Epigenetic Dysregulation in Various Types of Cells Exposed to Extremely Low-Frequency Magnetic Fields. Cell Tissue Res. 2021, 386, 1–15. [Google Scholar] [CrossRef]
- Consales, C.; Cirotti, C.; Filomeni, G.; Panatta, M.; Butera, A.; Merla, C.; Lopresto, V.; Pinto, R.; Marino, C.; Benassi, B. Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the MiR-34b/c in Neuronal Cells. Mol. Neurobiol. 2018, 55, 5698–5714. [Google Scholar] [CrossRef]
- Giorgi, G.; Pirazzini, C.; Bacalini, M.G.; Giuliani, C.; Garagnani, P.; Capri, M.; Bersani, F.; Del Re, B. Assessing the Combined Effect of Extremely Low-Frequency Magnetic Field Exposure and Oxidative Stress on LINE-1 Promoter Methylation in Human Neural Cells. Radiat. Environ. Biophys. 2017, 56, 193–200. [Google Scholar] [CrossRef]
- Li, T.L.; Wang, Z.; You, H.; Ong, Q.; Varanasi, V.J.; Dong, M.; Lu, B.; Paşca, S.P.; Cui, B. Engineering a Genetically Encoded Magnetic Protein Crystal. Nano Lett. 2019, 19, 6955–6963. [Google Scholar] [CrossRef] [PubMed]
- Rahpeima, R.; Lin, C.-A. Numerical Study of Magnetic Hyperthermia Ablation of Breast Tumor on an Anatomically Realistic Breast Phantom. PLoS ONE 2022, 17, e0274801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xuanyuan, X.; Lv, X.; Wang, J.; Feng, K.; Chen, C.; Ma, J.; Xing, D. Mechanisms of Magnetic Sensing and Regulating Extracellular Electron Transfer of Electroactive Bacteria under Magnetic Fields. Sci. Total Environ. 2023, 895, 165104. [Google Scholar] [CrossRef]
- Chen, S.; Jin, Y.; Yang, N.; Wei, L.; Xu, D.; Xu, X. Improving Microbial Production of Value-Added Products through the Intervention of Magnetic Fields. Bioresour. Technol. 2024, 393, 130087. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Tsao, C.-Y.; Quan, D.N.; Li, Y.; Mei, L.; Zhang, J.; Zhang, B.; Liu, Y.; Bentley, W.E.; Payne, G.F.; et al. An Immune Magnetic Nano-Assembly for Specifically Amplifying Intercellular Quorum Sensing Signals. Colloids Surf. B Biointerfaces 2018, 172, 197–206. [Google Scholar] [CrossRef]
- Guzmán-Armenteros, T.M.; Ramos-Guerrero, L.A.; Guerra, L.S.; Ruales, J. Optimization of Cacao Beans Fermentation by Native Species and Electromagnetic Fields. Heliyon 2023, 9, e15065. [Google Scholar] [CrossRef]
- Guzmán-Armenteros, T.M.; Ruales, J.; Cuesta-Plúa, C.; Bravo, J.; Sinche, M.; Vera, E.; Vera, E.; Vargas-Jentzsch, P.; Ciobotă, V.; Ortega-Ojeda, F.E.; et al. Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation. Foods 2023, 12, 3924. [Google Scholar] [CrossRef]
- Agyirifo, D.S.; Wamalwa, M.; Otwe, E.P.; Galyuon, I.; Runo, S.; Takrama, J.; Ngeranwa, J. Metagenomics Analysis of Cocoa Bean Fermentation Microbiome Identifying Species Diversity and Putative Functional Capabilities. Heliyon 2019, 5, e02170. [Google Scholar] [CrossRef]
- Figueroa-Hernández, C.; Mota-Gutierrez, J.; Ferrocino, I.; Hernández-Estrada, Z.J.; González-Ríos, O.; Cocolin, L.; Suárez-Quiroz, M.L. The Challenges and Perspectives of the Selection of Starter Cultures for Fermented Cocoa Beans. Int. J. Food Microbiol. 2019, 301, 41–50. [Google Scholar] [CrossRef]
- Subroto, E.; Djali, M.; Indiarto, R.; Lembong, E.; Baiti, N. Microbiological Activity Affects Post-Harvest Quality of Cocoa (Theobroma cacao L.) Beans. Horticulturae 2023, 9, 805. [Google Scholar] [CrossRef]
- Apriyanto, M. Changes in Chemical Properties of Dreid Cocoa (Theobroma cacao) Beans during Fermentation. Int. J. Ferment. Foods 2016, 5, 11. [Google Scholar] [CrossRef]
- Guzmán-Armenteros, T.M.; Villacís-Chiriboga, J.; Guerra, L.S.; Ruales, J. Electromagnetic Fields Effects on Microbial Growth in Cocoa Fermentation: A Controlled Experimental Approach Using Established Growth Models. Heliyon 2024, 10, e24927. [Google Scholar] [CrossRef]
- Guzmán-Armenteros, T.M.; Ruales, J.; Villacís-Chiriboga, J.; Guerra, L.S. Experimental Prototype of Electromagnetic Emissions for Biotechnological Research: Monitoring Cocoa Bean Fermentation Parameters. Foods 2023, 12, 2539. [Google Scholar] [CrossRef] [PubMed]
- Sudarti, S.; Hariyati, Y.; Sari, A.B.T.; Sumardi, S.; Muldayani, W. Fermentation Process of Dry Cocoa Beans through Extremely Low Frequency (ELF) Magnetic Field Exposure. J. Penelit. Pendidik. IPA 2022, 8, 584–591. [Google Scholar] [CrossRef]
- Samaniego, I.; Espín, S.; Quiroz, J.; Rosales, C.; Carrillo, W.; Mena, P.; García-Viguera, C. Effect of the Growing Area on the Fat Content and the Fatty Acid Composition of Ecuadorian Cocoa Beans. Int. J. Food Sci. Nutr. 2021, 72, 901–911. [Google Scholar] [CrossRef]
- Niikoi Kotey, R.; Asomaning Odoom, D.; Kumah, P.; Oppong Akowuah, J.; Fobi Donkor, E.; Kwatei Quartey, E.; Kofi Sam, E.; Owusu-Kwarteng, J.; Gyasi Santo, K.; Kwami-Adala, F.; et al. Effects of Fermentation Periods and Drying Methods on Postharvest Quality of Cocoa (Theobroma cacao) Beans in Ghana. J. Food Qual. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
Biological System | Effects and Applications | References |
---|---|---|
Microorganisms | Modulation of microbial growth rates, metabolic activity, and enzymatic processes. Modulation of microbial metabolism for valuable metabolites’ production, biotechnology, and industrial processes. Electromagnetic field-assisted bioremediation techniques for efficient pollutant degradation. | [1,2,3,4,5,6,7,8,32] |
Plants and Fruits | Accelerated seed germination and enhanced root growth. Increased crop yield and improved agricultural practices. Post-harvest preservation and quality enhancement of fruits. Extension of fruit shelf life and reduction in spoilage. | [23,25,34,35] |
Human Cells and Therapy | Promotion of tissue regeneration and wound healing. Alleviation of pain and inflammation. Non-invasive and targeted therapies as alternatives to traditional treatment modalities. | [36,37,38] |
Industrial Production | Optimization of fermentation processes for cost-effective and sustainable production of commodities. Enhancement of efficiency and yield in various industrial fermentation processes. | [1,2,3,4,5,6,7,8] |
Environmental Preservation | Remediation of contaminated sites through electromagnetic field-assisted bioremediation techniques. Mitigation of the harmful effects of pollutants in soil, water, and air. Preservation of ecological integrity and natural habitats. | [30,31,32,33] |
Category | Frequency (Hz) | Field Density (mT) | Exposure Time | Example and Reference |
---|---|---|---|---|
Plants | Range from extremely low frequency (ELF) to radiofrequency (RF) ranges. ELFs: from 1 to 300 Hz. RFs: from kHz to GHz. | The ELF or SMF fields can be used depending on the study (0.1 to around 300 mT) | From a few minutes to several days or even weeks. Short-term exposures of a few hours are common, but some studies involve longer-term exposures of 24 h or more. | Biological System: Hordeum vulgare L. Frequency: SMF (0 Hz) Density: 250 mT Exposure Time: 4 days [40] |
Animals | Range from ELF to RF Reports: 50 Hz, 60 Hz, 900 MHz, and 2.45 GHz. | Depending on the study, from fractions of a μT to several mT. | Can vary widely based on the research objectives. Short-term exposures can be as brief as a few hours, while long-term studies might extend over several weeks or even months. Common exposure durations include 24 h, 48 h, and 7 days. | Biological System: Rat brain Frequency: ELF (50–60 Hz) Density: 4.3 or 12.9 mT Exposure Time: 21 days [41] |
Human cells | Range from ELF to RF. Reports: 50 Hz, 60 Hz, 900 MHz, and 2.45 GHz. | From mT or μT for ELF fields. For radio frequency EMFs, a specific absorption rate (SAR) is used, measured in watts per kilogram (W/kg). From fractions of a μT to several mT for ELF fields. SAR values range from a few mW/kg to higher values for RF fields. | Based on research objectives and safety considerations. Short-term exposures can be as brief as a few minutes to an hour, while longer-term studies might extend over several hours. Common exposure durations include 15 min, 30 min, and 1 h for short-term studies, and up to 24 h for longer-term studies. | Biological System: Human amniotic (FL) cells Frequency: ELF 50 Hz Density: 0.2 or 0.4 mT Exposure Time: 1 or 24 h [42] |
Fermentation Processes | Wide range. ELF range: around 50–60 Hz due to their potential biological effects and ease of generation. | Based on the type of fermentation process and the specific objectives of the study. For ELF fields, densities might range from a fraction of a μT to several μT. | Short-term exposures might last from minutes to hours, while longer-term studies could extend throughout the fermentation process, which can range from several hours to days or even weeks. | Biological System: Bioethanol production by S. cerevisiae Frequency: ELF (50–60 Hz) Density: 10 mT Exposure Time: 2 h [2] |
Microorganisms | Range from ELF to RF. ELFs: 50–60 Hz. RFs: microwaves (900 MHz, 2.45 GHz) | From fractions of μT to several T for ELF fields. | From a few minutes to several hours, while longer-term studies could extend over multiple hours or even days. Common exposure durations include 15 min, 30 min, 1 h, and up to 24 h. | Biological System: Airborne fungi Frequency: ELF (50–60 Hz) Density: 5 mT Exposure Time: 2 h [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Armenteros, T.M.; Ruales, J.; Ramos-Guerrero, L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024, 13, 3058. https://doi.org/10.3390/foods13193058
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods. 2024; 13(19):3058. https://doi.org/10.3390/foods13193058
Chicago/Turabian StyleGuzmán-Armenteros, Tania María, Jenny Ruales, and Luis Ramos-Guerrero. 2024. "A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation" Foods 13, no. 19: 3058. https://doi.org/10.3390/foods13193058
APA StyleGuzmán-Armenteros, T. M., Ruales, J., & Ramos-Guerrero, L. (2024). A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods, 13(19), 3058. https://doi.org/10.3390/foods13193058