Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Wine for the Trial
2.2. Protective Colloid Treatments
2.3. General and Polyphenolic Analyses of the Wines
2.4. Tests for Determining Tartrate Salt Stability in Wines
2.4.1. Mini-Contact Test
2.4.2. Abguéguen and Boulton Test
2.5. Soluble Polysaccharide Contents and Protective Colloid GPC Profiles
2.5.1. Wine-Soluble Polysaccharide Profiles
2.5.2. GPC Profiles of the Protective Colloids
2.6. Sensory Analysis
2.6.1. Intensity of Astringency by Descriptive Analysis
2.6.2. Astringency Temporal Profiles
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Protective Colloids on the Color and Chemical Composition of Treated Wines
3.1.1. Impact of Protective Colloids on the General Parameters of Wine
3.1.2. Influence of Protective Colloids on the Color and Phenolic Composition of Wines
3.2. Effect of Protective Colloids on the Tartaric Salt Stability in Wines
3.3. GPC Profiles of the Employed Protective Colloids
3.4. Precipitable Colloid Analysis of Wines
3.5. Astringency Sensory Evaluation
3.5.1. Astringency Intensity
3.5.2. Astringency TDS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). Annual Assessment of the World Vine and Wine Sector in 2022; OIV: Dijon, France, 2023. [Google Scholar]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. The Physical and Chemical Stability of Wine. In Principles and Practices of Winemaking; Springer: Boston, MA, USA, 1999; pp. 320–351. [Google Scholar]
- Cabrita, M.J.; Garcia, R.; Catarino, S. Recent Developments in Wine Tartaric Stabilization. In Recent Advances in Wine Stabilization and Conservation Technologies; Jordao, A.M., Cosme, F., Eds.; Nova Science Publishers: New York, NY, USA, 2016; ISBN 978-1-63484-883-1. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Organic Acids in Wine. In Handbook of Enology; Wiley: Chinchester, UK, 2006; pp. 1–49. [Google Scholar]
- Tchouakeu Betnga, P.F.; Longo, E.; Poggesi, S.; Boselli, E. Effects of Transport Conditions on the Stability and Sensory Quality of Wines. OENO One 2021, 55, 197–208. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.P.; Bautista-Ortín, A.B.; Durant, V.; Gómez-Plaza, E. Evaluating Alternatives to Cold Stabilization in Wineries: The Use of Carboxymethyl Cellulose, Potassium Polyaspartate, Electrodialysis and Ion Exchange Resins. Foods 2020, 9, 1275. [Google Scholar] [CrossRef] [PubMed]
- Bosso, A.; Guaita, M.; Messina, S.; Motta, S.; Casini, F.; Volpini, A.; Manara, M. Adjuvants and Additives for the Colloidal Stabilization of Red Wines without the Use of Cold. BIO Web Conf. 2023, 56, 02009. [Google Scholar] [CrossRef]
- Payan, C.; Gancel, A.L.; Jourdes, M.; Christmann, M.; Teissedre, P.L. Wine Acidification Methods: A Review. OENO One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- Lasanta, C.; Gómez, J. Tartrate Stabilization of Wines. Trends Food Sci. Technol. 2012, 28, 52–59. [Google Scholar] [CrossRef]
- Bosso, A.; Franceschi, D.; Bosso, A.; Salmaso, D.; De Faveri, E.; Guaita, M.; Franceschi, D. The Use of Carboxymethylcellulose for the Tartaric Stabilization of White Wines, in Comparison with Other Oenological Additives. Vitis 2010, 49, 95–99. [Google Scholar]
- Bosso, A.; Motta, S.; Panero, L.; Lucini, S.; Guaita, M. Use of Potassium Polyaspartate for Stabilization of Potassium Bitartrate in Wines: Influence on Colloidal Stability and Interactions with Other Additives and Enological Practices. J. Food Sci. 2020, 85, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Lankhorst, P.P.; Voogt, B.; Tuinier, R.; Lefol, B.; Pellerin, P.; Virone, C. Prevention of Tartrate Crystallization in Wine by Hydrocolloids: The Mechanism Studied by Dynamic Light Scattering. J. Agric. Food Chem. 2017, 65, 8923–8929. [Google Scholar] [CrossRef]
- Lubbers, S.; Leger, B.; Charpentier, C.; Feuillat, M. Effet Colloide-Protecteur d’extraits de Parois de Levures Sur La Stabilité Tartrique d’une Solution Hydro-Alcoolique Modele. J. Int. Des Sci. De La Vigne Et Du Vin 1993, 27, 13–22. [Google Scholar] [CrossRef]
- Cosme, F.; Filipe-Ribeiro, L.; Coixão, A.; Bezerra, M.; Nunes, F.M. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods 2024, 13, 1880. [Google Scholar] [CrossRef]
- Pellerin, P.; Doco, T.; Scollary, G.R. The Influence of Wine Polymers on the Spontaneous Precipitation of Calcium Tartrate in a Model Wine Solution. Int. J. Food Sci. Technol. 2013, 48, 2676–2682. [Google Scholar] [CrossRef]
- Fioschi, G.; Prezioso, I.; Sanarica, L.; Pagano, R.; Bettini, S.; Paradiso, V.M. Carrageenan as Possible Stabilizer of Calcium Tartrate in Wine. Food Hydrocoll. 2024, 157, 110403. [Google Scholar] [CrossRef]
- Philipp, C.; Strauss, M.; Eder, R. Stabilisierung von Unechtem Weinstein (Calciumtartrat) Mittels Kaliumpolyaspartat Im Vergleich Zur Stabilisierung Mit Metaweinsäure Und Carboxymethylcellulose in Österreichischen Weib- Und Rotweinen. Mitteilungen Klosterneubg. 2022, 72, 258–270. [Google Scholar]
- Lei, X.; Zhu, Y.; Wang, X.; Zhao, P.; Liu, P.; Zhang, Q.; Chen, T.; Yuan, H.; Guo, Y. Wine Polysaccharides Modulating Astringency through the Interference on Interaction of Flavan-3-Ols and BSA in Model Wine. Int. J. Biol. Macromol. 2019, 139, 896–903. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Zhao, P.; Du, G.; Sun, X.; Wang, X. The Role of Arabic Gum on Astringency by Modulating the Polyphenol Fraction-Protein Reaction in Model Wine. Food Chem 2023, 417, 135927. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Red Winemaking. In Handbook of Enology; Wiley: Chinchester, UK, 2005; pp. 327–395. [Google Scholar]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis, 2022nd ed.; OIV: Paris, France, 2022; Volume 1, ISBN 978-2-85038-052-5. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic Compounds. In Handbook of Enology; Wiley: Chinchester, UK, 2006; pp. 141–203. [Google Scholar]
- Sarneckis, C.J.; Dambergs, R.G.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P.A. Quantification of Condensed Tannins by Precipitation with Methyl Cellulose: Development and Validation of an Optimised Tool for Grape and Wine Analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Abguéguen, O.; Boulton, R.B. The Crystallization Kinetics of Calcium Tartrate from Model Solutions and Wines. Am. J. Enol. Vitic. 1993, 44, 65–75. [Google Scholar] [CrossRef]
- Gil i Cortiella, M.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, Á. Chemical, Physical, and Sensory Attributes of Sauvignon Blanc Wine Fermented in Different Kinds of Vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Fanzone, M.; Peña-Neira, A.; Gil, M.; Jofré, V.; Assof, M.; Zamora, F. Impact of Phenolic and Polysaccharidic Composition on Commercial Value of Argentinean Malbec and Cabernet Sauvignon Wines. Food Res. Int. 2012, 45, 402–414. [Google Scholar] [CrossRef]
- Medel-Marabolí, M.; Romero, J.L.; Obreque-Slier, E.; Contreras, A.; Peña-Neira, A. Effect of a Commercial Tannin on the Sensorial Temporality of Astringency. Food Res. Int. 2017, 102, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Page, E.B. Ordered Hypotheses for Multiple Treatments: A Significance Test for Linear Ranks. J. Am. Stat. Assoc. 1963, 58, 216–230. [Google Scholar] [CrossRef]
- Gawel, R.; Oberholster, A.; Francis, I.L. A “Mouth-Feel Wheel”: Terminology for Communicating the Mouth-Feel Characteristics of Red Wine. Aust. J. Grape Wine Res. 2000, 6, 203–207. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the Temporal Dominance of Sensations (TDS) Method to the Sensory Description of Subtle Differences in Partially Dealcoholized Red Wines. Food Qual. Prefer. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Fredes, C.; Von Bennewitz, E.; Holzapfel, E.; Saavedra, F. Relation between Seed Appearance and Phenolic Maturity: A Case Study Using Grapes Cv. Carménère. Chil. J. Agric. Res. 2010, 70, 381–389. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Guise, R.; Vilamarim, R.; Fraga, J.B.; Martins-Gomes, C.; Nunes, F.M.; Cosme, F. Efficiency of Carboxymethylcellulose in Red Wine Tartaric Stability: Effect on Wine Phenolic Composition, Chromatic Characteristics and Colouring Matter Stability. Food Chem. 2021, 360, 129996. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Ayestarán, B. Effect of Commercial Mannoprotein Addition on Polysaccharide, Polyphenolic, and Color Composition in Red Wines. J. Agric. Food Chem. 2008, 56, 9022–9029. [Google Scholar] [CrossRef]
- De Freitas, V.A.P.; Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N. A Review of the Current Knowledge of Red Wine Colour. OENO One 2017, 51, 1–15. [Google Scholar] [CrossRef]
- Gerbaud, V.; Gabas, N.; Blouin, J.; Crachereau, J.-C. Study of Wine Tartaric Acid Salt Stabilization by Addition of Carboxymethylcellulose (CMC): Comparison with the “Protective Colloids” Effect. J. Int. Des Sci. De La Vigne Et Du Vin 2010, 44, 231–242. [Google Scholar] [CrossRef]
- Guise, R.; Filipe-Ribeiro, L.; Nascimento, D.; Bessa, O.; Nunes, F.M.; Cosme, F. Comparison between Different Types of Carboxylmethylcellulose and Other Oenological Additives Used for White Wine Tartaric Stabilization. Food Chem. 2014, 156, 250–257. [Google Scholar] [CrossRef]
- Mckinnon, A.J.; Scollary, G.R.; Solomona, D.H.; Williamsb, P.J. The Mechanism of Precipitation of Calcium L(+)-Tartrate in a Model Wine Solution. Colloids Surf. A Physicochem. Eng. Asp. 1994, 82, 225–235. [Google Scholar] [CrossRef]
- McKinnon, A.J.; Williams, P.J.; Scollary, G.R. Influence of Uronic Acids on the Spontaneous Precipitation of Calcium L-(+)-Tartrate in a Model Wine Solution. J. Agric. Food Chem. 1996, 44, 1382–1386. [Google Scholar] [CrossRef]
- Ding, H.; Hou, R.; Li, Y.; Zhang, B.; Zhao, B.; Liu, K. Effect of Different Carboxymethyl Cellulose Structure Parameters on Tartrates Stability of Red Wine: Viscosity and Degree of Substitution. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Bajul, A.; Gerbaud, V.; Teychene, S.; Devatine, A.; Bajul, G. Effect of Carboxymethylcellulose on Potassium Bitartrate Crystallization on Model Solution and White Wine. J. Cryst. Growth 2017, 472, 54–63. [Google Scholar] [CrossRef]
- Kuhlman, B.A.; Aleixandre-Tudo, J.L.; Moore, J.P.; Du Toit, W. Astringency Perception in a Red Wine Context-A Review. OENO One 2024, 58, 1–17. [Google Scholar] [CrossRef]
- Medel-Marabolí, M.; López-Solís, R.; Valenzuela-Prieto, D.; Vargas-Silva, S.; Obreque-Slier, E. Limited Relationship between Temporality of Sensory Perception and Phenolic Composition of Red Wines. LWT 2021, 142, 111028. [Google Scholar] [CrossRef]
- Correia, E.; Amorim, E.; Vilela, A. Structural Equation Modeling (SEM) and Temporal Dominance of Sensations (TDS) in the Evaluation of DOC Douro Red Wine’s Sensory Profile. Foods 2022, 11, 1168. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Motta, G.; Giacosa, S.; Rolle, L.; Gerbi, V.; Río Segade, S. Mouthfeel Subqualities in Wines: A Current Insight on Sensory Descriptors and Physical–Chemical Markers. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3328–3365. [Google Scholar] [CrossRef] [PubMed]
Step | Time (s) | Instructions |
---|---|---|
1 | - | Hold the glass with the left hand. |
2 | 0 | With the right hand, click in the “Start” button and simultaneously bring all the contents of the glass to the mouth. |
3 | From 0 to 12 | Click on the button that matches the most dominant attribute now among those listed below. Click on a new attribute when you feel a change in the dominant attribute. |
4 | 12 | Spit out the wine. |
5 | From 13 to 30 | Continue the evaluation of the dominant attribute. |
6 | 30 | Click on the “Stop” button when you do not perceive astringency. |
7 | 100 | End of the evaluation. |
Treatment | pH | Titratable Acidity 1 | %Vol. |
---|---|---|---|
C | 3.98 ± 0.01 b | 4.22 ± 0.04 bc | 12.2 ± 0.00 a |
MTA | 3.93 ± 0.01 a | 4.25 ± 0.04 c | 12.2 ± 0.12 a |
KPA | 3.93 ± 0.03 ab | 4.07 ± 0.04 ab | 12.2 ± 0.06 a |
CMC | 3.98 ± 0.01 b | 4.20 ± 0.08 bc | 12.4 ± 0.06 a |
MP | 3.99 ± 0.01 b | 4.02 ± 0.09 a | 12.2 ± 0.17 a |
AG | 3.99 ± 0.01 b | 4.02 ± 0.05 a | 12.4 ± 0.06 a |
Fraction | Control | MTA | KPA | CMC | MP | AG | |
---|---|---|---|---|---|---|---|
F1 | Conc. | 8.2 ± 0.4 a | 9.9 ± 0.1 a | 9.4 ± 0.5 a | 12.8 ± 1.6 bc | 10.3 ± 1.0 ab | 13.1 ± 1.3 c |
Mn | 1474 ± 23 ab | 1491 ± 12 bc | 1506 ± 14 bc | 1532 ± 26 c | 1506 ± 6 bc | 1439 ± 15 a | |
Range | 3897–1136 a | 4216–1111 a | 4151–1104 a | 4275–1110 a | 3936–1101 a | 4192–1176 a | |
F2 | Conc. | 218.0 ± 3.3 a | 215.4 ± 3.4 a | 211.2 ± 0.9 a | 241.9 ± 27.7 a | 217.6 ± 6.1 a | 396.6 ± 7.1 b |
Mn | 129.0 ± 0.5 b | 127.3 ± 0.4 ab | 126.2 ± 0.2 a | 126.4 ± 0.7 a | 126.5 ± 0.4 ab | 154.7 ± 2.1 c | |
Range | 1136–78 b | 1111–78 a | 1104–78 a | 1110–80 a | 1101–79 a | 1176–70 c | |
F3 | Conc. | 124.1 ± 4.6 a | 131.6 ± 2.8 a | 131.8 ± 1.2 a | 153.4 ± 17.1 b | 138.9 ± 3.7 ab | 135.7 ± 5.5 ab |
Mn | 48.3 ± 1.7 c | 45.1 ± 0.3 abc | 44.6 ± 0.1 ab | 47.4 ± 0.8 bc | 44.1 ± 0.1 a | 54.7 ± 2.2 d | |
Range | 77.5–25.9 b | 78.3–26.0 bc | 77.9–26.0 b | 79.5–25.8 c | 78.8–26.0 bc | 69.6–25.4 a | |
F4 | Conc. | 165.7 ± 5.5 a | 188.7 ± 6.5 abc | 206.9 ± 3.8 c | 192.2 ± 16.9 bc | 206.7 ± 6.8 c | 170.7 ± 10.6 ab |
Mn | 16.8 ± 0.0 d | 16.5 ± 0.1 bc | 16.3 ± 0.0 a | 16.5 ± 0.1 bc | 16.4 ± 0.1 ab | 16.7 ± 0.1 cd | |
Range | 25.9–6.1 bc | 26.0–6.1 bc | 26.0–5.9 c | 25.8–6.0 b | 26.0–5.9 c | 25.4–6.2 a | |
F5 | Conc. | 26.4 ± 2.1 a | 37.3 ± 2.1 bc | 47.5 ± 1.9 c | 34.7 ± 3.8 ab | 44 ± 4.7 bc | 35.1 ± 6 ab |
Mn | 5.6 ± 0.1 b | 4.0 ± 0.0 a | 3.8 ± 0.0 a | 5.0 ± 0.8 b | 3.9 ± 0.1 a | 3.9 ± 0.1 a | |
Range | 6.1–3.0 a | 6.1–2.9 ab | 5.9–2.8 a | 6.0–2.9 a | 5.9–2.8 a | 6.2–2.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisterna-Castillo, M.; Covarrubias, J.I.; Medel-Marabolí, M.; Peña-Neira, A.; Gil i Cortiella, M. Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine. Foods 2024, 13, 3065. https://doi.org/10.3390/foods13193065
Cisterna-Castillo M, Covarrubias JI, Medel-Marabolí M, Peña-Neira A, Gil i Cortiella M. Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine. Foods. 2024; 13(19):3065. https://doi.org/10.3390/foods13193065
Chicago/Turabian StyleCisterna-Castillo, Matías, José Ignacio Covarrubias, Marcela Medel-Marabolí, Alvaro Peña-Neira, and Mariona Gil i Cortiella. 2024. "Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine" Foods 13, no. 19: 3065. https://doi.org/10.3390/foods13193065
APA StyleCisterna-Castillo, M., Covarrubias, J. I., Medel-Marabolí, M., Peña-Neira, A., & Gil i Cortiella, M. (2024). Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine. Foods, 13(19), 3065. https://doi.org/10.3390/foods13193065