Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Analyses on Electrolyte Leakage and Malondialdehyde Content
2.3. Assay of LOX, LPP, and DGK Activities
2.4. Determination of PLC and PLD Contents
2.5. Measurement of Cell Membrane Phospholipid Contents
2.6. Analysis on PLD Gene Expression in Cell Membranes
2.7. Data Analysis
3. Results
3.1. Electrolyte Leakage and MDA Content
3.2. LOX, LPP, and DGK Activities
3.3. PLC and PLD Contents
3.4. Membrane Phospholipid Content
3.5. Relative Expression of MaPLDγ, MaPLDα, and MaPLDζ
4. Discussion
4.1. The Effect of Methyl Jasmonate on MDA Content
4.2. The Effect of Methyl Jasmonate on LOX, LPP, and DGK Activities
4.3. The Effect of Methyl Jasmonate on Phospholipase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuyu, C.; Tola, Y. Assessment of banana fruit handling practices and associated fungal pathogens in Jimma town market, southwest Ethiopia. Food Sci. Nutr. 2018, 6, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.-D.; Pankaj, B.P.; Rashid, A.-Y.; Hemanatha, J.; Zahir, A.-A. Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends Food Sci. Technol. 2023, 134, 177–191. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Q.; Xie, L.; Yin, C.; Qu, H.; He, J.; Jiang, Y.; Li, T. Possible mechanism of contribution of a secreted aspartic proteinase FpOPSB to the virulence of Fusarium proliferatum causing banana crown rot. Food Front. 2023, 4, 1511–1522. [Google Scholar] [CrossRef]
- Xia, Y.; Lai, Z.; Do, Y.; Huang, P. Characterization of microRNAs and gene expression in ACC oxidase RNA interference-based transgenic bananas. Plants 2023, 12, 3414. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Sun, J.; Li, C.; Ling, D.; Sheng, J.; You, X.; Li, J.; Liu, G.; Zheng, F.; et al. Cloning characterization and functional expression of phospholipase Dα cDNA from banana (Musa acuminate L.). J. Food Qual. 2017, 7, 12–20. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Sun, J.; Li, C.; Ling, D.; Sheng, J.; Zheng, F.; Liu, G.; Li, J.; Tang, Y.; et al. Responses of phospholipase D and antioxidant system to mechanical wounding in postharvest banana fruits. J. Food Qual. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, H.; Luo, M.; Zhou, X.; Zhou, Q.; Wei, B.; Cheng, S.; Ji, S. Membrane lipid metabolism in relation to core browning during ambient storage of ‘Nanguo’ pears. Postharvest Biol. Technol. 2020, 169, 111288. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, J.; Lin, H.; Lin, M.; Lin, Y.; Wang, H.; Hung, Y. Salicylic acid treatment suppresses Phomopsis longanae Chi-induced disease development of postharvest longan fruit by modulating membrane lipid metabolism. Postharvest Biol. Technol. 2020, 164, 111168. [Google Scholar] [CrossRef]
- Li, L.; Yi, P.; Huang, F.; Tang, J.; Sun, J.; Duan, X.; Li, J.; Su, Z.; Ling, D.; Tang, Y.; et al. Effects of phospholipase D inhibitors treatment on membrane lipid metabolism of postharvest banana fruit in response to mechanical wounding stress. Horticulturae 2022, 8, 901. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, L. Salicylic acid, ethephon, and methyl jasmonate induce the expression of phospholipase D in mechanically-wounded cucumber. J. Hortic. Sci. Biotechnol. 2011, 86, 235–240. [Google Scholar] [CrossRef]
- Rojo, E.; Titarenko, E.; León, J.; Berger, S.; Vancanneyt, G.; Sánchez-Serrano, J.J. Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 1998, 13, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Balusamy, S.R.D.; Rahimi, S.; Sukweenadhi, J.; Kim, Y.; Yang, D. Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increases terpenoid biosynthesis in Panax ginseng. Plant Cell Tissue Organ Cult. 2015, 123, 341–348. [Google Scholar] [CrossRef]
- Wang, S.; Shi, X.; Liu, F.; Laborda, P. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chem. 2021, 353, 129482. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Díaz, M.; Lobos, T.; Cardemil, L.; Nunes-Nesi, A.; Retamales, J.; Jaakola, L.; Alberdi, M.; Ribera-Fonseca, A. Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 2016, 21, 567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Chen, Q.; Yin, F.; Song, M.; Cai, W.; Shuai, L. Methyl jasmonate treatment alleviates chilling injury and improves antioxidant system of okra pod during cold storage. Food Sci. Nutr. 2023, 11, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liu, G.; Zhu, L.; Liu, J.; Xiang, Y.; Xu, X.; Zhang, Z. Mitigation of chilling injury in mango fruit by methyl jasmonate is associated with regulation of antioxidant capacity and energy homeostasis. Postharvest Biol. Technol. 2024, 211, 112801. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; María, S.; Fabián, G.; Salvador, C.; Domingo, M.; Daniel, V.; Zapata, P.J. Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Sci. Hortic. 2019, 247, 380–389. [Google Scholar] [CrossRef]
- Guan, Y.; Hu, W.; Jiang, A.; Xu, Y.; Sa, R.; Feng, K.; Zhao, M.; Yu, J.; Ji, Y.; Hou, M.; et al. Effect of methyl jasmonate on phenolic accumulation in wounded broccoli. Molecules 2019, 24, 3537. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 2019, 46, 197–212. [Google Scholar] [CrossRef]
- Ma, M.; Zhu, Z.; Cheng, S.; Zhou, Q.; Zhou, X.; Kong, X.; Hu, M.; Yin, X.; Wei, B.; Ji, S. Methyl jasmonate alleviates chilling injury by regulating membrane lipid composition in green bell pepper. Sci. Hortic. 2020, 266, 109308. [Google Scholar] [CrossRef]
- Shuai, L.; Xue, P.; Liao, L.; Liu, Y.; Song, M.; Shang, F.; Cai, W.; Yin, F.; Cai, J. Methyl jasmonate suppressed the pericarp browning in postharvest longan fruit by modulating membrane lipid and energy metabolisms. Postharvest Biol. Technol. 2024, 209, 112681. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhu, H.; Qu, H.; You, S.; Duan, X.; Jiang, Y. Proteomic analysis of differentially expressed proteins involved in peel senescence in harvested mandarin fruit. Front. Plant Sci. 2016, 7, 725. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, H.; Zhang, S.; Chen, Y.; Chen, M.; Lin, Y. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biol. Technol. 2014, 96, 42–48. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Lin, H.; Lin, M.; Lin, Y.; Zheng, Y.; Lin, Y.F. Membrane lipids metabolism participates in the pulp breakdown of fresh longan caused by Phomopsis longanae Chi. Postharvest Biol. Technol. 2022, 193, 112049. [Google Scholar] [CrossRef]
- Yi, P.; Li, L.; Sun, J.; He, X.; Li, C.; Sheng, J.; Xin, M.; Ling, D.; Li, Z.; Tang, Y.; et al. Characterization and expression of phospholipase D putatively involved in Colletotrichum musae disease development of postharvest banana fruit. Horticulturae 2022, 8, 312. [Google Scholar] [CrossRef]
- Kollárová, R.; Holková, I.; Rauová, D.; Bálintová, B.; Mikuš, P.; Obložinský, M. HPLC analysis and biochemical characterization of LOX from Eschscholtzia californica Cham. Molecules 2017, 22, 1899. [Google Scholar] [CrossRef] [PubMed]
- David, N.B.; Carlos, P.; Meltem, S.; Karen, R. Phosphatidate degradation: Phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. BBA Mol. Cell Biol. Lipids 2009, 1791, 956–961. [Google Scholar] [CrossRef]
- Kue Foka, I.C.; Ketehouli, T.; Zhou, Y.; Li, X.-W.; Wang, F.; Li, H. The emerging roles of diacylglycerol kinase (DGK) in plant stress tolerance, growth, and development. Agron. J. 2020, 10, 1375. [Google Scholar] [CrossRef]
- Shuai, L.; Li, L.; Sun, J.; Liao, L.; Duan, Z.; Li, C.; He, X. Role of phospholipase C in banana in response to anthracnose infection. Food Sci. Nutr. 2020, 8, 1038–1045. [Google Scholar] [CrossRef]
- Hong, Y.; Zhao, J.; Guo, L.; Kim, S.; Deng, X.; Wang, G.; Zhang, G.; Li, M.; Wang, X. Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid. Res. 2016, 62, 55–74. [Google Scholar] [CrossRef]
- Dek, M.; Padmanabhan, P.; Subramanian, J.; Paliyath, G. Inhibition of tomato fruit ripening by 1-MCP, wortmannin and hexanal is associated with a decrease in transcript levels of phospholipase D and other ripening related genes. Postharvest Biol. Technol. 2018, 140, 50–59. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Y.; Lin, H.; Lin, Y.; Chen, Y.; Wang, H.; John, S.; Lin, Y. Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced disease development and pericarp browning of harvested longan fruit in association with membrane lipids metabolism. Food Chem. 2018, 244, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, F.; Ali, M.; Song, Y.; Ding, J.; Kong, X.; Shang, J.; Zhao, X.; Li, X.; Zhang, X. SlMsrB5-SlGRAS4 involved in methyl jasmonate-mediated ripening and quality of postharvest tomato fruit. Postharvest Biol. Technol. 2024, 213, 112929. [Google Scholar] [CrossRef]
- Han, Y.; Chen, C.; Yan, Z.; Li, J.; Wang, Y. The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic. 2019, 249, 250–256. [Google Scholar] [CrossRef]
- Wei, J.; Wen, X.; Tang, L. Effect of methyl jasmonic acid on peach fruit ripening progress. Sci. Hortic. 2017, 220, 206–213. [Google Scholar] [CrossRef]
- Bagheri, M.; Esna-Ashari, M. Effects of postharvest methyl jasmonate treatment on persimmon quality during cold storage. Sci. Hortic. 2022, 294, 110756. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, H.; Dai, X.; Yu, M.; Yu, Z. Effect of methyl jasmonate on the quality and antioxidant capacity by modulating ascorbate-glutathione cycle in peach fruit. Sci. Hortic. 2022, 303, 111216. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, H.; Chen, Y.; Lin, M.; Hung, Y.; Lin, H. Alleviation of pulp breakdown in harvested longan fruit by acidic electrolyzed water in relation to membrane lipid metabolism. Sci. Hortic. 2022, 304, 111288. [Google Scholar] [CrossRef]
- Glowacz, M.; Bill, M.; Tinyane, P.; Sivakumar, D. Maintaining postharvest quality of cold stored ‘Hass’ avocados by altering the fatty acids content and composition with the use of natural volatile compounds—Methyl jasmonate and methyl salicylate. J. Sci. Food Agric. 2017, 97, 5186–5193. [Google Scholar] [CrossRef]
- Song, C.; Wang, K.; Xiao, X.; Liu, Q.; Yang, M.; Li, X.; Feng, Y.; Li, S.; Shi, L.; Chen, W.; et al. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit. Food Res. Int. 2022, 157, 111249. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Peng, C.; Shang, X.; Lv, X.; Sun, J.; Li, C.; Wei, L.; Liu, X. Postharvest benzothiazole treatment enhances healing in mechanically damaged sweet potato by activating the phenylpropanoid metabolism. J. Sci. Food Agric. 2020, 100, 3394–3400. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zheng, Y.; Sang, Z.; Ge, Y.; Bai, C.; Fu, A.; Zuo, J. Multi-omics analysis reveals the mechanism of calcium-reduced quality deterioration in mechanically injured green pepper fruit. Postharvest Biol. Technol. 2023, 204, 112437. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, W.; Wang, F.; Wang, H. Genome-wide investigation of the PLD gene family in tomato: Identification, analysis, and expression. Genes 2024, 15, 326. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Yi, P.; Li, J.; Xie, L.; Huang, F.; Huang, M.; Gan, T.; Sun, J.; Li, L. Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism. Foods 2024, 13, 3132. https://doi.org/10.3390/foods13193132
Huang C, Yi P, Li J, Xie L, Huang F, Huang M, Gan T, Sun J, Li L. Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism. Foods. 2024; 13(19):3132. https://doi.org/10.3390/foods13193132
Chicago/Turabian StyleHuang, Chunxia, Ping Yi, Jing Li, Lihong Xie, Fang Huang, Min Huang, Ting Gan, Jian Sun, and Li Li. 2024. "Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism" Foods 13, no. 19: 3132. https://doi.org/10.3390/foods13193132
APA StyleHuang, C., Yi, P., Li, J., Xie, L., Huang, F., Huang, M., Gan, T., Sun, J., & Li, L. (2024). Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism. Foods, 13(19), 3132. https://doi.org/10.3390/foods13193132