Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus
Abstract
:1. Introduction
2. Materials and Methods
2.1. MCG and Chemicals
2.2. Isolation of Bacillus sp.
2.3. Identification of Bacillus sp.
2.3.1. Morphological, Physiological, and Biochemical Characteristics
2.3.2. Cellular Fatty Acids Analysis
2.3.3. Molecular and Genetic Characteristics
2.4. Cheonggukjang Preparation
2.5. Physicochemical Characteristics and Viable Cell Numbers
2.6. Fatty Acid Analysis
2.7. Amino Acid Analysis
2.8. Isoflavone Analysis
2.9. Ginsenoside Analysis
2.10. Total Phenolic and Total Flavonoid Contents Analysis
2.11. Radical Scavenging Activity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Identification of Fermented Soybean Strains with IDCK 30 and IDCK40
3.2. Characteristics of Cheonggukjang with Single and Cocktail Starters
3.3. Comparison of Physicochemical Characteristics and Viable Cell Numbers in Cheonggukjang According to MCG Ratio
3.4. Comparison of Free Amino Acid Contents of Cheonggukjang According to MCG Ratio
3.5. Comparison of Fatty Acid Contents of Cheonggukjang According to MCG Ratio
3.6. Comparison of Isoflavone and Ginsenoside Contents of Cheonggukjang According to MCG Ratio
3.7. Comparison of TPC and TFC of Cheonggukjang According to MCG Ratio
3.8. Comparison of Antioxidant Activity of Cheonggukjang According to MCG Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Kim, S.C.; Lee, H.Y.; Cho, D.Y.; Jung, J.G.; Kang, D.W.; Kang, S.S.; Cho, K.M. Changes in nutritional compositions of processed mountain-cultivated ginseng sprouts (Panax ginseng) and screening for their antioxidant and anti-inflammatory properties. J. Funct. Food. 2021, 86, 104668. [Google Scholar] [CrossRef]
- Xu, X.F.; Cheng, X.L.; Lin, Q.H.; Li, S.S.; Jia, Z.; Han, T.; Lin, R.C.; Wang, D.; Wei, F.; Li, X.R. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J. Ginseng Res. 2016, 40, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.M.; Puja, A.M.; Kim, H.; Kim, Y.J. Nanoemulsions prepared from mountain ginseng-mediated gold nanoparticles and silydianin increase the anti-inflammatory effects by regulating NF- κB and MAOK signaling pathways. Biomater. Adv. 2022, 137, 212814. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.J.; Hwang, J.E.; Kim, H.S.; Kim, K.T.; Paik, H.D. Anti-inflammatory and cytotoxic effects of ginseng extract bioconverted by Leuconostoc mesenteroides KCCM 12010P isolated from kimchi. Int. J. Food Sci. Technol. 2018, 53, 1331–1337. [Google Scholar] [CrossRef]
- Abdelfattah-Hassan, A.; Shalaby, S.I.; Khater, S.I.; El-Shetry, E.S.; El Fadil, H.A.; Elsayed, S.A. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Complement. Ther. Med. 2019, 46, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Chung, S.; Chung, M.Y.; Choi, H.K.; Hwang, J.T.; Park, J.H. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis. J. Ginseng Res. 2022, 46, 188–205. [Google Scholar] [CrossRef]
- Kim, J.S.; Yoo, J.M.; Park, J.E.; Kim, J.; Kim, S.G.; Seok, Y.M.; Son, J.H.; Kim, H.J. Anti-angiogenic effect of mountain ginseng in vitro and in vivo: Comparison with farm-cultivated ginseng. Mol. Med. Rep. 2021, 24, 615. [Google Scholar] [CrossRef]
- Kim, C.K.; Cho, D.H.; Lee, K.S.; Lee, D.K.; Park, C.W.; Kim, W.G.; Lee, S.J.; Ha, K.S.; Taeg, O.G.; Kwon, Y.G.; et al. Ginseng berry extract prevents atherogenesis via anti-inflammatory action by upregulating phase II gene expression. Evid. Based Complement. Altern. Med. 2012, 2012, 490301. [Google Scholar] [CrossRef]
- Park, D.H.; Han, B.; Shin, M.-S.; Hwang, G.S. Enhanced Intestinal Immune Response in Mice after Oral Administration of Korea Red Ginseng-Derived Polysaccharide. Polymers 2020, 12, 2186. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Zhao, A.; Wu, Y.; Zhang, Y.; Yang, X. Quantitative analysis for several nutrients and volatile components during fermentation of soybean by Bacillus subtilis natto. Food Chem. 2022, 374, 131725. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, M.J.; Ahn, J.; Lee, S.H.; Lee, H.J.; Kim, J.H.; Park, S.H.; Jang, Y.J.; Jung, C.H. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol. Nutr. Food Res. 2017, 61, 1700322. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ko, J.; Kwon, D.Y. Jang, Korean fermented soybean product, the result of endeavors of ancients for the best taste of Korean diet. J. Ethn. Food. 2023, 10, 33. [Google Scholar] [CrossRef]
- Ghosh, K.; Kang, H.S.; Hyun, W.B.; Kim, K.P. High prevalence of Bacillus subtilis-infecting bacteriophages in soybean-based fermented foods and its detrimental effects on the process and quality of Cheonggukjang. Food Microbiol. 2018, 76, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-S.; Hwang, C.-W.; Yang, W.-S.; Kim, C.-H. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int. J. Mol. Sci. 2021, 22, 5746. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Hwang, C.E.; Lee, C.K.; Lee, J.H.; Kim, G.M.; Jeong, S.H.; Shin, J.H.; Kim, J.S.; Cho, K.M. Characteristics and antioxidant effect of garlic in the fermentation of Cheonggukjang by Bacillus amyloliquefaciens MJ1-4. J. Microbiol. Biotechnol. 2014, 24, 959–968. [Google Scholar] [CrossRef]
- Hong, S.C.; Kwan, D.J. Changes in quality characteristics of Cheongkukjang added with Deodeok. Korean J. Food Preserv. 2011, 18, 171–177. [Google Scholar] [CrossRef]
- Choi, E.J.; Lee, J.S.; Chang, H.B.; Lee, M.S.; Jang, H.D.; Kwon, Y.I. Changes in the functionality of Cheonggukjang during fermentation supplemented with Angelica gigas, Rehmanniae Radix, and Red ginseng. Microbiol. Biotechnol. Lett. 2010, 38, 467–474. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Mahaffee, W.F.; Kloepper, J.W. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb. Ecol. 1997, 34, 210–223. [Google Scholar] [CrossRef]
- Seo, H.R.; Kim, J.Y.; Kim, J.H.; Park, K.Y. Identification of Bacillus cereus in a Chungkukjang That Showed High Anticancer Effects Against AGS Human Gastric Adenocarcinoma Cells. J. Med. Food. 2009, 12, 1274–1280. [Google Scholar] [CrossRef]
- Goldschmidt-Clermont, E.; Hochwartner, O.; Demarta, A.; Caminada, A.P.; Fery, J. Outbreaks of an ulcerative and haemorrhagic disease in Arctic char Salvelinus alpinus caused by Aeromonas salmonicida subsp. smithia. Dis. Aquat. Org. 2009, 86, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Pedersen, N.C.; Khushvakov, J.; Ye, Y.; Dhakal, R.; Hansen, H.H.; Ahrné, L.; Khakimov, B. Effect of supplementing dairy goat diets with rapeseed oil or sunflower oil on performance, Milk composition, Milk fatty acid profile, and in vitro fermentation kinetics. Front. Vet. Sci. 2022, 9, 899314. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Shuang, F.-F.; Yang, J.-X.; Jv, Y.-X.; Hu, R.-Z.; Chen, T.; Yao, X.-H.; Zhao, W.-G.; Liu, L.; Zhang, D.-Y. A rapid and efficient method of microwave-assisted extraction and hydrolysis and automatic amino acid analyzer determination of 17 amino acids from mulberry leaves. Ind. Crops Prod. 2022, 186, 115271. [Google Scholar] [CrossRef]
- Kuligowski, M.; Pawłowska, K.; Jasińska-Kuligowska, I.; Nowak, J. Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CyTA-J. Food 2017, 15, 27–33. [Google Scholar] [CrossRef]
- Kim, J.-H.; Shin, J.-S.; Kim, W.; Lee, H.; Baik, M.-Y. Effects of Puffing, Acid, and High Hydrostatic Pressure Treatments on Ginsenoside Profile and Antioxidant Capacity of Mountain-Cultivated Panax ginseng. Foods 2023, 12, 2174. [Google Scholar] [CrossRef]
- Nam, Y.D.; Yi, S.H.; Lim, S.I. Bacterial diversity of cheonggukjang, a traditional Korean fermented food, analyzed by barcoded pyrosequencing. Food Control 2012, 28, 135–142. [Google Scholar] [CrossRef]
- Cho, K.M.; Hong, S.Y.; Math, R.K.; Lee, J.H.; Kambiranda, D.M.; Kim, J.M.; Islam, S.M.A.; Yun, M.G.; Cho, J.J.; Lim, W.J.; et al. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009, 114, 413–419. [Google Scholar] [CrossRef]
- Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes in phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J. Food Compos. Anal. 2011, 24, 402–410. [Google Scholar] [CrossRef]
- Shin, E.C.; Lee, J.H.; Hwang, C.E.; Lee, B.W.; Kim, H.T.; Ko, J.M.; Baek, I.Y.; Shin, J.H.; Nam, S.H.; Seo, W.T.; et al. Enhancement of total phenolic and isoflavone-aglycone contents and antioxidant activities during Cheonggukjang fermentation of brown soybeans by the potential probiotic Bacillus subtilis CSY191. Food Sci. Biotechnol. 2014, 23, 531–538. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, J.H.; Shin, E.-C.; Cho, D.Y.; Jung, J.G.; Kim, M.J.; Jeong, J.B.; Kang, D.; Kang, S.S.; Cho, K.M. Changes in Chemical Compositions and Antioxidant Activities from Fresh to Fermented Red Mountain-Cultivated Ginseng. Molecules 2022, 27, 4550. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.E.; Kim, Y.S. The potentials of Bacillus licheniformis strains for inhibition of B. cereus growth and reduction of biogenic amines in cheonggukjang (Korean fermented unsalted soybean paste). Food Control 2017, 79, 87–93. [Google Scholar] [CrossRef]
- Diana, M.; Rafecas, M.; Arco, C.; Quilez, J. Free amino acid profile of Spanish artisanal cheeses: Importance of gamma-aminobutyric acid (GABA) and ornithine content. J. Food Compos. Anal. 2014, 35, 94–100. [Google Scholar] [CrossRef]
- Yu, J.J.; Park, K.B.; Kim, S.G.; Oh, S.H. Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168. J. Microbiol. 2013, 51, 222–228. [Google Scholar] [CrossRef]
- Cho, K.M.; Lim, H.J.; Kim, M.S.; Kim, D.S.; Hwang, C.E.; Nam, S.H.; Joo, O.S.; Lee, B.W.; Kim, J.K.; Shin, E.C. Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars. J. Food Drug Anal. 2017, 25, 637–653. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.K.; Yang, J.H.; Lee, J.H.; Park, S.K.; Son, N.Y.; Kim, S.H. Effects of soil type and organic fertilizers on fatty acids and vitamin E in Korean ginseng (Panax ginseng Meyer). Food Res. Int. 2017, 102, 265–273. [Google Scholar] [CrossRef]
- Hwang, C.E.; Kim, S.C.; Lee, J.H.; Hong, S.Y.; Cho, K.M. Enhanced biological effect of fermented soy-powder milk with Lactobacillus brevis increasing in γ-aminobutyric acid and isoflavone aglycone contents. J. Appl. Biol. Chem. 2018, 61, 245–255. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, J.M.; Kim, S.; Kim, H.J. Simultaneous analysis and measurement of uncertainty estimation of six isoflavones in Cheonggukjang by liquid chromatography-electrospray tandem mass spectrometry. Food Chem. 2019, 289, 139–144. [Google Scholar] [CrossRef]
- Lu, C.; Li, F.; Yan, X.; Mao, S.; Zhang, T. Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction. Food Chem. 2022, 378, 132032. [Google Scholar] [CrossRef]
- Cairns, J.R.K.; Esen, A. β-Glucosidases. Cell Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef]
- Silvia, L.H.; Celeghini, R.M.; Chang, Y.K. Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chem. 2011, 128, 640–644. [Google Scholar] [CrossRef]
- Piao, Y.Z.; Eun, J.B. Physicochemical characteristics and isoflavones content during manufacture of short-time fermented soybean product (cheonggukjang). J. Food Sci. Technol. 2020, 57, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, R.; Huang, Z.; Zhou, J. Progress in the Conversion of Ginsenoside Rb1 into Minor Ginsenosides Using β-Glucosidases. Foods 2023, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.Y.; Kim, M.Y.; Lee, Y.J.; Li, M.; Shin, Y.S.; Lee, J.S.; Jeong, H.S. Influence of organic acids and heat treatment on ginsenoside conversion. J. Ginseng Res. 2018, 42, 532–539. [Google Scholar] [CrossRef]
- Kim, K.A.; Jung, I.H.; Park, S.H.; Ahn, Y.T.; Huh, C.S.; Kim, D.H. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS ONE 2013, 8, e62409. [Google Scholar] [CrossRef]
- Duan, Z.; Zhu, C.; Shi, J.; Fan, D.; Deng, J.; Fu, R.; Huang, R.; Fan, C. High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase. Chin. J. Chem. Eng. 2018, 26, 1591–1597. [Google Scholar] [CrossRef]
- Kim, J.H.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017, 41, 435–443. [Google Scholar] [CrossRef]
- Bekhit, A.E.A.; Duncan, A.; Bah, C.S.F.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Amin, H.F. Impact of fermentation conditions on the physicochemical properties, fatty acid and cholesterol contents in salted-fermented hoki roe. Food Chem. 2018, 264, 73–80. [Google Scholar] [CrossRef]
- Saraç, N.; Şen, B. Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind. Crops Prod. 2014, 53, 60–64. [Google Scholar] [CrossRef]
- Makhafola, T.J.; Elgorashi, E.E.; McGaw, L.J.; Verschaeve, L.; Eloff, J.N. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 2016, 16, 490. [Google Scholar] [CrossRef]
- Ramadan, D.T.; Ali, M.A.M.; Yahya, S.M.; El-Sayed, W.M. Correlation between Antioxidant/Antimutagenic and Antiproliferative Activity of Some Phytochemicals. Anticancer Agents Med. Chem. 2019, 19, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.W.; Shahzad, R.; Bilal, S.; Adhikari, B.; Kim, I.D.; Lee, J.D.; Lee, I.J.; Kim, B.O.; Shin, D.H. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean (Cheonggukjang) with Bacillus subtilis KCTC 13241. J. Food Sci. Technol. 2018, 55, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Ju, H.K.; Kim, S.C.; Park, J.H.; Lim, J.; Kwon, S.W.; Lee, J. Determination of bioactive compounds in fermented soybean products using GC/MS and further investigation of correlation of their bioactivities. J. Chromatogr. B 2012, 880, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, X.; Liu, H.; Lv, C.; Lu, J. Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C. A. Meyer. Int. J. Biol. Macromol. 2020, 150, 737–745. [Google Scholar] [CrossRef]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
Genes | Isolates | Nearest Relatives 1 (Accession No.) | Similarity (%) |
---|---|---|---|
16S rRNA | IDCK30 | Bacillus licheniformis B.licheCEL (LC006127) | 99 |
IDCK40 | Bacillus subtilis subsp. subtilis 2KL1 (CP032872) | 99 | |
recA | IDCK30 | Bacillus licheniformis P8_B2 (CP045814) | 99 |
IDCK40 | Bacillus subtilis P5 (CP045816) | 99 | |
gyrB | IDCK30 | Bacillus licheniformis P8_B2 (CP045814) | 98 |
IDCK40 | Bacillus subtilis MB9_B6 (CP045818) | 99 |
Index 1 | Steam | Starters | ||
---|---|---|---|---|
IDCK30 | IDCK40 | IDCK30 + 40 | ||
Physicochemical Properties | ||||
pH | 6.81 ± 0.03b | 7.26 ± 0.02a | 6.20 ± 0.06c | 6.27 ± 0.06c |
Acidity (%, as lactic acid) | 0.90 ± 0.01c | 0.85 ± 0.01d | 1.06 ± 0.01a | 1.03 ± 0.01b |
Reducing sugar (mg/g) | 20.71 ± 0.09a | 6.98 ± 0.05d | 11.86 ± 0.11b | 8.10 ± 0.06c |
Viable cell numbers (log CFU/g) | nd 2 | 10.57 ± 0.08a | 10.27 ± 0.09b | 10.51 ± 0.11a |
Free amino acid contents (mg/g) | ||||
Non-essential amino acids | 4.31 ± 0.06d | 24.61 ± 0.27c | 65.06 ± 0.85a | 48.62 ± 0.59b |
Essential amino acids | 0.73 ± 0.01d | 22.03 ± 0.25c | 54.96 ± 0.65a | 46.26 ± 0.86b |
Total amino acids | 5.04 ± 0.03d | 46.64 ± 0.54c | 120.02 ± 2.20a | 94.88 ± 1.05b |
Total isoflavone contents (μg/g) | 2154.6 ± 35.6a | 1405.1 ± 28.7c | 2134.7 ± 40.5a | 1575.3 + 29.2b |
Daidzin | 709.5 ± 14.2b | 143.5 ± 2.9d | 820.9 ± 14.5a | 175.8 ± 3.2c |
Glycitin | 303.2 ± 4.1b | 133.9 ± 2.5d | 500.8 ± 10.0a | 240.5 ± 4.1c |
Genistin | 934.4 ± 13.7a | 155.2 ± 3.3c | 634.3 ± 12.7b | 144.5 ± 2.5d |
Total glycosides | 1947.1 ± 32.0a | 432.6 ± 8.5c | 1956.0 ± 37.2a | 560.8 ± 9.8b |
Daidzein | 44.9 ± 0.9d | 660.8 ± 13.9a | 78.1 ± 1.6c | 517.2 ± 10.1bc |
Glycitein | 117.0 ± 2.1a | 88.1 ± 1.5b | 28.3 ± 0.5c | 86.2 ± 1.5b |
Genistein | 45.6 ± 0.6d | 223.6 ± 4.8b | 72.3 ± 1.2c | 411.1 ± 7.8a |
Total aglycones | 207.5 ± 3.6c | 972.5 ± 20.2b | 178.7 ± 3.3d | 1014.5 ± 19.4a |
Total phenolic contents (mg/g) | 2.58 ± 0.02d | 10.79 ± 0.08c | 13.91 ± 0.11a | 13.31 ± 0.11b |
Total flavonoid contents (mg/g) | 0.487 ± 0.004d | 0.787 ± 0.009c | 1.488 ± 0.021a | 1.374 ± 0.011b |
Radical scavenging activity (%) | ||||
DPPH (1 mg/mL) | 7.81 ± 0.05d | 33.57 ± 0.19c | 57.57 ± 0.65a | 52.35 ± 0.50b |
ABTS (0.5 mg/mL) | 10.78 ± 0.09d | 33.44 ± 0.23c | 49.63 ± 0.48a | 48.07±0.49b |
Index 1 | Addition Ratio of Mountain-Cultivated Ginseng (%) | |||||||
---|---|---|---|---|---|---|---|---|
Unfermented Chenoggukjang | Fermented Chenoggukjang | |||||||
0 | 2.5 | 5.0 | 10 | 0 | 2.5 | 5.0 | 10 | |
pH | 6.81 ± 0.08b | 6.76 ± 0.07b | 6.26 ± 0.10d | 6.20 ± 0.07d | 7.38 ± 0.09a | 6.66 ± 0.08bc | 6.07 ± 0.08e | 6.08 ± 0.07e |
Acidity (%, as lactic acid) | 0.90 ± 0.01d | 0.92 ± 0.01d | 1.05 ± 0.01b | 1.06 ± 0.01b | 0.76 ± 0.01c | 1.05 ± 0.01b | 1.09 ± 0.01a | 1.11 ± 0.01a |
Reducing sugars (mg/g) | 28.36 ± 0.31b | 32.87 ± 0.43a | 28.38 ± 0.38b | 28.24 ± 0.28b | 6.63 ± 0.07f | 8.94 ± 0.10e | 9.31 ± 0.13d | 10.06 ± 0.10c |
Viable cell numbers (log CFU/g) | 5.81 ± 0.07f | 5.83 ± 0.05e | 5.76 ± 0.06f | 5.61 ± 0.06g | 9.56 ± 0.10a | 9.33 ± 0.11b | 9.12 ± 0.12c | 8.80 ± 0.12d |
Indexs 1 (mg/100 g) | Addition Ratio of Mountain-Cultivated Ginseng (%) | |||||||
---|---|---|---|---|---|---|---|---|
Unfermented Chenoggukjang | Fermented Chenoggukjang | |||||||
0 | 2.5 | 5.0 | 10 | 0 | 2.5 | 5.0 | 10 | |
Non-essential amino acids | ||||||||
Taurine | nd 2 | nd | nd | 2.78 ± 0.03a | nd | nd | nd | nd |
Proline | nd | nd | nd | nd | 1161.13 ± 25.25a | 895.08 ± 18.14c | 712.64 ± 17.11d | 922.45 ± 20.11b |
Aspartic acid | 23.47 ± 0.27g | 23.74 ± 0.29f | 24.88 ± 0.25e | 23.77 ± 0.25f | 479.44 ± 7.88a | 310.05 ± 6.45b | 207.11 ± 4.17d | 245.52 ± 6.61c |
Serine | 8.33 ± 0.13g | 8.35 ± 0.11g | 8.84 ± 0.09e | 8.59 ± 0.10f | 57.54 ± 1.81a | 47.35 ± 0.58b | 34.28 ± 0.74c | 30.00 ± 0.80d |
Aspartic acid-NH2 | 14.02 ± 0.18e | 14.08 ± 0.18e | 16.66 ± 0.17d | 14.01 ± 0.18e | 42.58 ± 1.03b | 45.02 ± 0.44a | 21.24 ± 0.51c | nd |
Glutamic acid | 65.90 ± 0.68e | 60.97 ± 0.65f | 61.81 ± 0.60f | 54.68 ± 0.58g | 2720.27 ± 35.11a | 1796.58 ± 28.75c | 1401.07 ± 20.11d | 1960.25 ± 36.10b |
Aminoadipic acid | 5.12 ± 0.02e | 4.03 ± 0.09f | 4.51 ± 0.05f | 3.15 ± 0.08g | 266.20 ± 4.41d | 421.62 ± 6.12c | 462.98 ± 7.13a | 438.82 ± 9.59b |
Glycine | 15.42 ± 0.30e | 14.62 ± 0.18f | 14.55 ± 0.16f | 13.51 ± 0.15g | 390.95 ± 4.52a | 327.19 ± 5.72b | 265.37 ± 4.55d | 301.09 ± 7.11c |
Alanine | 40.21 ± 0.42e | 38.20 ± 0.45g | 39.23 ± 0.40f | 33.78 ± 0.34h | 905.70 ± 11.52d | 1130.12 ± 18.21a | 1020.89 ± 10.21c | 1097.08 ± 21.17b |
Citrulline | nd | nd | nd | nd | 545.25 ± 8.44a | 306.26 ± 5.22b | 200.63 ± 6.11d | 269.96 ± 5.11c |
α-aminobutyric aicd | nd | 1.47 ± 0.01e | 1.57 ± 0.02e | nd | 9.49 ± 0.12a | 2.39 ± 0.02c | 1.99 ± 0.05d | 3.30 ± 0.03b |
Cystine | 21.40 ± 0.35d | 20.54 ± 0.35d | 18.30 ± 0.20e | 17.35 ± 0.20e | 102.34 ± 2.15a | 82.51 ± 0.93b | 64.56 ± 1.15c | 64.25 ± 1.04c |
Tyrosine | 17.75 ± 0.32e | 16.56 ± 0.19f | 16.49 ± 0.18f | 15.89 ± 0.18g | 868.52 ± 15.95a | 805.91 ± 11.56b | 707.19 ± 15.17d | 734.37 ± 11.14c |
β-Alanine | 3.19 ± 0.03f | 3.21 ± 0.05f | 3.44 ± 0.03e | 3.43 ± 0.03d | 16.36 ± 0.35c | 20.65 ± 0.21b | 21.98 ± 0.22a | 20.96 ± 0.21b |
β-aminoisobutyric acid | 1.80 ± 0.01e | 1.43 ± 0.01f | 1.58 ± 0.02g | 1.67 ± 0.02f | 236.09 ± 3.89c | 250.54 ± 5.11a | 228.09 ± 5.88d | 246.77 ± 8.89b |
γ-aminobutyric acid | 36.11 ± 0.37d | 38.14 ± 0.42c | 41.64 ± 0.48b | 45.71 ± 0.49a | 8.78 ± 0.09h | 15.42 ± 0.24g | 21.32 ± 0.21f | 24.86 ± 0.25e |
Aminoetahnol | 5.97 ± 0.08d | 3.24 ± 0.03e | 3.03 ± 0.03e | 3.11 ± 0.03e | 10.26 ± 0.15c | 1.56 ± 0.02f | 10.89 ± 0.15b | 14.19 ± 0.25a |
Hydroxylysine | 9.66 ± 0.11d | 9.51 ± 0.11e | 9.70 ± 0.10d | 9.53 ± 0.10e | 21.65 ± 0.22c | 25.49 ± 0.28a | 23.68 ± 0.31b | 25.16 ± 0.31a |
Ornithine | nd | nd | nd | nd | 572.91 ± 8.87c | 600.09 ± 6.85b | 606.71 ± 6.57b | 681.77 ± 7.82a |
Anserine | nd | nd | nd | nd | 39.40 ± 0.91a | nd | nd | nd |
Arginine | 190.41 ± 1.90d | 206.05 ± 2.26c | 244.14 ± 2.34a | 221.16 ± 2.33b | 14.59 ± 0.18e | 9.12 ± 0.09f | 9.65 ± 0.11f | nd |
Total | 458.76 ± 4.90h | 464.14 ± 5.38g | 510.37 ± 5.12e | 472.12 ± 5.09f | 8469.45 ± 132.85a | 7092.95 ± 114.94b | 6022.27 ± 100.46d | 7080.8 ± 136.54c |
Essential amino acids | ||||||||
Threonine | 6.82 ± 0.11f | 6.99 ± 0.07f | 6.96 ± 0.07f | 7.29 ± 0.07e | 435.24 ± 9.75a | 400.59 ± 7.52b | 367.59 ± 8.18d | 385.84 ± 8.16c |
Valine | 13.85 ± 0.18f | 14.13 ± 0.17e | 13.94 ± 0.18f | 14.22 ± 0.17e | 1006.66 ± 15.15a | 911.04 ± 15.01b | 788.20 ± 18.11d | 802.19 ± 19.11c |
Methionine | 5.20 ± 0.08d | 4.82 ± 0.05e | 4.74 ± 0.05e | 4.31 ± 0.04f | 327.18 ± 5.11a | 302.00 ± 7.12b | 268.66 ± 5.87c | 267.97 ± 5.48c |
Isoleucine | 5.00 ± 0.05f | 5.28 ± 0.05f | 5.08 ± 0.05f | 5.66 ± 0.06e | 864.91 ± 18.88a | 799.15 ± 15.01b | 654.64 ± 11.05c | 635.13 ± 10.55d |
Leucine | 9.30 ± 0.11f | 9.71 ± 0.10e | 9.53 ± 0.15e | 10.82 ± 0.11d | 1494.15 ± 35.88a | 1406.59 ± 21.71b | 1218.38 ± 17.81c | 1210.99 ± 25.01c |
Phenylalanine | 23.46 ± 0.29f | 25.10 ± 0.28e | 23.32 ± 0.28f | 23.73 ± 0.30f | 1108.06 ± 29.15a | 1048.15 ± 15.58b | 928.62 ± 10.19d | 945.81 ± 11.06c |
Lysine | 10.50 ± 0.15f | 10.84 ± 0.11e | 10.00 ± 0.15f | 10.55 ± 0.11f | 1244.72 ± 25.48a | 1102.12 ± 17.02b | 943.42 ± 11.03d | 1028.93 ± 12.09c |
Histamine | 3.88 ± 0.03f | 3.83 ± 0.04g | 5.49 ± 0.06e | 3.15 ± 0.08g | 380.74 ± 7.74b | 338.81 ± 4.81a | 280.29 ± 3.10d | 308.31 ± 7.11c |
Total | 78.01 ± 1.00f | 80.7 ± 0.87e | 79.06 ± 0.99e | 79.73 ± 0.94e | 6861.66 ± 147.14a | 6308.45 ± 103.78b | 5449.8 ± 85.34d | 5585.17 ± 98.57c |
Total amino acids | 536.77 ± 5.90g | 544.84 ± 6.25g | 589.43 ± 6.11e | 551.85 ± 6.03f | 15,331.11 ± 279.99a | 13,401.40 ± 218.72b | 11,472.07 ± 185.80d | 12,665.97 ± 235.11c |
Ammonia | 27.44 ± 0.25e | 20.76 ± 0.21f | 19.57 ± 0.20g | 20.70 ± 0.21f | 345.94 ± 3.46a | 332.52 ± 3.33b | 322.23 ± 3.22c | 310.01 ± 3.10d |
Index 1 (mg/100 g) | Addition Ratio of Mountain-Cultivated Ginseng (%) | |||||||
---|---|---|---|---|---|---|---|---|
Unfermented Chenoggukjang | Fermented Chenoggukjang | |||||||
0 | 2.5 | 5.0 | 10 | 0 | 2.5 | 5.0 | 10 | |
Saturated fatty acids | ||||||||
Myristic acid (C14:0) | 1.04±0.01e | 2.45 ± 0.02b | nd 2 | 1.02 ± 0.01f | 2.44 ± 0.02b | 4.49 ± 0.05a | 2.01 ± 0.03d | 2.14 ± 0.02c |
Palmitic acid (C16:0) | 171.38 ± 2.51d | 172.92 ± 2.13d | 162.81 ± 3.39f | 129.42 ± 5.07f | 185.97 ± 3.68a | 186.35 ± 4.06a | 180.61 ± 4.01b | 176.84 ± 3.58c |
Stearic acid (C18:0) | 64.87 ± 0.85c | 63.56 ± 0.81f | 62.52 ± 0.63f | 48.30 ± 0.95e | 67.55 ± 1.08a | 66.54 ± 0.97b | 63.28 ± 0.93f | 64.29 ± 1.14d |
Arachidic acid (C20:0) | 5.14 ± 0.06d | 5.02 ± 0.05d | 4.99 ± 0.05e | 3.78 ± 0.06f | 5.53 ± 0.06a | 5.49 ± 0.07b | 5.21 ± 0.08c | 5.29 ± 0.10c |
Behenic acid (C22:0) | 13.26 ± 0.18e | 7.25 ± 0.11f | 6.86 ± 0.10f | 5.07 ± 0.08f | 29.84 ± 0.70a | 19.00 ± 0.19d | 27.41 ± 0.55b | 23.37 ± 0.51c |
Lignoceric acid (C24:0) | 3.18 ± 0.03a | 2.15 ± 0.02e | 2.21 ± 0.02f | 1.73 ± 0.02f | 2.53 ± 0.03e | 3.12 ± 0.02b | 2.93 ± 0.03d | 3.02 ± 0.03c |
Total | 258.87 ± 3.64d | 253.35 ± 3.14d | 239.39 ± 4.19f | 189.32 ± 6.19f | 293.86 ± 5.57a | 284.99 ± 5.36b | 281.45 ± 5.63b | 274.9 ± 5.38c |
Unsaturated fatty acids | ||||||||
Palmitoleic acid (C16:1) | 1.04 ± 0.01f | 2.96 ± 0.03c | 1.14 ± 0.01f | 0.95 ± 0.01f | 2.07 ± 0.02d | 4.59 ± 0.05a | 1.95 ± 0.03e | 2.45 ± 0.02b |
Elaidic acid (C18:1t) | 5.75 ± 0.06e | 1.26 ± 0.01f | nd 2 | nd | 19.17 ± 0.38a | 10.86 ± 0.30d | 15.40 ± 0.18b | 14.38 ± 0.18c |
Oleic acid (C18:1c) | 319.88 ± 7.02c | 325.63 ± 7.86b | 337.74 ± 7.48a | 244.59 ± 6.25 | 297.49 ± 6.01d | 340.89 ± 11.05a | 281.55 ± 5.21f | 290.85 ± 5.41e |
Linolelaidic acid (18:2t) | 5.51 ± 0.06c | 0.92 ± 0.00d | nd | nd | 0.49 ± 0.00e | nd | 9.52 ± 0.10a | 9.38 ± 0.09b |
Linoleic acid (C18:2c) | 700.32 ± 12.21c | 754.74 ± 13.35a | 715.75 ± 15.14b | 588.46 ± 15.81f | 603.13 ± 14.03e | 659.78 ± 18.60d | 602.09 ± 15.44e | 608.77 ± 10.01e |
ɤ-Linolenic acid(C18:3n6) | nd | nd | nd | nd | 1.49 ± 0.01a | 1.21 ± 0.01c | 1.18 ± 0.01b | 1.21 ± 0.01c |
Eicosenic acid (C20:1) | 2.53 ± 0.03e | 3.21 ± 0.03b | 2.83 ± 0.03c | 2.17 ± 0.02f | 2.77 ± 0.03d | 3.87 ± 0.02a | 2.35 ± 0.03e | 2.53 ± 0.03e |
α-Linolenic acid (C18:3n3) | 120.81 ± 8.19c | 134.08 ± 3.84a | 125.36 ± 3.59b | 105.04 ± 5.05e | 99.94 ± 2.05e | 112.83 ± 2.93d | 91.92 ± 1.22f | 99.73 ± 1.50e |
Eicosadienoic acid (C20:2) | 13.21 ± 0.23d | 2.85 ± 0.01e | 1.69 ± 0.02f | 1.03 ± 0.00f | 35.04 ± 0.81a | 23.30 ± 0.35c | 34.57 ± 0.48a | 30.26 ± 0.40b |
Eicosatrienoic acid (C20:3n6) | nd | 1.48 ± 0.01b | nd | nd | nd | nd | nd | 18.71 ± 0.21a |
Erucic acid (C22:1n9) | nd | 1.86 ± 0.02b | nd | nd | 0.54 ± 0.00c | 2.66 ± 0.02a | nd | nd |
Arachidonic acid (C20:4n6) | nd | nd | nd | nd | 0.95 ± 0.01b | 1.42 ± 0.01a | 1.49 ± 0.01a | 1.53 ± 0.02a |
Eicosapentaenoic acid (C20:5n3) | nd | nd | nd | nd | 0.90 ± 0.01b | 1.37 ± 0.01a | 0.77 ± 0.01c | 0.63 ± 0.01d |
Nervonic acid (C24:1n9) | 1.03 ± 0.01e | nd | nd | nd | 1.83 ± 0.02a | 1.24 ± 0.01d | 1.79 ± 0.02b | 1.61 ± 0.02c |
Total | 1171.13 ± 27.76c | 1228.99 ± 25.16a | 1184.51 ± 26.27b | 942.9 ± 22.09f | 1065.81 ± 23.38f | 1164.02 ± 33.36 | 1044.58 ± 22.74g | 1082.04 ± 17.55e |
Total fatty acids | 1430.0 ± 31.40c | 1482.34 ± 28.30a | 1424.9 ± 30.46d | 1132.22 ± 28.28g | 1359.67 ± 28.95e | 1449.01 ± 38.72b | 1326.03 ± 28.37f | 1356.99 ± 22.93e |
Contents 1 (μg/g d.w.) | Addition Ratio of Mountain-Cultivated Ginseng (%) | |||||||
---|---|---|---|---|---|---|---|---|
Unfermented Chenoggukjang | Fermented Chenoggukjang | |||||||
0 | 2.5 | 5.0 | 10 | 0 | 2.5 | 5.0 | 10 | |
Isoflavones | ||||||||
Daidzin | 669.44 ± 13.14a | 659.43 ± 13.19a | 633.50 ± 12.67b | 590.05 ± 10.25c | 138.14 ± 3.45d | 140.44 ± 2.91d | 135.52 ± 2.54d | 121.71 ± 2.44e |
Glycitin | 309.76 ± 6.21a | 306.36 ± 6.13a | 317.94 ± 6.36a | 285.72 ± 5.71b | 255.14 ± 4.21c | 194.13 ± 3.54d | 194.88 ± 3.88d | 168.94 ± 3.12e |
Genistin | 847.44 ± 14.25a | 856.8 ± 17.14a | 804.36 ± 14.22b | 739.92 ± 14.80c | 93.68 ± 1.87d | 94.48 ± 1.87d | 85.95 ± 1.68e | 95.83 ± 2.00d |
Daidzein | 57.65 ± 1.15e | 51.26 ± 1.03f | 48.06 ± 0.96g | 48.34 ± 0.97g | 613.53 ± 12.25a | 575.99 ± 11.52b | 545.13 ± 10.88c | 483.17 ± 9.55d |
Glycitein | 9.71 ± 0.19d | nd 2 | nd | nd | 87.06 ± 1.74b | 93.24 ± 1.86a | 95.69 ± 2.01a | 82.52 ± 1.70c |
Genistein | 48.81 ± 0.98d | 45.54 ± 0.91d | 45.39 ± 0.88d | 45.14 ± 0.90d | 354.41 ± 7.09c | 421.7 ± 7.78a | 378.41 ± 7.88b | 343.62 ± 6.54c |
Total | 1942.81 ± 35.92a | 1919.39 ± 38.39a | 1849.25 ± 35.09b | 1709.17 ± 32.63c | 1540.96 ± 30.61d | 1519.98 ± 29.48e | 1435.58 ± 28.87f | 1295.79 ± 25.35g |
Ginsenosides | ||||||||
Ginsenoside Rg1 | nd | nd | nd | 65.64 ± 1.51a | nd | nd | 33.28 ± 0.74c | 45.52 ± 1.01b |
Ginsenoside Re | nd | nd | 99.35 ± 2.01b | 258.33 ± 6.14a | nd | nd | 33.60 ± 0.77d | 58.85 ± 1.24c |
Ginsenoside Rf | nd | 19.56 ± 0.39d | 31.64 ± 0.66b | 88.94 ± 1.88a | nd | nd | nd | 22.01 ± 0.38c |
Ginsenoside Rg2 | nd | 129.51 ± 2.11d | 187.22 ± 3.24c | 360.83 ± 7.54a | nd | nd | nd | 280.23 ± 5.77b |
Ginsenoside F1 | nd | nd | nd | 54.09 ± 1.25a | nd | nd | nd | 12.15 ± 0.28b |
Protopanaxtriol | nd | 37.00 ± 0.84c | 36.33 ± 0.87c | 39.93 ± 0.91b | nd | 29.25 ± 0.61d | 30.06 ± 0.65d | 56.79 ± 1.45a |
Ginsenoside Rb2 | nd | nd | 183.40 ± 3.77b | 294.09 ± 5.99a | nd | nd | nd | 44.57 ± 1.01b |
Ginsenoside Rd | nd | nd | nd | nd | nd | nd | 18.08 ± 0.37a | nd |
Ginsenoside Rd2 | nd | nd | nd | 327.40 ± 6.75a | nd | 96.27 ± 2.11c | 94.63 ± 1.99c | 146.20 ± 3.22b |
Ginsenoside F2 | nd | 66.62 ± 1.64f | 110.48 ± 2.54e | 165.61 ± 3.48d | nd | 200.35 ± 3.58c | 233.68 ± 4.54b | 298.72 ± 6.10a |
Ginsenoside Rg3 | nd | 56.51 ± 1.03e | 65.56 ± 1.01d | 96.05 ± 2.00b | nd | 89.43 ± 1.87c | 94.71 ± 1.99b | 166.90 ± 3.84a |
Compound K | nd | 28.54 ± 0.61f | 41.63 ± 0.90e | 96.23 ± 2.15c | nd | 69.43 ± 1.48d | 150.72 ± 3.12b | 231.33 ± 4.88a |
Ginsenoside Rh2 | nd | nd | nd | 28.60 ± 0.61c | nd | 24.58 ± 0.51d | 33.94 ± 0.71b | 82.32 ± 1.97a |
Protopanaxdiol | nd | 706.23 ± 15.11d | 811.50 ± 16.55c | 843.07 ± 17.01b | nd | 806.48 ± 16.24c | 840.29 ± 17.11b | 1035.15 ± 21.45a |
Total | nd | 1043.97 ± 21.73e | 1567.11 ± 31.55c | 2718.81 ± 57.22a | nd | 1315.79 ± 26.40d | 1562.99 ± 31.99c | 2480.74 ± 52.60b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, J.; Lee, H.Y.; Jeong, J.B.; Cho, D.Y.; Kim, D.H.; Lee, J.H.; Lee, G.Y.; Jang, M.Y.; Lee, J.H.; Cho, K.M. Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus. Foods 2024, 13, 3155. https://doi.org/10.3390/foods13193155
Seong J, Lee HY, Jeong JB, Cho DY, Kim DH, Lee JH, Lee GY, Jang MY, Lee JH, Cho KM. Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus. Foods. 2024; 13(19):3155. https://doi.org/10.3390/foods13193155
Chicago/Turabian StyleSeong, Jina, Hee Yul Lee, Jong Bin Jeong, Du Yong Cho, Da Hyun Kim, Ji Ho Lee, Ga Young Lee, Mu Yeun Jang, Jin Hwan Lee, and Kye Man Cho. 2024. "Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus" Foods 13, no. 19: 3155. https://doi.org/10.3390/foods13193155
APA StyleSeong, J., Lee, H. Y., Jeong, J. B., Cho, D. Y., Kim, D. H., Lee, J. H., Lee, G. Y., Jang, M. Y., Lee, J. H., & Cho, K. M. (2024). Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus. Foods, 13(19), 3155. https://doi.org/10.3390/foods13193155