An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture and Genomic DNA Extraction
2.2. Design of Primers, sgRNA, and ssDNA Probes
2.3. PCR/qPCR/RPA Amplification Reaction
2.4. Visualization Platform for RPA–CRISPR/Cas12a–LFA Detection
2.5. Specificity and Sensitivity Assessment of the RPA–CRISPR/Cas12a–LFA System
2.6. Application of the Shigella flexneri RPA–CRISPR/Cas12aLFA Detection Method to Artificially Contaminated Samples
2.7. Validation of the RPA–CRISPR/Cas12a–LFA System with Actual Samples
2.8. Data Analyses
3. Results and Discussion
3.1. Working Principle of the RPA–CRISPR/Cas12a–LFA Detection System
3.2. Optimization of the RPA Reaction for the RPA–CRISPR/Cas12a–LFA System
3.3. Sensitivity and Specificity of the RPA Reaction
3.4. Feasibility of crRNA-Guided Cis- and Trans-Cleavage by Cas12a
3.5. RPA–CRISPR/Cas12a Assay Optimization
3.6. Sensitivity and Specificity Evaluation of the RPA–CRISPR/Cas12a–LFA Platform
3.7. Sensitivity of the RPA–CRISPR/Cas12a–LFA Method in Artificially Contaminated Samples
3.8. Evaluating the Consistency between RPA–CRISPR/Cas12a–LFA and qPCR in Actual Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adsit, F.G., Jr.; Randall, T.A.; Locklear, J.K.; Kurtz, D.M. The emergence of the tetrathionate reductase operon in the Escherichia coli/Shigella pan-genome. Microbiol. Open 2022, 11, e1333. [Google Scholar] [CrossRef] [PubMed]
- Akiba, T.; Koyama, K.; Ishiki, Y.; Kimura, S.; Fukushima, T. On the mechanism of the development of multiple drug-resistant clones of Shigella. Jpn. J. Microbiol. 1960, 4, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.I.; Aman, R.; Mahfouz, M. Onsite detection of plant viruses using isothermal amplification assays. Plant Biotechnol. J. 2022, 20, 1859–1873. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, W.; Jin, J.; Hao, Y.; Jiang, L.; Xie, Y.; Zhang, H. Development of a recombinase polymerase amplification assay with lateral flow dipstick (RPA-LFD) for rapid detection of spp. and enteroinvasive. PLoS ONE 2022, 17, e0278869. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Xu, L.; Guo, X.; Yang, H.; Zhuang, L.; Li, Y.; Wang, Z.; Gu, B. Rapid and sensitive detection of Shigella flexneri using fluorescent microspheres as label for immunochromatographic test strip. Ann. Transl. Med. 2019, 7, 565. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Wang, H.; Yan, Y.; Zhu, G.; Chen, Z. Development and Application of a Multiplex Fluorescent PCR for Shigella Detection and Species Identification. J. Fluoresc. 2022, 32, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Y.; Lv, X.; Deng, Y.; Li, X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023, 260, 124645. [Google Scholar] [CrossRef] [PubMed]
- Jolany, V.; Somayeh, K.; Camellia, B.; Hannah, A.; Hajizade, A.; Sijercic, A.; Ahmadian, G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol. Proced. Online 2020, 22, 22. [Google Scholar] [CrossRef]
- Farzad, K.; Amirhossein, S. Fluoroquinolones-resistant species in Iranian children: A meta-analysis. World J. Pediatr. 2019, 15, 441–453. [Google Scholar]
- Khalil, I.A.; Troeger, C.; Blacker, B.F.; Rao, P.C.; Brown, A.; Atherly, D.E.; Brewer, T.G.; Engmann, C.M.; Houpt, E.R.; Kang, G.; et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 2018, 18, 1229–1240. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Hasan, M.R.; Hossain, S.I.; Ahommed, M.S.; Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens. Bioelectron. 2020, 166, 112431. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Oh, S.-W. Development of a filtration-based LAMP–LFA method as sensitive and rapid detection of E. coli O157:H7. J. Food Sci. Technol.-Mysore 2019, 56, 2576–2583. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.R.; Mark, S.P.-M.; James, A.P.; Patricia, Z.; Anita, K.M. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ku, H.-J.; Lee, D.-H.; Kim, Y.-T.; Shin, H.; Ryu, S.; Lee, J.-H. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both O157:H7 and: Potential as a Biocontrol Agent in Food. PLoS ONE 2016, 11, e0168985. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Hu, A.; Cui, J.; Yang, K.; Liu, Y.; Deng, G.; Zhu, C.; Zhu, L. Rapid One-Tube RPA-CRISPR/Cas12 Detection Platform for Methicillin-Resistant Staphylococcus aureus. Diagnostics 2022, 12, 829. [Google Scholar] [CrossRef]
- Liu, L.; Duan, J.-J.; Wei, X.-Y.; Hu, H.; Wang, Y.-B.; Jia, P.-P.; Pei, D.-S. Generation and application of a novel high-throughput detection based on RPA-CRISPR technique to sensitively monitor pathogenic microorganisms in the environment. Sci. Total Environ. 2022, 838, 156048. [Google Scholar] [CrossRef]
- Lv, X.; Cao, W.; Zhang, H.; Zhang, Y.; Shi, L.; Ye, L. CE–RAA–CRISPR assay: A rapid and sensitive method for detecting Vibrio parahaemolyticus in seafood. Foods 2022, 11, 1681. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Kitahara, K.; Mitra, D.; Ohno, A.; Khatiwada, J.; Dutta, S.; Miyoshi, S.-I. Burden of Shigella in South Asia: A systematic review and meta-analysis. J. Travel Med. 2023, 30, taac132z. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Kitahara, K.; Mitra, D.; Ohno, A.; Khatiwada, J.; Dutta, S.; Miyoshi, S.-I. Ov-RPA–CRISPR/Cas12a assay for the detection of Opisthorchis viverrini infection in field-collected human feces. Parasites Vectors 2024, 17, 80. [Google Scholar]
- Qian, J.; Huang, D.; Ni, D.; Zhao, J.; Shi, Z.; Fang, M.; Xu, Z. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control 2022, 132, 108485. [Google Scholar] [CrossRef]
- Shi, Y.; Kang, L.; Mu, R.; Xu, M.; Duan, X.; Li, Y.; Yang, C.; Ding, J.-W.; Wang, Q.; Li, S. CRISPR/Cas12a-Enhanced Loop-Mediated Isothermal Amplification for the Visual Detection of Shigella flexneri. Front. Bioeng. Biotechnol. 2022, 10, 845688. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tan, Q.; Gong, T.; Li, Q.-y.; Zhu, Y.; Duan, X.; Yang, C.; Ding, J.-w.; Li, S.; Xie, H.; et al. Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri. Microchim. Acta 2024, 191, 271. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, M.; Duan, X.; Li, S.; Ding, J.-w.; Chen, L. WarmStart colorimetric loop-mediated isothermal amplification for the one-tube, contamination-free and visualization detection of Shigella flexneri. Int. J. Infect. Dis. 2021, 112, 55–62. [Google Scholar] [CrossRef]
- Song, M.-S.; Sekhon, S.S.; Shin, W.-R.; Kim, H.C.; Min, J.; Ahn, J.-Y.; Kim, Y.-H. Detecting and Discriminating Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017, 22, 825. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, P.; He, J.; Li, W.; Shi, Y.; Xu, J.; Wu, Q.; Chen, Q.; Li, W.; Wang, X.; et al. Rapid and simultaneous visual screening of SARS-CoV-2 and influenza virufses with customized isothermal amplification integrated lateral flow strip. Biosens. Bioelectron. 2022, 197, 113771. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.N.; Anders, K.L.; Le, T.; Quynh, N.H.; Thanh, T.; Pham, V.; Minh, L.; Thi, P.; Tu, T.; Do, H.; et al. A cohort study to define the age-specific incidence and risk factors of diarrhoeal infections in Vietnamese children: A study protocol. BMC Public Health 2014, 14, 1289. [Google Scholar] [CrossRef]
- Wang, J.; Lan, R.; Knirel, Y.A.; Luo, X.; Senchenkova, S.N.; Shashkov, A.S.; Xu, J.; Sun, Q. Serological Identification and Prevalence of a Novel O-Antigen Epitope Linked to 3- and 4-O-Acetylated Rhamnose III of Lipopolysaccharide in Shigella flexneri. J. Clin. Microbiol. 2014, 52, 2033–2038. [Google Scholar] [CrossRef]
- Yang, P.; Chou, S.-J.; Li, J.; Hui, W.; Liu, W.; Sun, N.; Zhang, R.Y.; Zhu, Y.; Tsai, M.-L.; Lai, H.I.; et al. Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Sci. Adv. 2020, 6, eabb7107. [Google Scholar] [CrossRef]
- Zhao, G.; Zhan, X. Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite. Electrochim. Acta 2010, 55, 2466–2471. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Q.; Yang, H.; Zhang, Y.; Guo, W.; Zhang, W. An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food. Food Control 2023, 146, 109528. [Google Scholar] [CrossRef]
- Lin, L.; Zha, G.; Wei, H.; Zheng, Y.; Yang, P.; Liu, Y.; Liu, M.; Wang, Z.; Zou, X.; Zhu, H.; et al. Rapid detection of Staphylococcus aureus in food safety using an RPA-CRISPR-Cas12a assay. Food Control 2023, 145, 109505. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Hu, X.; Tang, X.; Zhang, C. A rapid and high-throughput Helicobacter pylori RPA-CRISPR/Cas12a-based nucleic acid detection system. Clinica Chimica Acta 2023, 540, 117201. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, G.; Li, X.; Xu, Z.; Lei, H.; Shen, X. Development of rapid and easy detection of Salmonella in food matrics using RPA-CRISPR/Cas12a method. LWT Food Sci. Technol. 2022, 162, 113443. [Google Scholar] [CrossRef]
- Luo, J.W.; Xu, D.; Wang, J.; Liu, H.; Li, Y.; Zhang, Y.; Zeng, H.; Deng, B.; Liu, X. A Dual-mode platform for the rapid detection of O157:H7 based on CRISPR/Cas12a and RPA. Anal. Bioanal. Chem. 2024, 416, 3509–3518. [Google Scholar] [CrossRef]
- Wang, J.B.; Xu, D.; Liu, H.; Liu, J.; Zhu, L.; Zeng, H.; Wu, W. A visual, rapid, and sensitive detection platform for Vibrio parahaemolyticus based on RPA-CRISPR/Cas12a and an immunochromatographic test strip. Food Qual. Saf. 2024, 8, fyae008. [Google Scholar] [CrossRef]
Name | Sequence |
---|---|
SF1-F | GCCACGACTATGCTGTAACTTTCCCGGATG |
SF1-R | CTTACCGCCAATCTCTTCGGAGGCAGCTGA |
SF2-F | CGATAATGATACCGGCGCTCTGCTCTCCCTG |
SF2-R | CTTCCAGACCATGCTCGCAGAGAAACTTCAG |
SF3-F | CTGCATGGCTGGAAAAACTCAGTGCCTCTG |
SF3-R | GTTCTGACTTTATCCCGGGCAATGTCCTCC |
crRNA | GAAUUUCUACUGUUGUAGAUUGGUCCGGGUUAUUGUCACCAGAA |
Serial Number | Species | Detection Results |
---|---|---|
1 | Shigella flexneri | + |
2 | Escherichia coli O157:H7 | − |
3 | Enteroinvasive Escherichia coli | − |
4 | Enterotoxigenic Escherichia coli | − |
5 | Escherichia coli O127:K63 | − |
6 | Escherichia coli EPEC O86:K61 | − |
7 | Staphylococcus aureus | − |
8 | Cronobacter sakazakii | − |
9 | Listeria monocytogenes | − |
10 | Vibrio alginolyticus | − |
11 | Pseudomonas aeruginosa | − |
12 | Pseudomonas aeruginosa | − |
13 | Vibrio parahaemolyticus | − |
14 | Vibrio vulnificus | − |
15 | Vibrio alginolyticus | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, T.; Lv, X.; Shi, L.; Bai, W.; Ye, L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods 2024, 13, 3200. https://doi.org/10.3390/foods13193200
Xu J, Zhang T, Lv X, Shi L, Bai W, Ye L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods. 2024; 13(19):3200. https://doi.org/10.3390/foods13193200
Chicago/Turabian StyleXu, Jieru, Tianxin Zhang, Xinrui Lv, Lei Shi, Weibin Bai, and Lei Ye. 2024. "An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples" Foods 13, no. 19: 3200. https://doi.org/10.3390/foods13193200
APA StyleXu, J., Zhang, T., Lv, X., Shi, L., Bai, W., & Ye, L. (2024). An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods, 13(19), 3200. https://doi.org/10.3390/foods13193200