Meat Inspection Decisions Regarding Pig Carcasses Affected by Osteomyelitis at the Slaughterhouse: From Etiopathogenesis to Total Condemnation Criteria
Abstract
:1. Introduction
2. Pathogenesis of Osteomyelitis
3. Microorganisms Associated with Osteomyelitis in Pigs
4. Risk Factors for Osteomyelitis in Pigs
5. Osteomyelitis as a Cause of Carcass Condemnation and Decision-Making Criteria
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Research and Markets. Global Pork Market Forecast (2018 to 2026)—By Production, Consumption, Import, Export & Company. 2020. Available online: https://www.globenewswire.com/news-release/2020/05/12/2031727/0/en/Global-Pork-Market-Forecast-2018-to-2026-By-Production-Consumption-Import-Export-Company.html (accessed on 24 May 2024).
- Tao, F.; Peng, Y. A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique. J. Food Eng. 2014, 126, 98–106. [Google Scholar] [CrossRef]
- Riess, L.E.; Hoelzer, K. Implementation of visual-only swine inspection in the European Union: Challenges, opportunities, and lessons learned. J. Food Prot. 2020, 83, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Langforth, S.; Isbrandt, R.; Langkabel, N.; Sotiraki, S.; Anastasiadou, S.; Nesbakken, T.; Meemken, D. Food chain information for pigs in Europe: A study on the status quo, the applicability and suggestions for improvements. Food Control 2024, 157, 110174. [Google Scholar] [CrossRef]
- Vecerek, V.; Voslarova, E.; Semerad, Z.; Passantino, A. The health and welfare of pigs from the perspective of post mortem findings in slaughterhouses. Animals 2020, 10, 825. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diez, J.; Coelho, A.C. Causes and factors related to pig carcass condemnation. Vet. Med. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Teiga-Teixeira, P.; Alves Rodrigues, M.; Moura, D.; Teiga-Teixeira, E.; Esteves, A. Osteomyelitis in Pig Carcasses at a Portuguese Slaughterhouse: Association with Tail-Biting and Teeth Resection. Animals 2024, 14, 1794. [Google Scholar] [CrossRef]
- Baekbo, A.K.; Petersen, J.V.; Larsen, M.H.; Alban, L. The food safety value of de-boning finishing pig carcasses with lesions indicative of prior septicemia. Food Control 2016, 69, 177–184. [Google Scholar] [CrossRef]
- Vieira-Pinto, M.; Azevedo, J.; Poeta, P.; Pires, I.; Ellebroek, L.; Lopes, R.; Veloso, M.; Alban, L. Classification of vertebral osteomyelitis and associated judgment applied during post-mortem inspection of swine carcasses in Portugal. Foods 2020, 9, 1502. [Google Scholar] [CrossRef]
- Jensen, L.K.; Johansen, A.S.; Jensen, H.E. Porcine models of biofilm infections with focus on pathomorphology. Front. Microbiol. 2017, 8, 1961. [Google Scholar] [CrossRef]
- Madson, D.M.; Arruda, P.H.; Arruda, B.L. Nervous and locomotor system. In Diseases of Swine, 11th ed.; Jeffrey, J.Z., Lock, A.K., Ramirez, A., Kent, J.S., Gregory, W.S., Zhang, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 339–372. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2019/627 of 15 March 2019, laying down uniform practical arrangements for the performance of official controls on products of animal origin intended for human consumption in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and amending Commission Regulation (EC) No 2074/2005 as regards official controls. Off. J. Eur. Union 2019, 131, 51–100. [Google Scholar]
- Clegg, P.D. Osteomyelitis in the veterinary species. In Biofilms and Veterinary Medicine; Springer Series on Biofilms; Percival, S., Knottenbelt, D., Cochrane, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6, pp. 175–190. [Google Scholar] [CrossRef]
- González-Martín, M.; Silva, V.; Poeta, P.; Corbera, J.A.; Tejedor-Junco, M.T. Microbiological aspects of osteomyelitis in veterinary medicine: Drawing parallels to the infection in human medicine. Vet. Q. 2022, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.E.; Dittmer, K.E.; Thompson, K.G. Bones and Joints. In Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals, 6th ed.; Maxie, G., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 16–163. [Google Scholar]
- Roux, K.M.; Cobb, L.H.; Seitz, M.A.; Priddy, L.B. Innovations in osteomyelitis research: A review of animal models. Anim. Models Exp. Med. 2021, 4, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gieling, F.; Peters, S.; Erichsen, C.; Richards, R.G.; Zeiter, S.; Moriarty, T.F. Bacterial osteomyelitis in veterinary orthopedics: Pathophysiology, clinical presentation and advances in treatment across multiple species. Vet. J. 2019, 250, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Giebels, F.; Geissbühler, U.; Oevermann, A.; Grahofer, A.; Olias, P.; Kuhnert, P.; Maiolini, A. Vertebral fracture due to Actinobacillus pleuropneumoniae osteomyelitis in a weaner. BMC Vet. Res. 2020, 16, 438. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, J.; Saraiva, S.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.T.; Saraiva, C. The importance of the slaughterhouse in surveilling animal and public health: A systematic review. Vet. Sci. 2023, 10, 167. [Google Scholar] [CrossRef]
- Thomson, J.R.; Friendship, R.M. Digestive system. In Disease of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 234–263. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, Y.; Yu, L.; Chen, M.; Guo, Y.; Kang, Z.; Qu, C.; Tian, C.; Zhang, D.; Liu, M. TatD DNases contribute to biofilm formation and virulence in Trueperella pyogenes. Front. Microbiol. 2021, 12, 758465. [Google Scholar] [CrossRef]
- Costinar, L.; Badea, C.; Marcu, A.; Pascu, C.; Herman, V. Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania. Antibiotics 2024, 13, 277. [Google Scholar] [CrossRef]
- Tamai, I.A.; Mohammadzadeh, A.; Mahmoodi, P.; Pakbin, B.; Salehi, T.Z. Antimicrobial susceptibility, virulence genes and genomic characterization of Trueperella pyogenes isolated from abscesses in dairy cattle. Res. Vet. Sci. 2023, 154, 29–36. [Google Scholar] [CrossRef]
- Serbessa, T.A.; Geleta, Y.G.; Terfa, I.O. Review on diseases and health management of poultry and swine. Int. J. Avian Wildl. Biol. 2023, 7, 27–38. [Google Scholar] [CrossRef]
- Kawanishi, M.; Matsuda, M.; Abo, H.; Ozawa, M.; Hosoi, Y.; Hiraoka, Y.; Harada, S.; Kumakawa, M.; Sekiguchi, H. Prevalence and Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Pigs in Japan. Antibiotics 2024, 13, 155. [Google Scholar] [CrossRef]
- Smith, R.P.; Sharma, M.; Gilson, D.; Anjum, M.; Teale, C.J. Livestock-associated methicillin-resistant Staphylococcus aureus in slaughtered pigs in England. Epidemiol. Infect. 2021, 149, e236. [Google Scholar] [CrossRef]
- EFSA—Monitoring of Foodborne Diseases. Available online: https://www.efsa.europa.eu/en/microstrategy/FBO-dashboard (accessed on 1 August 2024).
- Pal, M.; Shuramo, M.Y.; Tewari, A.; Srivastava, J.P.; Steinmetz, C.H.D. Staphylococcus aureus from a Commensal to Zoonotic Pathogen: A Critical Appraisal. Int. J. Clin. Exp. Med. Res 2023, 7, 220–228. [Google Scholar] [CrossRef]
- Gungor, C.; Onmaz, N.E.; Gundog, D.A.; Yavas, G.T.; Koskeroglu, K.; Gungor, G. Four novel bacteriophages from slaughterhouse: Their potency on control of biofilm-forming MDR S. aureus in beef model. Food Control 2024, 156, 110146. [Google Scholar] [CrossRef]
- Bouchami, O.; Fraqueza, M.J.; Faria, N.A.; Alves, V.; Lawal, O.U.; de Lencastre, H.; Miragaia, M. Evidence for the dis-semination to humans of methicillin-resistant Staphylococcus aureus ST398 through the pork production chain: A study in a Portuguese slaughterhouse. Microorganisms 2020, 8, 1892. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.; Gomes, A.; Ruiz-Ripa, L.; Mama, O.M.; Sabença, C.; Sousa, M.; Silva, V.; Sousa, T.; Vieira-Pinto, M.; Igrejas, G.; et al. Methicillin-resistant Staphylococcus aureus CC398 in purulent lesions of piglets and fattening pigs in Portugal. Microb. Drug Resist. 2020, 26, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Hennig-Pauka, I.; Hartmann, M.; Merkel, J.; Kreienbrock, L. Coinfections and Phenotypic Antimicrobial Resistance in Actinobacillus pleuropneumoniae Strains Isolated From Diseased Swine in North Western Germany—Temporal Patterns in Samples from Routine Laboratory Practice from 2006 to 2020. Front. Vet. Sci. 2022, 8, 802570. [Google Scholar] [CrossRef]
- Maes, D.; Sibila, M.; Pieters, M.; Haesebrouck, F.; Segalés, J.; de Oliveira, L.G. Review on the methodology to assess respiratory tract lesions in pigs and their production impact. Vet. Res. 2023, 54, 8. [Google Scholar] [CrossRef]
- Seakamela, E.M.; Henton, M.M.; Jonker, A.; Kayoka-Kabongo, P.N.; Matle, I. Temporal and Serotypic Dynamics of Actinobacillus pleuropneumoniae in South African Porcine Populations: A Retrospective Study from 1985 to 2023. Pathogens 2024, 13, 599. [Google Scholar] [CrossRef]
- Tenk, M.; Tóth, G.; Márton, Z.; Sárközi, R.; Szórádi, A.; Makrai, L.; Pálmai, N.; Szalai, T.; Albert, M.; Fodor, L. Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs. Vet. Sci. 2024, 11, 62. [Google Scholar] [CrossRef]
- Meyns, T.; Van Steelant, J.; Rolly, E.; Dewulf, J.; Haesebrouck, F.; Maes, D. A cross-sectional study of risk factors as-sociated with pulmonary lesions in pigs at slaughter. Vet. J. 2011, 187, 388–392. [Google Scholar] [CrossRef]
- Vom Brocke, A.L.; Karnholz, C.; Madey-Rindermann, D.; Gauly, M.; Leeb, C.; Winckler, C.; Schrader, L.; Dippel, S. Tail Lesions in Fattening Pigs: Relationships with Post-mortem Meat Inspection and Influence of a Tail biting Management Tool. Animal 2019, 13, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Boyle, L.A.; Edwards, S.A.; Bolhuis, J.E.; Pol, F.; Šemrov, M.Z.; Schütze, S.; Nordgreen, J.; Bozakova, N.; Sossidou, E.N.; Valros, A. The evidence for a causal link between disease and damaging behavior in pigs. Front. Vet. Sci. 2022, 8, 771682. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Jansen, H.; Amezcua, M.d.R.; O’Sullivan, T.L.; Niel, L.; Shoveller, A.K.; Friendship, R.M. Tail-Biting in Pigs: A Scoping Review. Animals 2021, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Nalon, E.; De Briyne, N. Efforts to Ban the Routine Tail Docking of Pigs and to Give Pigs Enrichment Materials via EU Law: Where Do We Stand a Quarter of a Century on? Animals 2019, 9, 132. [Google Scholar] [CrossRef]
- Kakanis, M.; Marinou, K.; Sossidou, E.N. Greek Pig Farmers’ Perceptions and Experiences of Tail Biting and Tail Docking. Animals 2023, 13, 672. [Google Scholar] [CrossRef]
- Lindén, J.; Pohjola, L.; Rossow, L.; Tognetti, D. Meat Inspection Lesions. In Meat Inspection and Control in the Slaughterhouse, 1st ed.; Ninios, T., Lundén, J., Korkeala, H., Fredriksson-Ahomaa, M., Eds.; Wiley Blackwell: West Sussex, UK, 2014; Chapter 8; pp. 163–199. [Google Scholar] [CrossRef]
- Jensen, H.E.; Leifsson, P.S.; Nielsen, O.L.; Agerholm, J.S.; Iburg, T. Meat Inspection: The Pathoanatomic Basis; Bifolia: Frederiksberg, Denmark, 2017; pp. 661–663. [Google Scholar]
- Alban, L.; Petersen, J.V.; Busch, M.E. A comparison between lesions found during meat inspection of finishing pigs raised under organic/free-range conditions and conventional, indoor conditions. Porc. Health Manag. 2015, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R.; Hemsworth, P. Tail Docking of Piglets 1: Stress Response of Piglets to Tail Docking. Animals 2020, 10, 1701. [Google Scholar] [CrossRef]
- Nannoni, E.; Valsami, T.; Sardi, L.; Martelli, G. Tail docking in pigs: A review on its short-and long-term consequences and effectiveness in preventing tail biting. Ital. J. Anim. Sci. 2014, 13, 3095. [Google Scholar] [CrossRef]
- Gentz, M.; Lange, A.; Zeidler, S.; Lambertz, C.; Gauly, M.; Burfeind, O.; Traulsen, I. Tail Lesions and Losses of Docked and Undocked Pigs in Different Farrowing and Rearing Systems. Agriculture 2020, 10, 130. [Google Scholar] [CrossRef]
- Valros, A.; Heinonen, M. Save the pig tail. Porc. Health Manag. 2015, 1, 2. [Google Scholar] [CrossRef]
- Reese, D.; Straw, B.E. Teeth Clipping—Have You Tried to Quit? Neb. Swine Rep. 2005, 33, 12–13. [Google Scholar]
- Fertner, M.; Denwood, M.; Birkegård, A.C.; Stege, H.; Boklund, A. Associations between antibacterial Treatment and the Prevalence of Tail-Biting-related sequelae in Danish Finishers at slaughter. Front. Vet. Sci. 2017, 4, 182. [Google Scholar] [CrossRef]
- Gomes-Neves, E.; Müller, A.; Correia, A.; Capas-Peneda, S.; Carvalho, M.; Vieira, S.; Cardoso, M.F. Food chain information: Data quality and usefulness in meat inspection in Portugal. J. Food Prot. 2018, 81, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- DGAV. Análise Exploratória dos Dados de Abate de Ungulados para Consumo Humano em Portugal entre Janeiro de 2011 e Dezembro de 2019. 2020. Available online: https://www.dropbox.com/s/26p3sukb6vx6koc/Dados%20de%20abates%20e%20reprova%C3%A7%C3%B5es%20Ungulados%202011%20a%202019.pdf?dl=0 (accessed on 6 July 2024).
- Franco, R.; Gonçalves, S.; Cardoso, M.F.; Gomes-Neves, E. Tail-docking and tail biting in pigs: Findings at the slaughterhouse in Portugal. Livest. Sci. 2021, 254, 104756. [Google Scholar] [CrossRef]
- Bueno, L.S.; Caldara, F.R.; Nääs, I.A.; Salgado, D.D.; García, R.G.; Almeida Paz, I.C. Swine carcass condemnation in commercial slaughterhouses. Rev. MVZ Cordoba 2013, 18, 3836–3842. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Leprini, E.; Sechi, P.; Iulietto, M.F.; Grispoldi, L.; Goretti, E.; Cenci-Goga, B.T. Analysis of the causes of the seizure and destruction of carcasses and organs in a slaughterhouse in central Italy in the 2010–2016 period. Ital. J. Food Saf. 2018, 7, 6899. [Google Scholar] [CrossRef] [PubMed]
- Guardone, L.; Vitali, A.; Fratini, F.; Pardini, S.; Cenci Goga, B.T.; Nucera, D.; Armani, A. A retrospective study after 10 years (2010–2019) of meat inspection activity in a domestic swine abattoir in tuscany: The slaughterhouse as an epidemiological observatory. Animals 2020, 10, 1907. [Google Scholar] [CrossRef]
- Akkina, J.; Burkom, H.; Estberg, L.; Carpenter, L.; Hennessey, M.; Meidenbauer, K. Feral Swine Commercial Slaughter and Condemnation at Federally Inspected Slaughter Establishments in the United States 2017–2019. Front. Vet. Sci. 2021, 8, 690346. [Google Scholar] [CrossRef]
- Rosamilia, A.; Galletti, G.; Benedetti, S.; Guarnieri, C.; Luppi, A.; Capezzuto, S.; Tamba, M.; Merialdi, G.; Marruchella, G. Condemnation of Porcine Carcasses: A Two-Year Long Survey in an Italian High-Throughput Slaughterhouse. Vet. Sci. 2023, 10, 482. [Google Scholar] [CrossRef]
- Alban, L.; Vieira-Pinto, M.; Meemken, D.; Maurer, P.; Ghidini, S.; Santos, S.; Laguna, J.G.; Laukkanen-Ninios, R.; Alvseike, O.; Langkabel, N. Differences in code terminology and frequency of findings in meat inspection of finishing pigs in seven European countries. Food Control 2022, 132, 108394. [Google Scholar] [CrossRef]
- Vieira-Pinto, M.; Langkabel, N.; Santos, S.; Alban, L.; Laguna, J.G.; Blagojevic, B.; Meemken, D.; Bonardi, S.; Antunović, B.; Ghidini, S.; et al. A European survey on post-mortem inspection of finishing pigs: Total condemnation criteria to declare meat unfit for human consumption. Res. Vet. Sci. 2022, 152, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Ninios, T. Judgment of meat. In Meat Inspection and Control in the Slaughterhouse, 1st ed.; Ninios, T., Lundén, J., Korkeala, H., Fredriksson-Ahomaa, M., Eds.; Wiley Blackwell: West Sussex, UK, 2014; Chapter 10; pp. 219–224. [Google Scholar]
- Laukkanen-Ninios, R.; Ghidini, S.; Laguna, J.G.; Langkabel, N.; Santos, S.; Maurer, P.; Meemken, D.; Alban, L.; Alvseike, O. Additional post-mortem inspection procedures and laboratory methods as supplements for visual meat inspection of finishing pigs in Europe—Use and variability. J. Consum. Prot. Food Saf. 2022, 17, 363–375. [Google Scholar] [CrossRef]
- Martínez, J.; Jaro, P.J.; Aduriz, G.; Gómez, E.A.; Peris, B.; Corpa, J.M. Carcass condemnation causes of growth retarded pigs at slaughter. Vet. J. 2007, 174, 160–164. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.A.; Teiga-Teixeira, P.; Seixas, F.; Esteves, A. Meat Inspection Decisions Regarding Pig Carcasses Affected by Osteomyelitis at the Slaughterhouse: From Etiopathogenesis to Total Condemnation Criteria. Foods 2024, 13, 3203. https://doi.org/10.3390/foods13193203
Rodrigues MA, Teiga-Teixeira P, Seixas F, Esteves A. Meat Inspection Decisions Regarding Pig Carcasses Affected by Osteomyelitis at the Slaughterhouse: From Etiopathogenesis to Total Condemnation Criteria. Foods. 2024; 13(19):3203. https://doi.org/10.3390/foods13193203
Chicago/Turabian StyleRodrigues, Melissa Alves, Pedro Teiga-Teixeira, Fernanda Seixas, and Alexandra Esteves. 2024. "Meat Inspection Decisions Regarding Pig Carcasses Affected by Osteomyelitis at the Slaughterhouse: From Etiopathogenesis to Total Condemnation Criteria" Foods 13, no. 19: 3203. https://doi.org/10.3390/foods13193203
APA StyleRodrigues, M. A., Teiga-Teixeira, P., Seixas, F., & Esteves, A. (2024). Meat Inspection Decisions Regarding Pig Carcasses Affected by Osteomyelitis at the Slaughterhouse: From Etiopathogenesis to Total Condemnation Criteria. Foods, 13(19), 3203. https://doi.org/10.3390/foods13193203