Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Quantification of the Aroma Compounds
2.4. Statistical Analysis
2.5. Kinetic Change Rate and Recovery Rate
2.6. Multi-Objective Optimization (MOO)
3. Results and Discussion
3.1. Aroma Compound Change in JXX Baijiu Solid-State Distillation
3.2. Aroma Compound Kinetic Character in JXX Baijiu Solid-State Distillation
3.3. JXX Baijiu Distillation Time Cut Point Selection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Esteban-Decloux, M.; Dechatre, J.-C.; Legendre, P.; Guichard, H. Double batch cider distillation: Influence of the recycling of the separated fractions. LWT 2021, 146, 111420. [Google Scholar] [CrossRef]
- Douady, A.; Puentes, C.; Awad, P.; Esteban-Decloux, M. Batch distillation of spirits: Experimental study and simulation of the behaviour of volatile aroma compounds. J. Inst. Brew. 2019, 125, 268–283. [Google Scholar] [CrossRef]
- Darici, M.; Bergama, D.; Cabaroglu, T. Effect of triple pot still distillation on the volatile compositions during the Rakı production. J. Food Process. Preserv. 2019, 43, e13864. [Google Scholar] [CrossRef]
- Li, H.; Huang, W.; Shen, C.; Yi, B. Optimization of the distillation process of Chinese liquor by comprehensive experimental investigation. Food Bioprod. Process. 2012, 90, 392–398. [Google Scholar] [CrossRef]
- Spaho, N.; Duerr, P.; Grba, S.; Velagic-Habul, E.; Blesic, M. Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. J. Inst. Brew. 2013, 119, 48–56. [Google Scholar] [CrossRef]
- Luna, R.; López, F.; Pérez-Correa, J.R. Design of optimal wine distillation recipes using multi-criteria decision-making techniques. Comput. Chem. Eng. 2020, 145, 107194. [Google Scholar] [CrossRef]
- López, F.; Rodríguez-Bencomo, J.J.; Orriols, I.; Pérez-Correa, J.R. Chapter 10-Fruit Brandies. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 531–556. [Google Scholar]
- He, F.; Duan, J.; Zhao, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chem. 2021, 365, 130430. [Google Scholar] [CrossRef]
- Lukić, I.; Tomas, S.; Miličević, B.; Radeka, S.; Peršurić, Đ. Behaviour of Volatile Compounds During Traditional Alembic Distillation of Fermented Muscat Blanc and Muškat Ruža Porečki Grape Marcs. J. Inst. Brew. 2011, 117, 440–450. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, T.; Li, J.; Zhang, B.; Yu, Y.; Wang, Y.; Niu, H. Variations in Main Flavor Compounds of Freshly Distilled Brandy during the Second Distillation. Int. J. Food Eng. 2014, 10, 809–820. [Google Scholar] [CrossRef]
- Miller, G.H. Whisky Science: A Condensed Distillation; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Lima, U.D.A.; Teixeira, C.G.; Bertozzi, J.C.; Serafim, F.A.T.; Alcarde, A.R. Influence of fast and slow distillation on ethyl carbamate content and on coefficient of non-alcohol components in Brazilian sugarcane spirits. J. Inst. Brew. 2012, 118, 305–308. [Google Scholar] [CrossRef]
- Franitza, L.; Granvogl, M.; Schieberle, P. Influence of the Production Process on the Key Aroma Compounds of Rum: From Molasses to the Spirit. J. Agric. Food Chem. 2016, 64, 9041–9053. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, J.O.; Faúndez, C.A.; Toselli, L.A. Advances on modeling and simulation of alcoholic distillation. Part 1: Thermodynamic modeling. Food Bioprod. Process. 2012, 90, 819–831. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Toselli, L.A.; Faúndez, C.A. Advances on modeling and simulation of alcoholic distillation. Part 2: Process simulation. Food Bioprod. Process. 2012, 90, 832–840. [Google Scholar] [CrossRef]
- Luna, R.; Matias-Guiu, P.; López, F.; Pérez-Correa, J.R. Quality aroma improvement of Muscat wine spirits: A new approach using first-principles model-based design and multi-objective dynamic optimisation through multi-variable analysis techniques. Food Bioprod. Process. 2019, 115, 208–222. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, S.; Jin, G.; Song, S.; Wang, X.; Zhang, R.; Xu, Y. Solvent effects and mass transfer on aroma extraction during solid-state distillation. Food Biosci. 2023, 53, 102682. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, S.; Xu, Y. Solid-State Distillation of Chinese Liquor (Baijiu). In Science and Engineering of Chinese Liquor (Baijiu): Microbiology, Chemistry and Process Technology; Xu, Y., Ed.; Springer Nature: Singapore, 2023; pp. 143–160. [Google Scholar]
- He, F.; Yang, S.; Zhang, G.; Xu, L.; Li, H.; Sun, J.; Huang, M.; Zheng, F.; Sun, B. Exploration of key aroma active compounds in strong flavor Baijiu during the distillation by modern instrument detection technology combined with multivariate statistical analysis methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, J.; Wang, Y.; Zhu, T.; Huang, M.; Ye, H.; Wei, J.; Wu, J.; Sun, J.; Li, H. Research on interaction regularities and mechanisms between lactic acid and aroma compounds of Baijiu. Food Chem. 2022, 397, 133765. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, J.; Zhao, Q.; Zhang, K.; Su, C. Research Progress on Flavor Compounds and Microorganisms of Maotai Flavor Baijiu. J. Food Sci. 2019, 84, 6–18. [Google Scholar] [CrossRef]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the key odorants in light aroma type Chinese Liquor by gas chromatography–olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef]
- Wei, L.; Hu, J.; Pan, C.; Cheng, P.; Zhang, J.; Xi, D.; Chen, M.; Lu, L.; Lu, H.; Hu, F. Effects of different storage containers on the flavor characteristics of Jiangxiangxing baijiu. Food Res. Int. 2023, 172, 113196. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, W.; Xu, Y. Qu-omics elucidates the formation and spatio-temporal differentiation mechanism underlying the microecology of high temperature Daqu. Food Chem. 2024, 438, 137988. [Google Scholar] [CrossRef]
- Michel, H.E.; Menze, E.T. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways. Eur. J. Pharmacol. 2019, 857, 172422. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J. Chromatogr. A 2020, 1610, 460584. [Google Scholar] [CrossRef]
- Cates, V.E.; Meloan, C.E. Separation of sulfones by gas chromatography. J. Chromatogr. A 1963, 11, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, F.; Sun, J.; Ni, L. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chem. 2022, 367, 130624. [Google Scholar] [CrossRef]
- Berhane, T.M.; Levy, J.; Krekeler, M.P.S.; Danielson, N.D. Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite filter medium. Chemosphere 2017, 176, 231–242. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhu, L.; Huang, W.; Yi, B.; Zhang, L.; Shen, C.; Zhang, S.; Xu, D. Variations of flavor substances in distillation process of Chinese luzhou-flavor liquor. J. Food Process Eng. 2012, 35, 314–334. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem.-Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, M.; Zhao, D.; Zheng, J.; Dai, M.; Li, X.; Li, W.; Zhang, C.; Sun, B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Alcarde, A.R.; de Souza, L.M.; Bortoletto, A.M. Ethyl carbamate kinetics in double distillation of sugar cane spirit. J. Inst. Brew. 2012, 118, 27–31. [Google Scholar] [CrossRef]
- Miettinen, K.; Hakanen, J. Why Use Interactive Multi-Objective Optimization in Chemical Process Design? In Multi-Objective Optimization; Advances in Process Systems Engineering; World Scientific: Singapore, 2016; Volume 5, pp. 157–197. [Google Scholar]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
Aroma Compounds | Group | Revaluation with Ethanol | Ce | K |
---|---|---|---|---|
2,3,5,6-tetramethylpyrazine | pyrazines | −0.945318672 | −31,599.88 | −0.03668 |
3-methylbutanol | alcohols | 0.995366909 | 7,306,350.00 | 0.03898 |
1,1-diethoxyethane | aldehydes | 0.985116613 | 16,578.67 | 0.037 |
ethyl acetate | esters | 0.975771218 | 4,101,260.00 | 0.055 |
dimethyl trisulfide | sulfides | 0.901823171 | 2054.20 | 0.04423 |
propanoic acid | acids | −0.981964632 | −648,421.10 | −0.03102 |
2-phenylethanol | alcohols | −0.982819036 | −200,920.97 | −0.03122 |
benzaldehyde | aldehydes | −0.973942394 | −323,923.35 | −0.03089 |
ethyl 3-phenylpropanoate | esters | −0.855488216 | −1323.86 | −0.02075 |
3-hydroxybutan-2-one | ketones | −0.969204139 | −233,640.61 | −0.02929 |
phenol | phenols | −0.847540024 | −4.08 | −0.0627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Yang, Q.; Jin, G.; Yang, S.; Qin, R.; Lyu, L.; Yao, X.; Zhang, R.; Chen, S.; Xu, Y. Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection. Foods 2024, 13, 232. https://doi.org/10.3390/foods13020232
Gao Y, Yang Q, Jin G, Yang S, Qin R, Lyu L, Yao X, Zhang R, Chen S, Xu Y. Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection. Foods. 2024; 13(2):232. https://doi.org/10.3390/foods13020232
Chicago/Turabian StyleGao, Yuchen, Qiang Yang, Guangyuan Jin, Shengzhi Yang, Ruiyang Qin, Linjie Lyu, Xianze Yao, Rongzhen Zhang, Shuang Chen, and Yan Xu. 2024. "Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection" Foods 13, no. 2: 232. https://doi.org/10.3390/foods13020232
APA StyleGao, Y., Yang, Q., Jin, G., Yang, S., Qin, R., Lyu, L., Yao, X., Zhang, R., Chen, S., & Xu, Y. (2024). Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection. Foods, 13(2), 232. https://doi.org/10.3390/foods13020232