The Antioxidant Effect of Burdock Extract on the Oxidative Stability of Lard and Goose Fat during Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Peroxide Value (PV) Determination
2.2.2. Thiobarbituric Acid-Reactive Substances Test (TBARS)
2.2.3. Iodine Value (IV) Determination
2.2.4. Acid Value (AV) Determination
2.2.5. Saponification Value (SV) Determination
2.2.6. Total Polar Compounds (TPoC) Determination
2.2.7. Total Phenolic Content (TPC) Determination
2.2.8. GC Analysis
2.2.9. Microscopic Examination
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Additivation and Heat Treatment on Peroxide Value (PV)
3.2. Effect of Additivation and Heat Treatment on Thiobarbituric Acid-Reactive Substances Test (TBARS)
3.3. Effect of Additivation and Heat Treatment on Iodine Value (IV)
3.4. Effect of Additivation and Heat Treatment on Acid Value (AV)
3.5. Effect of Additivation and Heat Treatment on Saponification Value (SV)
3.6. Effect of Additivation and Heat Treatment on Total Polar Compounds (TPoC)
3.7. Effect of Additivation and Heat Treatment on Total Phenolic Content (TPC)
3.8. Effect of Heat Treatment on Fatty Acid Composition
3.9. Effect of Heat Treatment on Microscopic View
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aladedunye, A.F. Natural antioxidants as stabilizers of frying oils. Eur. J. Lipid Sci. Technol. 2014, 116, 688–706. [Google Scholar] [CrossRef]
- Calvo, L.; Segura, J.; Toldrá, F.; Flores, M.; Rodríguez, A.I.; López-Bote, C.J.; Rey, A.I. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium. Food Sci. Technol. Int. 2017, 23, 716–728. [Google Scholar] [CrossRef]
- Selani, M.M.; Herrero, A.M.; Ruiz-Capillas, C. Plant Antioxidants in Dry Fermented Meat Products with a Healthier Lipid Profile. Foods 2022, 11, 3558. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 2009, 70, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Wangxin, L.; Xianliang, L.; Ying, H.; Zhao, M.; Liu, T.; Wang, J.; Feng, F. Influence of cooking techniques on food quality, digestibility, and health risks regarding lipid oxidation. Food Res. Int. 2023, 167, 112685. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Odoardi, M.; Sacchetti, A.; Martino, G. Qualitative Attributes of Commercial Pig Meat from an Italian Native Breed: The Nero d’Abruzzo. Foods 2022, 11, 1297. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Werenska, M.; Goluch, Z.; Teleszko, M. The protein and fat quality of thigh muscles from Polish goose varieties. Poultry Sci. 2020, 99, 1216–1229. [Google Scholar] [CrossRef]
- Orkusz, A.; Michalczuk, M. Effect of packaging atmosphere on the fatty acid profile of intramuscular, subcutaneous fat, and odor of goose meat. Poultry Sci. 2020, 99, 647–652. [Google Scholar] [CrossRef]
- Daniali, G.; Jinap, S.; Hajeb, P.; Sanny, M. Acrylamide formation in vegetable oils and animal fats during heat treatment. Food Chem. 2016, 212, 244–249. [Google Scholar]
- El Yamani, M.; Sakar, E.H.; Mansouri, F.; Serghini-Caid, H.; Elamrani, A.; Rharrabti, Y. Effect of pigments and total phenols on oxidative stability of monovarietal virgin olive oil produced in Morocco. Riv. Ital. Sostanze Grasse 2019, 96, 17–24. [Google Scholar]
- Shin, D.; Kim, D.Y.; Yune, J.; Kwon, H.C.; Kim, H.J.; Seo, H.G.; Han, S. Oxidative Stability and Quality Characteristics of Duck, Chicken, Swine and Bovine Skin Fats Extracted by Pressurized Hot Water Extraction. Food Sci. Anim. Resour. 2019, 39, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Tejerina, D.; García-Torres, S.; De Vaca, M.C.; Vázquez, F.M.; Cava, R. Effect of production system on physical–chemical, antioxidant and fatty acids composition of Longissimus dorsi and Serratus ventralis muscles from Iberian pig. Food Chem. 2021, 133, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Gruffat, D.; Bauchart, D.; Thomas, A.; Parafita, E.; Durand, D. Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chem. 2021, 343, 128476. [Google Scholar] [CrossRef]
- Márquez-Ruiz, G.; Ruiz-Méndez, V.; Velasco, J. Antioxidants in frying: Analysis and evaluation of efficacy. Eur. J. Lipid Sci. Technol. 2014, 116, 1441–1450. [Google Scholar] [CrossRef]
- Petkova, N.; Hambarlyiska, I.; Tumbarski, Y.; Vrancheva, R.; Raeva, M.; Ivanov, I. Phytochemical Composition and Antimicrobial Properties of Burdock (Arctium lappa L.) Roots Extracts. Biointerface Res. App Chem. 2022, 12, 2826–2842. [Google Scholar]
- De Leonardis, A.; Macciola, V.; Lembo, G.; Aretini, A.; Nag, A. Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem. 2007, 100, 998–1004. [Google Scholar] [CrossRef]
- Réblová, Z. Effect of temperature on the antioxidant activity of phenolic acids. Czech J. Food Sci. 2012, 30, 171–175. [Google Scholar] [CrossRef]
- Petcu, C.D.; Mihai, O.D.; Tăpăloagă, D.; Gheorghe-Irimia, R.A.; Pogurschi, E.N.; Militaru, M.; Borda, C.; Ghimpețeanu, O.M. Effects of Plant-Based Antioxidants in Animal Diets and Meat Products: A Review. Foods 2023, 12, 1334. [Google Scholar] [CrossRef]
- Lehukov, K.A.; Tsikin, S. A study on an effect of the green tea extract on quality and shelf life of animal fats during storage. Meat Process. 2020, 1, 32–42. [Google Scholar]
- Kalinowska, I.W.; Górska-Horczyczak, E.; Stelmasiak, A.; Marcinkowska-Lesiak, M.; Onopiuk, A.; Wierzbicka, A.; Półtorak, A. Effect of Temperature and Oxygen Dose During Rendering of Goose Fat to Promote Fatty Acid Profiles. Eur. J. Lipid Sci. Technol. 2021, 123, 2100085. [Google Scholar] [CrossRef]
- Kulisic, T.; Radonic, A.; Milos, M. Inhibition of lard oxidation by fractions of different essential oils. Grasas y Aceites 2005, 56, 284–291. [Google Scholar]
- Sekretár, S.; Schmidt, S.; Vajdák, M.; Zahradníková, L.; Annus, J. Antioxidative and Antimicrobial Effects of Some Natural Extracts in Lard. Czech J. Food Sci. 2004, 22, 215–218. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Pop, F.; Mihalescu, L. Effects of α-tocopherol and citric acid on the oxidative stability of alimentary poultry fats during storage at low temperatures. Int. J. Food Prop. 2017, 20, 1085–1096. [Google Scholar]
- Pop, F. Effect of microwave heating on quality and fatty acids composition of vegetable oils. Studia UBB Chem. 2018, 63, 43–52. [Google Scholar] [CrossRef]
- Mlcek, J.; Druzbikova, H.; Valasek, L.; Sochor, J.; Jurikova, T.; Borkovcova, M.; Baron, M.; Balla, S. Assessment of total polar materials in frying fats from Czech restaurants. Ital. J. Food Sci. 2015, 27, 32–37. [Google Scholar]
- Singleton, V.L.; Orthofer, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Abelson, J.N., Simon, M.I., Sies, H., Eds.; Academic Press: Burlington, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Gertz, C.; Klostermann, S.; Kochhar, S.P. Testing and comparing oxidative stability of vegetable oils and fats at frying temperature. Eur. J. Lipid Sci. Technol. 2002, 102, 543–551. [Google Scholar] [CrossRef]
- Szabó, A.; Bázár, G.; Locsmándi, L.; Romvári, R. Quality alterations of four frying fats during long-term heating (conventional analysis and NIRS calibration). J. Food Quality 2010, 33, 42–58. [Google Scholar] [CrossRef]
- Caponio, F.; Pasqualone, A.; Gomes, T. Effects of conventional and microwave heating on the degradation of olive oil. Eur. Food Res. Technol. 2002, 215, 114–117. [Google Scholar]
- Wroniak, M.; Krygier, K.; Kaczmarczyk, M. Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Polish J. Food Nutr. Sci. 2008, 58, 85–89. [Google Scholar]
- Azadmard-Damirchi, S.; Habibi-Nodeh, F.; Hesari, J.; Nemati, M.; Achachloei, B.F. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 2010, 121, 1211–1215. [Google Scholar] [CrossRef]
- Réblová, Z. The effect of temperature on the antioxidant activity of tocopherols. Eur. J. Lipid Sci. Technol. 2006, 108, 858–863. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Hayat, K.; Liu, P.; Chengsheng, J.; Shuqin, X.; Xiao, Z.; Tian, H.; Niu, Y. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2010, 124, 203–209. [Google Scholar]
- Moslavac, T.; Jokić, S.; Flanjak, I. Stabilization of goose fat with antioxidants and synergists. MESO First Croat. Meat J. 2022, 24, 436–446. [Google Scholar] [CrossRef]
- Soulti, K.; Roussis, I.G. Inhibition of butter oxidation by some phenolics. Eur. J. Lipid Sci. Technol. 2007, 109, 706–709. [Google Scholar]
- Moslavac, T.; Jokić, S.; Šubarić, D.; Aladić, K. The influence of antioxidants on the oxidative stability of pork fat. MESO: First Croat. Meat J. 2018, 20, 317–324. [Google Scholar] [CrossRef]
- Farhooshi, R.; Moosavi, S.M.R. Evaluating the performance of peroxide and conjugated diene values in monitoring quality of used frying oils. J. Agric. Food Chem. 2009, 11, 173–179. [Google Scholar]
- Gharby, S.; Harhar, H.; Boulbaroud, S.; Bouzouba, Z.; Madani, N.; Chafchaouni, I.; Charrouf, Z. The stability of vegetable oils (sunflower, rapeseed and palm) sold on the Moroccan market at high temperature. Int. J. Chem. Biochem. Sci. 2014, 5, 47–54. [Google Scholar]
- Patel, S.; Shende, S.; Arora, S.; Singh, A.K. An assessment of the antioxidant potential of coriander extracts in ghee when stored at high temperature and during deep fat frying. Int. J. Dairy. Technol. 2013, 66, 207–213. [Google Scholar] [CrossRef]
- Qiuyu, L.; Yehui, Z.; Wenjuan, J.; Liyan, Z. Study of the thermal behavior of rosemary extract and its temperature-related antioxidant effect on chicken fat. J. Food Proces. Preserv. 2022, 46, 16793. [Google Scholar] [CrossRef]
- Xueqi, L.; Bremer, C.; Kristen, N.C.; Courtney, N.; Quyen, A.T.; Shengling, P.; Wang, M.; Ravetti, L.; Guillaume, C.; Yichuan, W.; et al. Changes in chemical compositions of olive oil under different heating temperatures similar to home cooking. J. Food Chem. Nutr. 2016, 4, 7–15. [Google Scholar]
- Skowrońska, W.; Granica, S.; Dziedzic, M.; Kurkowiak, J.; Ziaja, M.; Bazylko, A. Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as well as the Chemical Composition of Extracts from Aerial Parts and from Roots. Plants 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Kim, D.O.; Heo, H.J. Melanogenesis regulatory activity of the ethyl acetate fraction from Arctium lappa L. leaf on α-MSH–induced B16/F10 melanoma cells. Ind. Crops Prod. 2019, 138, 111581. [Google Scholar] [CrossRef]
- Zaixiang, L.; Li, C.; Kou, X.; Yu, F.; Wang, H.; Smith, G.M.; Zhu, S. Antibacterial, Antibiofilm Effect of Burdock (Arctium lappa L.) Leaf Fraction and Its Efficiency in Meat Preservation. J. Food Prot. 2016, 79, 1404–1409. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, M.; Xiao, Z.; Chen, F.; Zhu, J.; Zhu, G. Effect of fatty acids profile with thermal oxidation of chicken fat on characteristic aroma of chicken flavors assessed by gas chromatography-mass spectrometry and descriptive sensory analysis. Food Sci. Technol. Res. 2016, 22, 245–254. [Google Scholar]
- Charuwat, P.; Boardman, G.; Bott, C.; Novak, J.T. Thermal degradation of long chain fatty acids. Water Environ. Res. 2018, 90, 278–287. [Google Scholar] [CrossRef]
Factor | PV | TBARS | IV | AV | SV | TPoC | TPC |
---|---|---|---|---|---|---|---|
Fat type | |||||||
Lard | 4.02 a | 3.15 a | 81.2 b | 0.29 a | 195 b | 1.4 a | 164 a |
Goose fat | 5.19 b | 5.38 b | 82.5 a | 0.20 b | 198 a | 1.6 b | 168 b |
p | <0.01 ** | <0.001 *** | <0.01 ** | <0.01 ** | <0.01 ** | <0.05 * | <0.05 * |
Additivation | |||||||
Non-additivated | 5.60 a | 4.56 a | 82.7 b | 0.45 a | 198 a | 2.7 a | 165 a |
Additivated with 0.01% burdock extract | 4.40 b | 3.20 b | 83.2 a | 0.39 b | 195 b | 1.5 b | 184 b |
p | <0.001 *** | <0.001 *** | <0.05 * | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** |
Heat treatment | |||||||
Unheated | 1.95 f | 0.96 g | 84.7 a | 0.21 f | 195 e | 1.4 a | 164 a |
110 °C | 2.46 e | 1.14 f | 84.5 a | 0.28 e | 196 de | 1.9 | 161 b |
130 °C | 3.16 d | 1.87 e | 84.1 b | 0.35 d | 197 d | 2.7 ab | 157 c |
150 °C | 5.47 c | 2.98 d | 83.2 b | 0.41 c | 198 c | 3.8 a | 149 d |
170 °C | 7.64 b | 4.56 c | 81.5 c | 0.63 b | 200 bc | 5.3 ab | 142 e |
190 °C | 8.84 a | 6.48 b | 80.4 c | 0.78 ab | 201 b | 8.2 ab | 135 f |
210 °C | 8.70 a | 7.64 a | 78.6 d | 0.86 a | 204 a | 12.4 b | 118 g |
p | <0.001 *** | <0.001 *** | <0.01 ** | <0.001 *** | <0.01 ** | <0.001 *** | <0.001 *** |
Additive * Heat treatment | |||||||
Additive * unheated | 1.83 e | 0.84 d | 76.8 a | 0.25 d | 194 b | 1.1 a | 172 a |
Additive * 110 °C | 2.54 d | 1.16 cd | 76.3 a | 0.27 cd | 194 b | 1.8 ab | 170 a |
Additive * 130 °C | 2.96 cd | 1.85 c | 75.5 b | 0.32 c | 195 ab | 2.7 b | 162 b |
Additive * 150 °C | 3.48 c | 2.17 bc | 75.1 b | 0.39 c | 195 ab | 3.5 bc | 154 bc |
Additive * 170 °C | 6.53 bc | 3.61 b | 74.3 c | 0.46 bc | 195 ab | 4.9 c | 141 c |
Additive * 190 °C | 7.12 b | 5.28 ab | 74.1 c | 0.57 b | 196 a | 5.8 cd | 132 cd |
Additive * 210 °C | 8.51 a | 6.44 a | 73.4 cd | 0.69 a | 196 a | 7.2 d | 125 d |
p | <0.01** | <0.01 ** | <0.05 * | <0.01 ** | ≥0.05 | <0.01 ** | <0.05 * |
Fat type * additive * heat treatment | |||||||
Lard * additive * unheated | 1.72 f | 0.82 f | 74.3 c | 0.25 de | 193 c | 0.8 a | 162 bc |
Lard * additive * 110 °C | 1.94 f | 1.05 f | 74.2 c | 0.27 d | 193 c | 1.5 b | 157 c |
Lard * additive * 130 °C | 2.26 e | 1.79 e | 73.5 cd | 0.34 c | 194 bc | 2.2 bc | 144 cd |
Lard * additive * 150 °C | 3.15 d | 2.36 de | 72.1 cd | 0.46 bc | 195 b | 3.4 c | 132 d |
Lard * additive * 170 °C | 5.03 bc | 3.09 d | 71.9 cd | 0.65 b | 197 ab | 5.1 d | 123 de |
Lard * additive * 190 °C | 5.98 bc | 4.26 c | 69.7 d | 0.77 ab | 198 ab | 6.7 e | 114 e |
Lard * additive * 210 °C | 6.85 b | 6.11 b | 68.7 d | 0.81 a | 199 a | 8.2 ef | 103 ef |
Goose * additive * unheated | 2.13 e | 1.12 ef | 86.3 a | 0.21 de | 194 bc | 1.4 b | 187 a |
Goose * additive * 110 °C | 2.38 e | 1.32 ef | 86.0 a | 0.24 d | 195 b | 1.8 b | 182 ab |
Goose * additive * 130 °C | 3.09 d | 1.92 e | 85.4 ab | 0.32 c | 195 b | 3.5 c | 175 b |
Goose * additive * 150 °C | 4.31 c | 3.85 cd | 84.3 ab | 0.41 bc | 196 b | 4.6 cd | 166 bc |
Goose * additive * 170 °C | 6.36 b | 4.21 c | 82.9 b | 0.55 bc | 198 ab | 7.2 e | 152 c |
Goose * additive * 190 °C | 7.34 ab | 6.34 b | 81.7 b | 0.63 b | 199 a | 8.6 ef | 146 cd |
Goose * additive * 210 °C | 8.45 a | 7.48 a | 79.6 bc | 0.72 ab | 200 a | 12.7 f | 138 d |
p | <0.001 *** | <0.001 *** | <0.05 * | <0.01 ** | <0.05 * | <0.001 *** | <0.01 ** |
Lard | Heating Temperature | PV (meq O2 kg−1 Fat) | TBARS (mg MDA kg−1 Fat) | IV (g I2 100 g−1 Fat) | AV (g Oleic Acid 100 g−1 Fat) | SV (mg KOH g−1 Fat) | TPoC (%) | TPC (mg Gallic Acid kg−1 Fat) |
---|---|---|---|---|---|---|---|---|
Non-additivated | Unheated | 1.76 i ± 0.02 | 0.84 k ± 0.01 | 74.7 a ± 0.3 | 0.25 h ± 0.02 | 194 e ± 0.1 | 1.1 i ± 0.3 | 148 g ± 0.4 |
110 °C | 2.24 g ± 0.03 | 1.26 f ± 0.05 | 74.2 a ± 0.1 | 0.31 h ± 0.07 | 196 d ± 0.6 | 2.3 g ± 0.5 | 141 f ± 0.5 | |
130 °C | 3.18 f ± 0.01 | 2.13 e ± 0.04 | 73.5 b ± 0.4 | 0.42 f ± 0.02 | 197 d ± 0.7 | 3.7 f ± 0.4 | 134 e ± 0.3 | |
150 °C | 4.85 e ± 0.04 | 3.25 d ± 0.02 | 71.4 c ± 0.3 | 0.59 e ± 0.05 | 198 c ± 0.5 | 4.8 e ± 0.6 | 122 d ± 0.2 | |
170 °C | 7.02 b ± 0.07 | 4.78 c ± 0.07 | 70.2 d ± 0.2 | 0.78 c ± 0.04 | 199 c ± 0.4 | 7.9 c ± 0.5 | 113 c ± 0.1 | |
190 °C | 8.79 a ± 0.05 | 5.48 b ± 0.03 | 68.5 e ± 0.1 | 0.84 b ± 0.03 | 201 b ± 0.2 | 9.5 b ± 0.4 | 104 b ± 0.2 | |
210 °C | 7.65 b ± 0.06 | 7.62 a ± 0.08 | 66.1 f ± 0.5 | 0.94 a ± 0.02 | 203 a ± 0.1 | 10.7 a± 0.2 | 96 a ± 0.4 | |
Additivated with 0.01% burdock extract | Unheated | 1.75 i ± 0.02 | 0.83 k ± 0.04 | 74.5 a ± 0.4 | 0.24 h ± 0.01 | 194 e ± 0.3 | 0.9 i ± 0.3 | 163 i ± 0.2 |
110 °C | 2.11 h ± 0.01 | 1.02 g ± 0.07 | 74.1 a ± 0.5 | 0.28 h ± 0.05 | 194 e ± 0.4 | 1.6 h ± 0.2 | 156 h ± 0.3 | |
130 °C | 2.47 g ± 0.03 | 1.83 f ± 0.01 | 73.4 b ± 0.3 | 0.36 g ± 0.06 | 195 d ± 0.8 | 2.4 g ± 0.5 | 145 f ± 0.5 | |
150 °C | 3.72 f ± 0.04 | 2.41 e ± 0.02 | 72.4 c ± 0.2 | 0.48 e ± 0.02 | 196 d ± 0.5 | 3.5 f ± 0.6 | 131 e ± 0.4 | |
170 °C | 5.84 d ± 0.07 | 3.26 d ± 0.03 | 71.7 d ± 0.1 | 0.64 d ± 0.04 | 198 c ± 0.6 | 5.3 e ± 0.4 | 124 d ± 0.1 | |
190 °C | 6.23 c ± 0.05 | 4.52 c ± 0.06 | 69.5 e ± 0.6 | 0.78 c ± 0.01 | 200 c ± 0.2 | 6.9 d ± 0.1 | 112 c ± 0.2 | |
210 °C | 7.36 b ± 0.02 | 6.38 b ± 0.08 | 68.4 e ± 0.1 | 0.82 b ± 0.02 | 201 b ± 0.4 | 8.3 b ± 0.8 | 102 b ± 0.4 |
Goose Fat | Heating Temperature | PV (meq O2 kg−1 Fat) | TBARS (mg MDA kg−1 Fat) | IV (g I2 100 g−1 Fat) | AV (g Oleic Acid 100 g−1 Fat) | SV (mg KOH g−1 fat) | TPoC (%) | TPC (mg Gallic Acid kg−1 Fat) |
---|---|---|---|---|---|---|---|---|
Non-additivated | Unheated | 2.28 i ± 0.07 | 1.16 k ± 0.03 | 86.8 a ± 0.3 | 0.22 h ± 0.03 | 195 e ± 0.4 | 1.4 i ± 0.2 | 164 f ± 0.2 |
110 °C | 2.76 g ± 0.05 | 1.54 f ± 0.02 | 86.1 a ± 0.1 | 0.29 g ± 0.04 | 196 d ± 0.8 | 2.8 g ± 0.4 | 160 e ± 0.1 | |
130 °C | 3.96 f ± 0.03 | 2.85 e ± 0.03 | 84.3 b ± 0.4 | 0.37 f ± 0.07 | 196 d ± 0.6 | 4.3 e ± 0.1 | 152 d ± 0.4 | |
150 °C | 5.94 e ± 0.02 | 3.91 d ± 0.06 | 82.7 c ± 0.3 | 0.51 d ± 0.02 | 198 c ± 0.2 | 5.8 e ± 0.6 | 143 c ± 0.5 | |
170 °C | 8.58 d ± 0.06 | 5.74 c ± 0.04 | 81.3 d ± 0.2 | 0.69 c ± 0.05 | 200 c ± 0.3 | 8.6 c ± 0.7 | 135 c ± 0.3 | |
190 °C | 9.71 a ± 0.02 | 7.25 b ± 0.01 | 78.6 e ± 0.1 | 0.78 b ± 0.01 | 202 b ± 0.1 | 10.3 b ± 0.3 | 128 b ± 0.6 | |
210 °C | 8.32 c ± 0.04 | 8.54 a ± 0.07 | 77.4 f ± 0.5 | 0.88 a ± 0.06 | 204 a ± 0.5 | 15.1 a± 0.9 | 115 a ± 0.5 | |
Additivated with 0.01% burdock extract | Unheated | 2.15 j ± 0.03 | 1.15 k ± 0.02 | 86.2 a ± 0.2 | 0.22 h ± 0.04 | 194 f ± 0.7 | 1.5 i ± 0.1 | 185 i ± 0.1 |
110 °C | 2.31 i ± 0.04 | 1.32 g ± 0.05 | 86.1 a ± 0.1 | 0.25 g ± 0.03 | 195 e ± 0.2 | 1.9 h ± 0.4 | 181 h ± 0.2 | |
130 °C | 3.14 h ± 0.02 | 1.96 f ± 0.04 | 85.2 b ± 0.4 | 0.31 f ± 0.02 | 196 d ± 0.4 | 3.6 f ± 0.6 | 174 g ± 0.3 | |
150 °C | 4.35 f ± 0.01 | 2.85 e ± 0.03 | 84.3 c ± 0.6 | 0.43 e ± 0.05 | 197 e ± 0.7 | 4.8 e ± 0.5 | 165 f ± 0.8 | |
170 °C | 7.26 d ± 0.06 | 4.51 d ± 0.06 | 82.8 d ± 0.3 | 0.56 d ± 0.07 | 199 c ± 0.1 | 7.1 d ± 0.3 | 153 d ± 0.2 | |
190 °C | 7.83 bc ± 0.05 | 6.27 c ± 0.02 | 81.4 e ± 0.5 | 0.62 c ± 0.04 | 200 c ± 0.4 | 8.7 c ± 0.2 | 145 c ± 0.4 | |
210 °C | 9.05 ab ± 0.02 | 7.23 b ± 0.01 | 79.3 f ± 0.2 | 0.71 b ± 0.02 | 202 b ± 0.2 | 12.8 b ± 0.7 | 139 b ± 0.5 |
Fatty Acids | Lard | Goose Fat | ||||
---|---|---|---|---|---|---|
Non-Additivated (Control) | Non-Additivated Fat Subjected to Heating at 210 °C | Burdock Extract Additivated Fat Subjected to Heating at 210 °C | Non-Additivated (Control) | Non-Additivated Fat Subjected to Heating at 210 °C | Burdock Extract Additivated Fat Subjected to Heating at 210 °C | |
Myristic (14:0) | 0.52 a ± 0.04 | 0.73 a b ± 0.06 | 0.87 b ± 0.09 | 0.31 a ± 0.10 | 0.52 b ± 0.05 | 0.36 a ± 0.05 |
Pentadecanoic (C15:0) | 0.65 a ± 0.06 | 0.86 b ± 0.01 | 0.86 b ± 0.02 | 0.52 a ± 0.14 | 0.67 ab ± 0.07 | 0.58 a ± 0.04 |
Palmitic (C16:0) | 1.80 a ± 0.10 | 1.88 a ± 0.08 | 1.84 a ± 0.13 | 0.61 a ± 0.12 | 0.72 a ± 0.12 | 0.62 a ± 0.12 |
Palmitoleic (C16:1) | 1.18 a ± 0.13 | 1.15 a ± 0.13 | 1.28 a ± 0.11 | 1.85 a ± 0.03 | 1.45 b ± 0.02 | 1.59 b ± 0.07 |
Hexadecadienoic (C16:2) | 0.77 a ± 0.05 | 0.45 b ± 0.11 | 0.36 b ± 0.04 | 0.78 a ± 0.08 | 0.62 a ± 0.09 | 0.61 a ± 0.06 |
Hexadecatrienoic (C16:3) | 0.56 a ± 0.02 | 0.34 ab ± 0.12 | 0.21 b ± 0.09 | 0.56 a ± 0.04 | 0.32 b ± 0.10 | 0.48 a ± 0.08 |
Hexadecatetranoic (C16:4) | 0.19 a ± 0.06 | 0.17 a ± 0.01 | 0.13 a ± 0.01 | 0.59 a ± 0.11 | 0.37 ab ± 0.15 | 0.54 a ± 0.13 |
Heptadecanoic (C17:0) | 0.86 a ± 0.03 | 1.03 ab ± 0.05 | 1.17 b ± 0.05 | 0.51 a ± 0.05 | 0.64 ab ± 0.06 | 0.57 a ± 0.09 |
Stearic (C18:0) | 0.93 a ± 0.09 | 1.07 a ± 0.02 | 1.09 a ± 0.15 | 0.32 a ± 0.09 | 0.33 a ± 0.08 | 0.31 a ± 0.11 |
Oleic (C18:1) | 2.24 a ± 0.14 | 1.86 ab ± 0.09 | 2.16 a ± 0.13 | 1.49 a ± 0.13 | 1.22 ab ± 0.03 | 1.46 a ± 0.05 |
Linoleic (C18:2) | 0.41 a ± 0.11 | 0.33 ab ± 0.07 | 0.36 a ± 0.10 | 0.66 a ± 0.04 | 0.45 b ± 0.08 | 0.50 b ± 0.08 |
Linolenic (C18:3) | 0.27 a ± 0.12 | 0.18 ab ± 0.03 | 0.22 a ± 0.11 | 0.56 a ± 0.06 | 0.42 b ± 0.01 | 0.47 ab ± 0.01 |
Stearidonic acid (C18:4) | 0.08 a ± 0.05 | 0.07 a ± 0.06 | 0.07 a ± 0.07 | 0.79 a ± 0.15 | 0.54 b ± 0.04 | 0.84 a ± 0.13 |
Total FA | 10.58 a ± 0.88 | 10.07 b ± 0.67 | 10.75 a ± 1.09 | 9.58 a ± 0.95 | 8.29 b ± 0.90 | 8.41 b ± 1.03 |
Total SFA | 4.20 a ± 0.32 | 4.96 ab ± 0.06 | 4.93 ab ± 0.44 | 2.32 a ± 0.32 | 2.58 ab ± 0.32 | 2.38 a ± 0.40 |
Total MUFA | 4.07 a ± 0.27 | 3.65 b ± 0.22 | 4.03 a ± 0.23 | 2.37 a ± 0.16 | 3.08 c ± 0.05 | 2.63 b ± 0.12 |
Total PUFA | 2.29 a ± 0.30 | 1.42 c ± 0.40 | 1.79 b ± 0.42 | 3.76 a ± 0.48 | 2.61 c ± 0.47 | 3.40 b ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, F.; Dippong, T. The Antioxidant Effect of Burdock Extract on the Oxidative Stability of Lard and Goose Fat during Heat Treatment. Foods 2024, 13, 304. https://doi.org/10.3390/foods13020304
Pop F, Dippong T. The Antioxidant Effect of Burdock Extract on the Oxidative Stability of Lard and Goose Fat during Heat Treatment. Foods. 2024; 13(2):304. https://doi.org/10.3390/foods13020304
Chicago/Turabian StylePop, Flavia, and Thomas Dippong. 2024. "The Antioxidant Effect of Burdock Extract on the Oxidative Stability of Lard and Goose Fat during Heat Treatment" Foods 13, no. 2: 304. https://doi.org/10.3390/foods13020304
APA StylePop, F., & Dippong, T. (2024). The Antioxidant Effect of Burdock Extract on the Oxidative Stability of Lard and Goose Fat during Heat Treatment. Foods, 13(2), 304. https://doi.org/10.3390/foods13020304