Exploring Food Preferences as a Pre-Step for Developing Diabetes-Friendly Options in Adults with Diabetes and Prediabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Survey
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019. Results. Institute for Health Metrics and Evaluation. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 30 September 2024).
- Centers for Disease Control and Prevention. 2022 National Diabetes Statistics Report. Available online: https://www.cdc.gov/diabetes/php/data-research/methods.html?CDC_AAref_Val=https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 8 May 2023).
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Role of self-care in management of diabetes mellitus. J. Diabetes Metab. Disord. 2013, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Mogre, V.; Johnson, N.A.; Tzelepis, F.; Shaw, J.E.; Paul, C. A systematic review of adherence to diabetes self-care behaviours: Evidence from low- and middle-income countries. J. Adv. Nurs. 2019, 75, 3374–3389. [Google Scholar] [CrossRef] [PubMed]
- Pastors, J.G.; Warshaw, H.; Daly, A.; Franz, M.; Kulkarni, K. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 2002, 25, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018, 361, k2234. [Google Scholar] [CrossRef]
- Coyle, M.E.; Francis, K.; Chapman, Y. Self-management activities in diabetes care: A systematic review. Aust. Health Rev. 2013, 37, 513–522. [Google Scholar] [CrossRef]
- Tringale, M.; Stephen, G.; Boylan, A.M.; Heneghan, C. Integrating patient values and preferences in healthcare: A systematic review of qualitative evidence. Br. Med. J. Open 2022, 12, e067268. [Google Scholar] [CrossRef]
- Van Haitsma, K.; Abbott, K.M.; Arbogast, A.; Bangerter, L.R.; Heid, A.R.; Behrens, L.L.; Madrigal, C. A Preference-Based Model of Care: An Integrative Theoretical Model of the Role of Preferences in Person-Centered Care. Gerontologist 2020, 60, 376–384. [Google Scholar] [CrossRef]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef]
- Hsiao, J.-H. Preference-maximized nutrition planning by relative learning and ranking. In MEDINFO 2013; Lehmann, C.U., Ammenwerth, E., Nøhr, C., Eds.; IOS Press: Amsterdam, The Netherlands, 2013; pp. 205–209. [Google Scholar] [CrossRef]
- Rooney, M.R.; Rawlings, A.M.; Pankow, J.S.; Tcheugui, J.B.E.; Coresh, J.; Sharrett, A.R.; Selvin, E. Risk of Progression to Diabetes Among Older Adults With Prediabetes. JAMA Intern. Med. 2021, 181, 511–519. [Google Scholar] [CrossRef]
- Duru, O.K.; Mangione, C.M.; Turk, N.; Chon, J.; Fu, J.; Cheng, G.; Cheng, F.; Moss, A.; Frosch, D.; Skrine Jeffers, K.; et al. The Effectiveness of Shared Decision-making for Diabetes Prevention: 24- and 36-Month Results From the Prediabetes Informed Decision and Education (PRIDE) Trial. Diabetes Care 2023, 46, 2218–2222. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Xu, X.; Yue, R. Preferences and Adherence of People with Prediabetes for Disease Management and Treatment: A Systematic Review. Patient Prefer. Adherence 2023, 17, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Bao, H.; Feng, Z.; Meng, J.; Yu, X.; Yu, H. Investigating patients’ preferences for new anti-diabetic drugs to inform public health insurance coverage decisions: A discrete choice experiment in China. BMC Public Health 2022, 22, 1860. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Kawachi, I. Diets and Health: How Food Decisions Are Shaped by Biology, Economics, Geography, and Social Interactions. Big Data 2015, 3, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J. Multisensory Processes in Flavour Perception and Their Influence on Food Choice. Curr. Opin. Food Sci. 2015, 3, 47–52. [Google Scholar] [CrossRef]
- McCrickerd, K.; Forde, C. Sensory Influences on Food Intake Control: Moving Beyond Palatability. Obes. Rev. 2016, 17, 18–29. [Google Scholar] [CrossRef]
- Forde, C.G.; De Graaf, K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front. Nutr. 2022, 9, 841444. [Google Scholar] [CrossRef]
- Leng, G.; Adan, R.A.H.; Belot, M.; Brunstrom, J.M.; de Graaf, K.; Dickson, S.L.; Hare, T.; Maier, S.; Menzies, J.; Preissl, H.; et al. The Determinants of Food Choice. Proc. Nutr. Soc. 2016, 76, 31. [Google Scholar] [CrossRef]
- Cox, D.N.; Hendrie, G.A.; Carty, D. Sensitivity, hedonics and preferences for basic tastes and fat amongst adults and children of differing weight status: A comprehensive review. Food Qual. Pref. 2016, 48, 359–367. [Google Scholar] [CrossRef]
- Yeomans, M.R. Understanding Individual Differences in Acquired Flavour Liking in Humans. Chemosens. Percept. 2010, 3, 34–41. [Google Scholar] [CrossRef]
- Rajagopal, R.; Naylor, R.W.; Hoyer, W.D. The unhealthy = Tasty intuition and its effects on taste inferences, enjoyment, and choice of food products. J. Mark. 2006, 70, 170–184. [Google Scholar]
- Newson, R.S.; Van der Maas, R.; Beijersbergen, A.; Carlson, L.; Rosenbloom, C. International Consumer Insights into the Desires and Barriers of Diners in Choosing Healthy Restaurant Meals. Food Qual. Pref. 2015, 43, 63–70. [Google Scholar] [CrossRef]
- Gondivkar, S.M.; Indurkar, A.; Degwekar, S.; Bhowate, R. Evaluation of gustatory function in patients with diabetes mellitus Type 2. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 876–880. [Google Scholar] [CrossRef]
- Khera, S.; Saigal, A. Assessment and Evaluation of Gustatory Functions in Patients with Diabetes Mellitus Type II: A Study. Indian J. Endocr. Metab. 2018, 22, 204–207. [Google Scholar]
- Le Floch, J.P.; Le Lievre, G.; Sadoun, J.; Perlemuter, L.; Peynegre, R.; Hazard, J. Taste Impairment and Related Factors in Type I Diabetes Mellitus. Diabetes Care 1989, 12, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Quick, V.; Lipsky, L.M.; Laffel, L.M.B.; Mehta, S.N.; Quinn, H.; Nansel, T.R. Relationships of Neophobia and Pickiness with Dietary Variety, Dietary Quality and Diabetes Management Adherence in Youth with Type 1 Diabetes. Eur. J. Clin. Nutr. 2014, 68, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Mameli, C.; Cattaneo, C.; Lonoce, L.; Bedogni, G.; Redaelli, F.C.; Macedoni, M.; Zuccotti, G.; Pagliarini, E. Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study. Nutrients 2019, 11, 3052. [Google Scholar] [CrossRef]
- Finlayson, G.; King, N.; Blundell, J.E. Is it Possible to Dissociate ‘Liking’ and ‘Wanting’ for Foods in Humans? A Novel Experimental Procedure. Physiol. Behav. 2007, 90, 36–42. [Google Scholar] [CrossRef]
- Zajonc, R.B. Feeling and Thinking: Preferences Need No Inferences. Am. Psychol. 1980, 35, 151–175. [Google Scholar] [CrossRef]
- Coolen, H.; Boelhouwer, P.; Van Driel, K. Values and Goals as Determinants of Intended Tenure Choice. J. Hous. Built Environ. 2002, 17, 215–236. [Google Scholar] [CrossRef]
- Warren, C.; McGraw, A.P.; Van Boven, L. Values and Preferences: Defining Preference Construction. Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Hiratsu, A.; Thivel, D.; Beaulieu, K.; Finlayson, G.; Nagayama, C.; Kamemoto, K.; Siripiyavatana, S.; Tataka, Y.; Yamada, Y.; Miyashita, M. Development of the Leeds Food Preference Questionnaire in Japanese: Sensitivity and Reproducibility of Liking and Wanting for Food in Fasted and Fed States. Food Qual. Pref. 2022, 102, 104677. [Google Scholar] [CrossRef]
- Cardello, A.V.; Maller, O. Relationships Between Food Preferences and Food Acceptance Ratings. J. Food Sci. 1982, 47, 1553–1557. [Google Scholar] [CrossRef]
- Duffy, V.B.; Lanier, S.A.; Hutchins, H.L.; Pescatello, L.S.; Johnson, M.K.; Bartoshuk, L.M. Food Preference Questionnaire as a Screening Tool for Assessing Dietary Risk of Cardiovascular Disease Within Health Risk Appraisals. J. Am. Diet. Assoc. 2007, 107, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Hayes, J.E.; Sullivan, B.S.; Faghri, P. Surveying Food and Beverage Liking: A Tool for Epidemiological Studies to Connect Chemosensation with Health Outcomes. Ann. NY Acad. Sci. 2009, 1170, 558–568. [Google Scholar] [CrossRef]
- Wanich, U.; Sayompark, D.; Riddell, L.; Cicerale, S.; Liem, D.G.; Mohebbi, M.; Macfarlane, S.; Keast, R. Assessing Food Liking: Comparison of Food Liking Questionnaires and Direct Food Tasting in Two Cultures. Nutrients 2018, 10, 1957. [Google Scholar] [CrossRef]
- American Diabetes Association and the Centers for Disease Control and Prevention. Prediabetes Risk Test. Available online: https://www.cdc.gov/prediabetes/risktest/index.html (accessed on 1 December 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Laurence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 531–537. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Deglaire, A.; Méjean, C.; Castetbon, K.; Kesse-Guyot, E.; Hercberg, S.; Schlich, P. Associations Between Weight Status and Liking Scores for Sweet, Salt and Fat According to Gender in Adults (The Nutrinet-Santé Study). Eur. J. Clin. Nutr. 2015, 69, 40–46. [Google Scholar] [CrossRef]
- Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef]
- Buhrmester, M.; Kwang, T.; Gosling, S.D. Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 2011, 6, 3–5. [Google Scholar] [CrossRef]
- Thomas, K.A.; Clifford, S. Validity and Mechanical Turk: An assessment of exclusion methods and interactive experiments. Comput. Hum. Behav. 2017, 77, 184–197. [Google Scholar] [CrossRef]
- Lu, L.; Neale, N.; Line, N.D.; Bonn, M. Improving data quality using Amazon mechanical Turk through platform setup. Cornell Hosp. Q. 2022, 63, 231–246. [Google Scholar] [CrossRef]
- Orlowski, M.; Murphy, K.S.; Sever, D.E. Conflict and commitment in the restaurant industry: Perceptions from the generation Y viewpoint. J. Foodserv. Bus. Res. 2016, 20, 218–237. [Google Scholar] [CrossRef]
- Van Langeveld, A.W.B.; Teo, P.S.; de Vries, J.H.M.; Feskens, E.J.M.; de Graaf, C.; Mars, M. Dietary taste patterns by sex and weight status in the Netherlands. Br. J. Nutr. 2018, 119, 1195–1206. [Google Scholar] [CrossRef]
- Wansink, B.; Cheney, M.M.; Chan, N. Exploring comfort food preferences across age and gender. Physiol. Behav. 2003, 79, 739–742. [Google Scholar] [CrossRef]
- Lirette, T.; Podovennikoff, J.; Wismer, W.; Tondu, L. Food preferences and meal satisfaction of meals on wheels recipients. Can. J. Diet. Pract. Res. 2007, 68, 214–217. [Google Scholar] [CrossRef]
- Hernandes Júnior, P.R.; Sardeli, A.V. The Effect of Aging on Body Temperature: A Systematic Review and Meta-Analysis. Curr. Aging Sci. 2021, 4, 191–200. [Google Scholar] [CrossRef]
- Montero, M.L.; Duizer, L.M.; Ross, C.F. Sensory Perception and Food-Evoked Emotions of Older Adults Assessing Microwave-Processed Meals with Different Salt Concentrations. Foods 2024, 13, 631. [Google Scholar] [CrossRef]
- Spence, C. Comfort food: A review. Int. J. Gastron. Food Sci. 2017, 9, 105–109. [Google Scholar] [CrossRef]
- Lichtman, S.W.; Pisarska, K.; Berman, E.R.; Pestone, M.; Dowling, H.; Offenbacher, E.; Weisel, H.; Heshka, S.; Matthews, D.E.; Heymsfield, S.B. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N. Engl. J. Med. 1992, 327, 1893–1898. [Google Scholar] [CrossRef]
- Lianov, L.; Johnson, M. Physician Competencies for Prescribing Lifestyle Medicine. JAMA 2010, 304, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Kahan, S.; Manson, J.E. Nutrition Counseling in Clinical Practice: How Clinicians Can Do Better. JAMA 2017, 318, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Mohan, V.; Shah, S.N.; Joshi, S.R.; Seshiah, V.; Sahay, B.K.; Banerjee, S.; Wangnoo, S.K.; Kumar, A.; Kalra, S.; et al. DiabCare India 2011 Study Group. Current Status of Management, Control, Complications and Psychosocial Aspects of Patients with Diabetes in India: Results from the DiabCare India 2011 Study. Indian J. Endocrinol. Metab. 2014, 18, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Pringle, M. Prevalence, Care, and Outcomes for Patients with Diet-Controlled Diabetes in General Practice: Cross Sectional Survey. Lancet 2004, 364, 423–428. [Google Scholar] [CrossRef] [PubMed]
- England, C.Y.; Andrews, R.C.; Jago, R.; Thompson, J.L. A Systematic Review of Brief Dietary Questionnaires Suitable for Clinical Use in the Prevention and Management of Obesity, Cardiovascular Disease and Type 2 Diabetes. Eur. J. Clin. Nutr. 2015, 69, 977–1003. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf (accessed on 5 September 2024).
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef]
- Wilding, J.P. The Importance of Weight Management in Type 2 Diabetes Mellitus. Int. J. Clin. Pract. 2014, 68, 682–691. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S77–S110. [Google Scholar] [CrossRef]
- Stokel-Walker, C.; Bots on Amazon’s Mechanical Turk are ruining psychology studies. New Sciientist, 10 August 2018. Available online: https://www.newscientist.com/article/2176436-bots-on-amazons-mechanical-turk-are-ruining-psychology-studies/ (accessed on 4 February 2019).
- Ford, J.B. Amazon’s Mechanical Turk: A comment. J. Advert. 2017, 46, 156–158. [Google Scholar] [CrossRef]
Total (n = 415) | Men (n = 195) | Women (n = 220) | p1 Value | |
---|---|---|---|---|
Age, mean ± SD 2 (year) | 34.2 ± 8.4 | 34.5 ± 8.6 | 34.0 ± 8.3 | 0.517 |
Race, n (% 3) | 0.940 | |||
Non-Hispanic Whites | 338 (81.4) | 160 (82.1) | 178 (80.9) | |
Non-Hispanic Blacks | 14 (3.4) | 5 (2.6) | 9 (4.1) | |
Hispanics | 37 (8.9) | 18 (9.2) | 19 (8.6) | |
Asians | 24 (5.8) | 11 (5.6) | 13 (5.9) | |
Others | 2 (0.5) | 1 (0.5) | 1 (0.5) | |
Weight Status, n (% 3) | 0.188 | |||
Underweight | 42 (10.1) | 23 (11.8) | 19 (8.6) | |
Normal | 156 (37.6) | 81 (41.5) | 75 (34.1) | |
Overweight | 182 (43.9) | 76 (39.0) | 106 (48.2) | |
Obese | 35 (8.4) | 15 (7.7) | 20 (9.1) | |
Dietary Restriction 4, n (% 3) | 0.300 | |||
Vegan | 81 (19.5) | 37 (19.0) | 44 (20.0) | |
Pesco vegetarian | 43 (10.4) | 17 (8.7) | 26 (11.8) | |
Other vegetarian | 12 (2.9) | 5 (2.6) | 7 (13.2) | |
Kosher | 87 (21) | 50 (25.6) | 37 (16.8) | |
Halal | 132 (31.8) | 66 (33.8) | 66 (30) | |
Gluten-free | 22 (5.3) | 10 (5.1) | 12 (5.5) | |
No dietary restriction | 93 (22.4) | 32 (16.4) | 61 (27.7) | |
Education Level, n (% 3) | 0.300 | |||
Less than Highschool | 2 (0.5) | 1 (0.5) | 1 (0.5) | |
Highschool or GED | 38 (9.2) | 23 (11.8) | 15 (9.2) | |
Some college | 11 (2.7) | 4 (2.1) | 7 (2.7) | |
College graduate | 239 (57.5) | 115 (59.0) | 124 (57.5) | |
Postgraduation degree | 125 (30.1) | 52 (26.6) | 73 (30.1) | |
Religion n (% 3) | 0.047 | |||
No religion | 15 (3.6) | 7 (3.5) | 8 (3.6) | |
Christianity | 270 (65.1) | 133 (68.2) | 137 (62.3) | |
Roman Catholic | 78 (18.8) | 28 (14.4) | 50 (22.7) | |
Islamism | 24 (5.8) | 16 (8.2) | 8 (3.6) | |
Judaism | 20 (4.8) | 6 (3.1) | 14 (6.4) | |
Hinduism | 8 (1.9) | 5 (2.6) | 3 (1.4) | |
Annual Household Income, n (% 3) | 0.003 | |||
<$20,000 | 8 (1.9) | 3 (1.5) | 5 (2.3) | |
$20,000–40,000 | 82 (19.8) | 41 (21.0) | 41 (18.6) | |
$40,001–60,000 | 119 (28.7) | 64 (32.8) | 55 (25.0) | |
$60,001–80,000 | 89 (21.4) | 28 (14.4) | 61 (27.7) | |
$80,001–100,000 | 102 (24.6) | 56 (28.8) | 46 (20.9) | |
≥$120,000 | 15 (3.6) | 3 (1.5) | 12 (5.5) | |
Marital Status, n (% 3) | 0.714 | |||
Single | 39 (9.4) | 20 (10.3) | 19 (8.6) | |
Married | 358 (86.2) | 169 (86.7) | 189 (85.9) | |
Divorce/Separated | 2 (0.5) | 1 (0.5) | 1 (0.5) | |
Widowed | 5 (1.2) | 2 (1.0) | 3 (1.4) | |
Live in Partner | 11 (2.7) | 3 (1.5) | 8 (3.6) |
Total (n = 415) | Sex | Age | Weight Status | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Men (n = 195) | Women (n = 220) | 20–30 (n = 217) | 31–40 (n = 128) | 41–70 (n = 70) | Underweight (n = 42) | Normal (n = 156) | Overweight (n = 182) | Obese (n = 135) | ||
Comfort Foods 1, n (% 2) | ||||||||||
Meat | 75 (18.1) | 42 (21.5) | 33 (15.0) | 32 (14.7) | 29 (22.7) | 14 (20.0) | 3 (7.1) | 27 (17.3) | 38 (20.9) | 7 (20.0) |
Seafood | 31 (7.5) | 18 (9.2) | 13 (5.9) | 10 (4.6) | 18 (14.1) | 3 (4.3) | 3 (7.1) | 6 (3.8) | 22 (12.1) | 0 (0) |
Fruits & Vegetables | 41 (9.9) | 10 (5.1) | 31 (14.1) | 18 (8.3) | 12 (9.4) | 11 (15.7) | 12 (28.6) | 12 (7.7) | 13 (7.1) | 4 (11.4) |
Cold Complex | 94 (22.7) | 32 (16.4) | 62 (28.2) | 65 (30.0) | 19 (14.8) | 10 (14.3) | 11 (26.2) | 38 (24.4) | 40 (22.0) | 5 (14.3) |
Warm Complex | 167 (40.2) | 89 (45.6) | 78 (35.5) | 88 (40.6) | 49 (38.3) | 30 (42.9) | 13 (31.0) | 71 (45.5) | 65 (35.7) | 18 (51.4) |
None | 7 (1.7) | 4 (2.1) | 3 (1.4) | 4 (1.8) | 1 (0.8) | 2 (2.9) | 0 (0) | 2 (1.3) | 4 (2.2) | 1 (2.9) |
p < 0.001 | p = 0.001 | p < 0.001 | ||||||||
Favorite Foods 1, n (% 2) | ||||||||||
Meat | 162 (39.0) | 80 (41) | 82 (37.3) | 103 (47.5) | 42 (32.8) | 17 (24.3) | 13 (31.0) | 60 (38.5) | 77 (42.3) | 12 (34.3) |
Seafood | 15 (3.6) | 9 (4.6) | 6 (2.7) | 5 (2.3) | 6 (4.7) | 4 (5.7) | 1 (2.4) | 4 (2.6) | 9 (4.9) | 1 (2.9) |
Fruits & Vegetables | 44 (10.6) | 13 (6.7) | 31 (14.1) | 30 (13.8) | 7 (5.5) | 7 (10.0) | 2(4.8) | 20 (12.8) | 20 (11.0) | 2 (5.7) |
Cold Complex | 17 (4.1) | 10 (5.1) | 7 (3.2) | 2 (0.9) | 9 (7.0) | 6 (8.6) | 3 (7.1) | 7 (4.5) | 5 (2.7) | 2 (5.7) |
Warm Complex | 176 (42.4) | 83 (42.6) | 93 (42.3) | 76 (35.0) | 64 (50.0) | 36 (51.4) | 23 (54.8) | 65 (41.7) | 70 (38.5) | 18 (51.4) |
None | 1 (0.2) | 0 (0) | 1 (0.5) | 1 (0.5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (0.5) | 0 (0) |
p = 0.128 | p < 0.001 | p = 0.671 | ||||||||
Least Favorite Foods 1, n (% 1) | ||||||||||
Meat | 64 (15.4) | 40 (20.5) | 24 (10.9) | 26 (12.0) | 28 (21.9) | 10 (14.3) | 14 (33.3) | 17 (10.9) | 29 (15.9) | 4 (11.4) |
Seafood | 48 (11.6) | 21 (10.8) | 27 (12.3) | 31 (14.3) | 15 (11.7) | 2 (2.9) | 3 (7.1) | 17 (10.9) | 23 (12.6) | 5 (14.3) |
Fruits & Vegetables | 146 (35.2) | 75 (38.5) | 71 (32.3) | 72 (33.2) | 41 (32.0) | 33 (47.1) | 14 (33.3) | 59 (37.8) | 62 (34.1) | 11 (31.4) |
Cold Complex | 18 (4.3) | 8 (4.1) | 10 (4.5) | 9 (4.1) | 4 (3.1) | 5 (7.1) | 3 (7.1) | 7 (4.5) | 6 (3.3) | 2 (5.7) |
Warm Complex | 110 (26.5) | 36 (18.5) | 74 (33.6) | 60 (27.6) | 33 (25.8) | 17 (24.3) | 7 (16.7) | 39 (25.0) | 52 (28.6) | 12 (34.3) |
None | 29 (7.0) | 15 (7.7) | 14 (6.4) | 19 (8.8) | 7 (5.5) | 3 (4.3) | 1 (2.4) | 17 (10.9) | 10 (5.5) | 1 (2.9) |
p = 0.005 | p = 0.044 | p = 0.080 |
Taste-Cluster 3, Mean ± SD | Total (n = 415) | Sex | p 1 Value | Age | p 2 Value | Weight Status | p 2 Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men (n = 195) | Women (n = 220) | 20–30 (n = 217) | 31–40 (n = 128) | 41–70 (n = 70) | Underweight (n = 42) | Normal (n = 156) | Overweight (n = 182) | Obese (n = 135) | |||||
Neutral | 5.3 ± 1.4 | 5.4 ± 1.3 | 5.2 ± 1.6 | 0.151 | 5.1 a ± 1.5 | 5.5 b ± 1.4 | 5.6 b ± 1.2 | 0.003 | 5.7 b ± 1.3 | 5.4 b ± 1.2 | 5.3 b ± 1.5 | 4.5 a ± 1.8 | 0.002 |
Sweet/sour | 5.2 ± 1.4 | 5.3 ± 1.4 | 5.2 ± 1.4 | 0.862 | 5.2 ± 1.5 | 5.3 ± 1.4 | 5.2 ± 1.4 | 0.657 | 5.1 ± 1.4 | 5.4 ± 1.2 | 5.2 ± 1.5 | 4.9 ± 1.7 | 0.262 |
Sweet/fat | 5.2 ± 1.3 | 5.3 ± 1.3 | 5.2 ± 1.4 | 0.306 | 5.1 ± 1.4 | 5.4 ± 1.4 | 5.3 ± 1.2 | 0.108 | 5.2 ± 1.2 | 5.4 ± 1.2 | 5.1 ± 1.5 | 5.3 ± 1.7 | 0.500 |
Fat | 5.3 ± 1.4 | 5.4 ± 1.3 | 5.2 ± 1.5 | 0.175 | 5.2 ± 1.4 | 5.5 ± 1.5 | 5.1 ± 1.2 | 0.169 | 5.0 ± 1.5 | 5.5 ± 1.2 | 5.2 ± 1.5 | 4.9 ± 1.7 | 0.035 |
Salt/umami/ fat | 5.2 ± 1.4 | 5.4 ± 1.3 | 5.1 ± 1.4 | 0.038 | 5.1 ± 1.4 | 5.4 ± 1.4 | 5.3 ± 1.1 | 0.171 | 5.1 ± 1.4 | 5.3 ± 1.2 | 5.2 ± 1.4 | 4.8 ± 1.7 | 0.253 |
Bitter | 5.2 ± 1.4 | 5.3 ± 1.3 | 5.1 ± 1.5 | 0.302 | 5.1 ± 1.4 | 5.4 ± 1.4 | 5.3 ± 1.3 | 0.059 | 5.3 ± 1.2 | 5.3 ± 1.2 | 5.2 ± 1.5 | 4.9 ± 1.4 | 0.591 |
Basic tastes & spicy flavor 4, Mean ± SD | |||||||||||||
Sweet | 3.7 ± 1.0 | 3.7 ± 1.0 | 3.6 ± 1.0 | 0.421 | 3.6 ± 0.9 | 3.8 ± 1.0 | 3.6 ± 1.0 | 0.396 | 3.6 ± 1.1 | 3.7 ± 0.9 | 3.7 ± 1.0 | 3.8 ± 0.9 | 0.813 |
Salty | 3.4 ± 1.0 | 3.4 ± 1.0 | 3.5 ± 1.0 | 0.601 | 3.3 ± 0.9 | 3.6 ± 1.1 | 3.4 ± 0.9 | 0.054 | 3.5 ± 1.1 | 3.3 ± 0.9 | 3.5 ± 1.0 | 3.7 ± 1.0 | 0.193 |
Sour | 3.5 ± 1.0 | 3.5 ± 1.0 | 3.5 ± 1.0 | 0.886 | 3.4 ± 1.0 | 3.6 ± 1.0 | 3.5 ± 0.9 | 0.224 | 3.5 ± 0.8 | 3.4 ± 0.9 | 3.5 ± 1.1 | 3.7 ± 1.1 | 0.302 |
Bitter | 3.6 ± 1.1 | 3.5 ± 1.0 | 3.6 ± 1.1 | 0.463 | 3.6 ab ± 1.0 | 3.7 b ± 1.1 | 3.4 a ± 1.1 | 0.036 | 3.5 ± 1.0 | 3.5 ± 1.1 | 3.6 ± 0.9 | 3.7 ± 1.1 | 0.432 |
Umami/ Savory | 3.6 ± 1.0 | 3.7 ± 1.0 | 3.5 ± 1.0 | 0.055 | 3.6 ± 1.0 | 3.7 ± 1.0 | 3.8 ± 0.8 | 0.360 | 3.6 ± 0.9 | 3.6 ± 0.9 | 3.7 ± 1.0 | 3.6 ± 1.1 | 0.684 |
Fat | 3.5 ± 1.0 | 3.4 ± 1.1 | 3.5 ± 1.0 | 0.855 | 3.4 ab ± 1.0 | 3.6 b ± 1.1 | 3.3 a ± 0.9 | 0.038 | 3.3 ± 1.1 | 3.3 ± 1.1 | 3.6 ± 1.0 | 3.5 ± 1.0 | 0.125 |
Spicy | 3.8 ± 1.0 | 3.8 ± 1.1 | 3.8 ± 1.0 | 0.819 | 3.7 ± 1.0 | 3.9 ± 1.0 | 3.7 ± 1.1 | 0.099 | 3.8 ± 1.0 | 3.8 ± 1.0 | 3.7 ± 1.1 | 3.8 ± 1.0 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Choi, J. Exploring Food Preferences as a Pre-Step for Developing Diabetes-Friendly Options in Adults with Diabetes and Prediabetes. Foods 2024, 13, 3276. https://doi.org/10.3390/foods13203276
Choi S, Choi J. Exploring Food Preferences as a Pre-Step for Developing Diabetes-Friendly Options in Adults with Diabetes and Prediabetes. Foods. 2024; 13(20):3276. https://doi.org/10.3390/foods13203276
Chicago/Turabian StyleChoi, Sungeun, and Jihee Choi. 2024. "Exploring Food Preferences as a Pre-Step for Developing Diabetes-Friendly Options in Adults with Diabetes and Prediabetes" Foods 13, no. 20: 3276. https://doi.org/10.3390/foods13203276
APA StyleChoi, S., & Choi, J. (2024). Exploring Food Preferences as a Pre-Step for Developing Diabetes-Friendly Options in Adults with Diabetes and Prediabetes. Foods, 13(20), 3276. https://doi.org/10.3390/foods13203276