Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples
2.2. NIR Spectra Acquisition
2.3. NIR Spectra Pre-Treatment
2.4. Cluster-SVM Hybrid Classification Models
- Sensitivity, which measures the proportion of the positive responses correctly identified as positive by the classifier:
- Specificity, which measures the proportion of the negative responses correctly identified as negative by the classifier:
- MCC (Matthew’s correlation coefficient):
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICQRF. Report Attività 2022 ICQRF; MASAF: Paris, France, 2023. [Google Scholar]
- Ionescu, A.D.; Cîrîc, A.I.; Begea, M. A review of Milk Frauds and Adulterations from a Techological Perspective. Appl. Sci. 2023, 13, 9821. [Google Scholar] [CrossRef]
- Badertscher, R.; Berger, T.; Kuhn, R. Densitometric determination of the fat content of milk and milk products. Int. Dairy J. 2007, 17, 20–23. [Google Scholar] [CrossRef]
- Gullifa, G.; Barone, L.; Papa, E.; Giuffrida, A.; Materazzi, S.; Risoluti, R. Portable NIR spectroscopy: The route to green analytical chemistry. Front. Chem. 2023, 11, 1214825. [Google Scholar] [CrossRef] [PubMed]
- Dračková, M.; Hadra, L.; Janštová, B.; Navrátilová, P.; Přidalová, H.; Vorlová, L. Analysis of goat milk by near-infrared spectroscopy. Acta Vet. Brno 2008, 77, 415–422. [Google Scholar] [CrossRef]
- He, Y.; Zeng, W.; Zhao, Y.; Zhu, X.; Wan, H.; Zhang, M.; Li, Z. Rapid detection of adulteration of goat milk and goat infant formulas using near-infrared spectroscopy fingerprints. Int. Dairy J. 2023, 137, 105536. [Google Scholar] [CrossRef]
- Di Donato, F.; Biancolillo, A.; Ferretti, A.; D’Archivio, A.A.; Marini, F. Near infrared spectroscopy coupled to chemometrics for the authentication of donkey milk. J. Food Compos. Anal. 2023, 115, 105017. [Google Scholar] [CrossRef]
- Mabood, F.; Jabeen, F.; Ahmed, M.; Hussain, J.; Al Mashaykhi, S.A.A.; Al Rubaiey, Z.M.A.; Farooq, S.; Boqué, R.; Ali, L.; Hussain, Z.; et al. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chem. 2017, 221, 746–750. [Google Scholar] [CrossRef]
- Holroyd, S.E. The use of near infrared spectroscopy on milk and milk products. J. Near Infrared Spectrosc. 2013, 21, 311–322. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef]
- De la Roza-Delgado, B.; Garrido-Varo, A.; Soldado, A.; Arrojo, A.G.; Valdés, M.C.; Maroto, F.; Pérez-Marín, D. Matching portable NIRS instruments for in situ monitoring indicators of milk composition. Food Control 2017, 76, 74–81. [Google Scholar] [CrossRef]
- Diaz-Olivares, J.A.; Adriaens, I.; Stevens, E.; Saeys, W.; Aernouts, B. Online milk composition analysis with an on-farm near-infrared sensor. Comput. Electron. Agric. 2020, 178, 105734. [Google Scholar] [CrossRef]
- Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R. Recent advances on determination of milk adulterants. Food Chem. 2017, 221, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, M.; Penasa, M.; Zidi, A.; Manuelian, C. Invited review: Use of infrared technologies for the assessment of dairy products—Applications and perspectives. J. Dairy Sci. 2018, 101, 10589–10604. [Google Scholar] [CrossRef]
- Iwamoto, M.; Kawano, S.; Ozaki, Y. An overview of research and development of near infrared spectroscopy in Japan. J. Near Infrared Spectrosc. 1995, 3, 179–189. [Google Scholar] [CrossRef]
- Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food Chem. 2003, 82, 107–115. [Google Scholar] [CrossRef]
- Robert, P.; Bertrand, D.; Devaux, M.F.; Grappin, R. Multivariate Analysis Applied to Near-Infrared Spectra of Milk. Anal. Chem. 1987, 59, 2187–2191. [Google Scholar] [CrossRef]
- Duckworth, J.H. Spectroscopic Quantitative Analysis. In Applied Spectroscopy: A Compact Reference for Practitioners; Workman, J.W., Jr., Springsteen, A., Eds.; Academic Press: London, UK, 1998. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Nie, P.C.; Zhang, W.; He, Y. A novel method of pattern recognition for honey source base on Visible/Near infrared Spectroscopy: Genetic algorithm combined with support vector machine. In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, AICI 2010, Sanya, China, 23–24 October 2010. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef]
- Zhang, S.; Jie, D.; Zhang, H. NIR spectroscopy identification of persimmon varieties based on PCA-SVM. In Computer and Computing Technologies in Agriculture IV, Proceedings of the 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010; IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- El Orche, A.; Mamad, A.; Elhamdaoui, O.; Cheikh, A.; El Karbane, M.; Bouatia, M. Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy. J. Spectrosc. 2021, 2021, 5845422. [Google Scholar] [CrossRef]
- NeoSpectra, Si-Ware. Available online: https://www.si-ware.com/products-and-software/neospectra-scanner (accessed on 6 September 2024).
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R1308 (accessed on 2 September 2023).
- UE. Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the Provision of Food Information to Consumers. EurLex. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 2 September 2023).
- Biancolillo, A.; Marini, F. Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. Front. Chem. 2018, 6, 576. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The impact of signal pre-processing on the final interpretation of analytical outcomes- A tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Worley, B. Spectral Data Analysis: Pre-Processing and Beyond. JMP Statistical Discovery. 2021. Available online: https://community.jmp.com/t5/Discovery-Summit-Americas-2021/Analyzing-Spectral-Data-Preprocessing-and-Beyond-2021-US-45MP/ta-p/398718 (accessed on 6 October 2023).
- Deiss, L.; Margenot, A.J.; Culman, S.W.; Demyan, M.S. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma 2020, 365, 114227. [Google Scholar] [CrossRef]
- Altman, D.G.; Douglas, G.; Martin Bland, M. Diagnostic Tests. 1: Sensitivity and Specificity. BMJ Br. Med. J. 1994, 308, 1552. [Google Scholar] [CrossRef]
- Riu, G.J.; Gorla, D.; Chakif, R.; Boqué, R.; Giussani, B. Rapid analysis of milk using low-cost pocket-size NIR spectrometers and multivariate analysis. Foods 2020, 9, 1090. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Materazi, S. Assessing the quality of milk using a multicomponent analytical platform microNIR/chemo-metric. Front. Chem. 2020, 8, 614718. [Google Scholar] [CrossRef]
- Melfsen, A.; Holstermann, M.; Haeussermann, A.; Molkentin, J.; Susenbeth, A.; Hartung, E. Accuracy and application of milk fatty acid estimation with diffuse reflectance near-infrared spectroscopy. J. Dairy Res. 2018, 85, 212–221. [Google Scholar] [CrossRef]
- Cakebread, J.A.; Agnew, M.P.; Weeks, M.G.; Reis, M.M. Assessment of bovine milk fatty acids using miniaturised near infrared spectrophotometer. Int. J. Dairy. Technol. 2023, 76, 1012–1018. [Google Scholar] [CrossRef]
Type of Milk | Milk Samples (n) | Fat (%) | Carbohydrates (%) | Proteins (%) |
---|---|---|---|---|
No class | 9 | 0.98 ± 0.12 A | 5.01 ± 0.34 | 3.26 ± 0.16 |
Skimmed | 11 | 0.17 ± 0.18 B | 4.95 ± 0.10 | 3.40 ± 0.20 |
Semi-skimmed | 34 | 1.59 ± 0.04 C | 4.95 ± 0.09 | 3.36 ± 0.31 |
Whole | 19 | 3.71 ± 0.35 D | 4.88 ± 0.10 | 3.35 ± 0.24 |
Actual | Training Set (n = 37) Predicted | Overall Accuracy | Validation Set (n = 36) Predicted | Overall Accuracy | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Whole | No-Class | Semi-skimmed | Skimmed | Whole | No-Class | Semi-skimmed | Skimmed | |||
Whole | 9 (100%) | 0 | 0 | 0 | 100% | 10 (100%) | 0 | 0 | 0 | 94.4% |
No-class | 0 | 5 (100%) | 0 | 0 | 0 | 2 (50.0%) | 1 | 1 | ||
Semi-skimmed | 0 | 0 | 17 (100%) | 0 | 0 | 0 | 17 (100%) | 0 | ||
Skimmed | 0 | 0 | 0 | 6 (100%) | 0 | 0 | 0 | 5 (100%) |
Actual | Training Set (n = 37)Predicted | Overall Accuracy | Validation Set (n = 36)Predicted | Overall Accuracy | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Whole | No-Class | Semi-skimmed | Skimmed | Whole | No-Class | Semi-skimmed | Skimmed | |||
Whole | 9 (100%) | 0 | 0 | 0 | 97.2% | 10 (100%) | 0 | 0 | 0 | 94.4% |
No-class | 0 | 4 (80.0%) | 1 | 0 | 0 | 2 (50.0%) | 1 | 1 | ||
Semi-skimmed | 0 | 0 | 17 (100%) | 0 | 0 | 0 | 17 (100%) | 0 | ||
Skimmed | 0 | 0 | 0 | 6 (100%) | 0 | 0 | 0 | 5 (100%) |
Actual | Training Set (n = 37) | Actual | Validation Set (n = 36) | ||
---|---|---|---|---|---|
Predicted | Predicted | ||||
Whole | Not Whole | Whole | Not Whole | ||
Whole | 9 | 0 | Whole | 10 | 0 |
Not Whole | 0 | 28 | Not Whole | 0 | 26 |
No-class | Not No-class | No-class | Not No-class | ||
No-class | 5 | 0 | No-class | 2 | 0 |
Not No-class | 0 | 32 | Not No-class | 2 | 32 |
Semi-Skimmed | Not Semi-Skimmed | Semi-Skimmed | Not Semi-Skimmed | ||
Semi-Skimmed | 17 | 0 | Semi-Skimmed | 17 | 1 |
Not Semi-Skimmed | 0 | 20 | Not Semi-Skimmed | 0 | 18 |
Skimmed | Not Skimmed | Skimmed | Not Skimmed | ||
Skimmed | 6 | 0 | Skimmed | 5 | 1 |
Not Skimmed | 0 | 31 | Not Skimmed | 0 | 30 |
Actual | Training Set (n = 37) | Actual | Validation Set (n = 36) | ||
---|---|---|---|---|---|
Predicted | Predicted | ||||
Whole | Not Whole | Whole | Not Whole | ||
Whole | 9 | 0 | Whole | 10 | 0 |
Not Whole | 0 | 28 | Not Whole | 0 | 26 |
No-class | Not No-class | No-class | Not No-class | ||
No-class | 3 | 0 | No-class | 2 | 0 |
Not No-class | 2 | 32 | Not No-class | 2 | 32 |
Semi-Skimmed | Not Semi-Skimmed | Semi-Skimmed | Not Semi-Skimmed | ||
Semi-Skimmed | 17 | 1 | Semi-Skimmed | 17 | 1 |
Not Semi-Skimmed | 0 | 19 | Not Semi-Skimmed | 0 | 18 |
Skimmed | Not Skimmed | Skimmed | Not Skimmed | ||
Skimmed | 6 | 0 | Skimmed | 5 | 0 |
Not Skimmed | 0 | 31 | Not Skimmed | 0 | 31 |
Milk Class | Training Set (n = 37) | Validation Set (n = 36) | ||||
---|---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | MCC | Sensitivity (%) | Specificity (%) | MCC | |
Whole | 100 | 100 | 1 | 100 | 100 | 1 |
No class | 100 | 100 | 1 | 100 | 94.1 | 0.69 |
Semi-skimmed | 100 | 100 | 1 | 94.4 | 100 | 0.97 |
Skimmed | 100 | 100 | 1 | 83.3 | 100 | 0.90 |
Milk Class | Training Set (n = 37) | Validation Set (n = 36) | ||||
---|---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | MCC | Sensitivity (%) | Specificity (%) | MCC | |
Whole | 100 | 100 | 1 | 100 | 100 | 1 |
No-class | 100 | 94.1 | 0.75 | 100 | 94.1 | 0.69 |
Semi-skimmed | 94.4 | 100 | 0.95 | 94.4 | 100 | 0.95 |
Skimmed | 100 | 100 | 1 | 100 | 100 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buoio, E.; Colombo, V.; Ighina, E.; Tangorra, F. Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models. Foods 2024, 13, 3279. https://doi.org/10.3390/foods13203279
Buoio E, Colombo V, Ighina E, Tangorra F. Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models. Foods. 2024; 13(20):3279. https://doi.org/10.3390/foods13203279
Chicago/Turabian StyleBuoio, Eleonora, Valentina Colombo, Elena Ighina, and Francesco Tangorra. 2024. "Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models" Foods 13, no. 20: 3279. https://doi.org/10.3390/foods13203279
APA StyleBuoio, E., Colombo, V., Ighina, E., & Tangorra, F. (2024). Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models. Foods, 13(20), 3279. https://doi.org/10.3390/foods13203279