The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms (Agaricus bisporus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source and Pre-Treatment
2.2. Equipment and Reagents
2.3. Cold Plasma Process Optimization
2.3.1. Single Factor Experiment
2.3.2. Box-Behnken Experiment for Optimization
2.4. Cold Plasma Treatment and Storage of A. bisporus
2.5. Preservation Quality Investigation
2.5.1. Hardness, Weight Loss Rate, and Moisture Content
2.5.2. Microbial Colony Assay of Mushroom Epidermis
2.5.3. Mushroom Appearance, Color, Peroxidase, and Polyphenol Oxidase
2.5.4. Vitamin C, Total Protein Content, Total Phenolic Content, and Total Soluble Solids Content
2.5.5. Determination of Vitamin D and Ergosterol
2.6. Statistical Analyses
3. Results and Discussion
3.1. Optimization of Cold Plasma Treatment for A. bisporus
3.2. Postharvest Preservation of A. bisporus
3.2.1. Hardness, Weight Loss Rate, Moisture Content, and Total Number of Bacterial Colonies
3.2.2. Appearance, Color, Peroxidase, and Polyphenol Oxidase
3.2.3. Vitamin C, Protein Content, Total Phenolic Content, and Total Soluble Solids
3.2.4. Vitamin D and Ergosterol
3.2.5. Correlation Analysis and PLS-DA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and Its By-Products as a Source of Valuable Extracts and Bioactive Compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef]
- Blumfield, M.; Abbott, K.; Duve, E.; Cassettari, T.; Marshall, S.; Fayet-Moore, F. Examining the Health Effects and Bioactive Components in Agaricus bisporus Mushrooms: A Scoping Review. J. Nutr. Biochem. 2020, 84, 108453. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent Advances in Quality Preservation of Postharvest Mushrooms (Agaricus bisporus): A Review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Sun, T.; Bian, J.; Wang, Y.; Hu, J.; Yun, X.; Chen, E.; Dong, T. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation. Foods 2023, 12, 586. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, M.; Wang, Y.; Zhao, P.; Wang, K.; Wang, Y.; Wang, X.; Wang, J. Evaluation of Film Packaging Containing Mesoporous Nanosilica and Oregano Essential Oil for Postharvest Preservation of Mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2023, 198, 112263. [Google Scholar] [CrossRef]
- Zheng, B.; Kou, X.; Liu, C.; Wang, Y.; Yu, Y.; Ma, J.; Liu, Y.; Xue, Z. Effect of Nanopackaging on the Quality of Edible Mushrooms and Its Action Mechanism: A Review. Food Chem. 2023, 407, 135099. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Sun, Y.; Xia, R.; Hou, Z.; Li, Y.; Wang, Y.; Pan, S.; Li, L.; Zhao, C.; et al. Effect of Light on Quality of Preharvest and Postharvest Edible Mushrooms and Its Action Mechanism: A Review. Trends Food Sci. Technol. 2023, 139, 104119. [Google Scholar] [CrossRef]
- Dong, S.; Guo, J.; Yu, J.; Bai, J.; Xu, H.; Li, M. Effects of Electron-Beam Generated X-Ray Irradiation on the Postharvest Storage Quality of Agaricus bisporus. Innov. Food Sci. Emerg. Technol. 2022, 80, 103079. [Google Scholar] [CrossRef]
- Bezerra, J.d.A.; Lamarao, C.V.; Sanches, E.A.; Rodrigues, S.; Fernandes, F.A.N.; Ramos, G.L.P.A.; Esmerino, E.A.; Cruz, A.G.; Campelo, P.H. Cold Plasma as a Pre-Treatment for Processing Improvement in Food: A Review. Food Res. Int. 2023, 167, 112663. [Google Scholar] [CrossRef]
- Farooq, S.; Dar, A.H.; Dash, K.K.; Srivastava, S.; Pandey, V.K.; Ayoub, W.S.; Pandiselvam, R.; Manzoor, S.; Kaur, M. Cold Plasma Treatment Advancements in Food Processing and Impact on the Physiochemical Characteristics of Food Products. Food Sci. Biotechnol. 2023, 32, 621–638. [Google Scholar] [CrossRef]
- Zhou, R.; Rezaeimotlagh, A.; Zhou, R.; Zhang, T.; Wang, P.; Hong, J.; Soltani, B.; Mai-Prochnow, A.; Liao, X.; Ding, T.; et al. In-Package Plasma: From Reactive Chemistry to Innovative Food Preservation Technologies. Trends Food Sci. Technol. 2022, 120, 59–74. [Google Scholar] [CrossRef]
- Ding, Y.; Mo, W.; Deng, Z.; Kimatu, B.M.; Gao, J.; Fang, D. Storage Quality Variation of Mushrooms (Flammulina velutipes) after Cold Plasma Treatment. Life 2023, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, K.; Gul, K.; Sehrawat, R.; Allai, F.M. Impact of In-Package Cold Plasma Treatment on the Physicochemical Properties and Shelf Life of Button Mushrooms (Agaricus bisporus). Food Biosci. 2023, 52, 102425. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, N.; Dong, C.; Zheng, P.; Ji, H.; Yu, J.; Yan, S.; Chen, C.; Liang, L. Effect of Cold Plasma Treatment on the Softening of Winter Jujubes (Ziziphus jujuba Mill. Cv. Dongzao). Horticulturae 2023, 9, 986. [Google Scholar] [CrossRef]
- Hua, X.; Li, T.; Wu, C.; Zhou, D.; Fan, G.; Li, X.; Cong, K.; Yan, Z.; Wu, Z. Novel Physical Treatments (Pulsed Light and Cold Plasma) Improve the Quality of Postharvest Apricots after Long-Distance Simulated Transportation. Postharvest Biol. Technol. 2022, 194, 112098. [Google Scholar] [CrossRef]
- Du, Y.; Mi, S.; Wang, H.; Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Intervention Mechanisms of Cold Plasma Pretreatment on the Quality, Antioxidants and Reactive Oxygen Metabolism of Fresh Wolfberries during Storage. Food Chem. 2024, 431, 137106. [Google Scholar] [CrossRef]
- Dharini, M.; Jaspin, S.; Mahendran, R. Cold Plasma Reactive Species: Generation, Properties, and Interaction with Food Biomolecules. Food Chem. 2023, 405, 134746. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, R. Cold Plasma Technology for Fruit Based Beverages: A Review. Trends Food Sci. Technol. 2021, 114, 60–69. [Google Scholar] [CrossRef]
- Zhu, Y.; Elliot, M.; Zheng, Y.; Chen, J.; Chen, D.; Deng, S. Aggregation and Conformational Change of Mushroom (Agaricus bisporus) Polyphenol Oxidase Subjected to Atmospheric Cold Plasma Treatment. Food Chem. 2022, 386, 132707. [Google Scholar] [CrossRef]
- Mahdavian Mehr, H.; Koocheki, A. Effects of Short-Term and Long-Term Cold Plasma Treatment on the Color, Structure, and Pickering Foaming Properties of Grass Pea Protein Particles. Food Hydrocoll. 2023, 143, 108846. [Google Scholar] [CrossRef]
- Ke, Z.; Bai, Y.; Zhu, H.; Xiang, X.; Liu, S.; Zhou, X.; Ding, Y. Characteristics of Myoglobin Degradation by Cold Plasma and Its Pro-Oxidative Activity on Lipid in Washed Fish Muscle. Food Chem. 2022, 389, 132972. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, J.-H.; Sun, D.-W. Enhancing Microorganism Inactivation Performance through Optimization of Plate-to-Plate Dielectric Barrier Discharge Cold Plasma Reactors. Food Control 2024, 157, 110164. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.; Huang, H.; Zhang, W.; Chen, J.; Cao, C. Improvement of Postharvest Quality, Enzymes Activity and Polyphenoloxidase Structure of Postharvest Agaricus bisporus in Response to High Voltage Electric Field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, A.; Fang, D.; Lu, T.; Wang, J.; Song, Y.; Lyu, L.; Wu, W.; Huang, C.; Li, W. Oregano Essential Oil/β-Cyclodextrin Inclusion Compound Polylactic Acid/Polycaprolactone Electrospun Nanofibers for Active Food Packaging. Chem. Eng. J. 2022, 445, 136746. [Google Scholar] [CrossRef]
- Fattahifar, E.; Barzegar, M.; Ahmadi Gavlighi, H.; Sahari, M.A. Evaluation of the Inhibitory Effect of Pistachio (Pistacia vera L.) Green Hull Aqueous Extract on Mushroom Tyrosinase Activity and Its Application as a Button Mushroom Postharvest Anti-Browning Agent. Postharvest Biol. Technol. 2018, 145, 157–165. [Google Scholar] [CrossRef]
- Ni, X.; Yu, J.; Shao, P.; Yu, J.; Chen, H.; Gao, H. Preservation of Agaricus bisporus Freshness with Using Innovative Ethylene Manipulating Active Packaging Paper. Food Chem. 2021, 345, 128757. [Google Scholar] [CrossRef]
- Sun, Y.; Nzekoue, F.K.; Vittori, S.; Sagratini, G.; Caprioli, G. Conversion of Ergosterol into Vitamin D2 and Other Photoisomers in Agaricus Bisporus Mushrooms under UV-C Irradiation. Food Biosci. 2022, 50, 102143. [Google Scholar] [CrossRef]
- Du, Y.; Yang, F.; Yu, H.; Xie, Y.; Yao, W. Improving Food Drying Performance by Cold Plasma Pretreatment: A Systematic Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4402–4421. [Google Scholar] [CrossRef]
- Shanker, M.A.; Khanashyam, A.C.; Pandiselvam, R.; Joshi, T.J.; Thomas, P.E.; Zhang, Y.; Rustagi, S.; Bharti, S.; Thirumdas, R.; Kumar, M.; et al. Implications of Cold Plasma and Plasma Activated Water on Food Texture—A Review. Food Control 2023, 151, 109793. [Google Scholar] [CrossRef]
- Li, L.; Kitazawa, H.; Zhang, X.; Zhang, L.; Sun, Y.; Wang, X.; Liu, Z.; Guo, Y.; Yu, S. Melatonin Retards Senescence via Regulation of the Electron Leakage of Postharvest White Mushroom (Agaricus bisporus). Food Chem. 2021, 340, 127833. [Google Scholar] [CrossRef]
- Sun, B.; Chen, X.; Xin, G.; Qin, S.; Chen, M.; Jiang, F. Effect of 1-Methylcyclopropene (1-MCP) on Quality of Button Mushrooms (Agaricus bisporus) Packaged in Different Packaging Materials. Postharvest Biol. Technol. 2020, 159, 111023. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/Cinnamaldehyde Antimicrobial Packaging on Physicochemical and Microbial Quality of Button Mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Sohbatzadeh, F.; Rohani, A. Inhibition of Enzymes and Pseudomonas tolaasii Growth on Agaricus bisporus Following Treatment with Surface Dielectric Barrier Discharge Plasma. Innov. Food Sci. Emerg. Technol. 2021, 74, 102833. [Google Scholar] [CrossRef]
- Yarabbi, H.; Soltani, K.; Sangatash, M.M.; Yavarmanesh, M.; Shafafi Zenoozian, M. Reduction of Microbial Population of Fresh Vegetables (Carrot, White Radish) and Dried Fruits (Dried Fig, Dried Peach) Using Atmospheric Cold Plasma and Its Effect on Physicochemical Properties. J. Agric. Food Res. 2023, 14, 100789. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.-W. Research Advances in Browning of Button Mushroom (Agaricus bisporus): Affecting Factors and Controlling Methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Ma, T. Properties of Plasma-Activated Water with Different Activation Time and Its Effects on the Quality of Button Mushrooms (Agaricus bisporus). LWT-FOOD Sci. Technol. 2021, 147, 111633. [Google Scholar] [CrossRef]
- Wei, W.; Lv, P.; Xia, Q.; Tan, F.; Sun, F.; Yu, W.; Jia, L.; Cheng, J. Fresh-Keeping Effects of Three Types of Modified Atmosphere Packaging of Pine-Mushrooms. Postharvest Biol. Technol. 2017, 132, 62–70. [Google Scholar] [CrossRef]
- Sruthi, N.U.; Josna, K.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Mousavi Khaneghah, A. Impacts of Cold Plasma Treatment on Physicochemical, Functional, Bioactive, Textural, and Sensory Attributes of Food: A Comprehensive Review. Food Chem. 2022, 368, 130809. [Google Scholar] [CrossRef]
- Dong, S.; Fan, L.; Ma, Y.; Du, J.; Xiang, Q. Inactivation of Polyphenol Oxidase by Dielectric Barrier Discharge (DBD) Plasma: Kinetics and Mechanisms. LWT 2021, 145, 111322. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Khomeiri, M.; Sohbatzadeh, F.; Rohani, A. Effects of Gas Type and Cold Plasma Treatment Time on Lecanicillium Fungicola Spores Reduction and Changes in Qualitative, Chemical, and Physiological Characteristics of Button Mushroom during Postharvest Storage. J. Food Process. Preserv. 2022, 46, e16901. [Google Scholar] [CrossRef]
- Shen, C.; Chen, W.; Li, C.; Cui, H.; Lin, L. The Effects of Cold Plasma (CP) Treatment on the Inactivation of Yam Peroxidase and Characteristics of Yam Slices. J. Food Eng. 2023, 359, 111693. [Google Scholar] [CrossRef]
- Dantas, A.M.; Batista, J.D.F.; dos Santos Lima, M.; Fernandes, F.A.N.; Rodrigues, S.; Magnani, M.; Borges, G.d.S.C. Effect of Cold Plasma on Açai Pulp: Enzymatic Activity, Color and Bioaccessibility of Phenolic Compounds. LWT 2021, 149, 111883. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Z.; Tu, S.; Chen, S.; Peng, J.; Tu, K. Effects of Cold Plasma, UV-C or Aqueous Ozone Treatment on Botrytis Cinerea and Their Potential Application in Preserving Blueberry. J. Appl. Microbiol. 2019, 127, 175–185. [Google Scholar] [CrossRef]
- Mayookha, V.P.; Pandiselvam, R.; Kothakota, A.; Padma Ishwarya, S.; Chandra Khanashyam, A.; Kutlu, N.; Rifna, E.J.; Kumar, M.; Panesar, P.S.; Abd El-Maksoud, A.A. Ozone and Cold Plasma: Emerging Oxidation Technologies for Inactivation of Enzymes in Fruits, Vegetables, and Fruit Juices. Food Control 2023, 144, 109399. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Zhang, J.; Cheng, P.; Hu, J.; Dong, T. Effect of Modified Atmosphere Packaging Materials on Physicochemical and Selected Enzyme Activities of Agaricus Bernardii. J. Food Process Eng. 2021, 44, e13628. [Google Scholar] [CrossRef]
- Leite, A.K.F.; Fonteles, T.V.; Miguel, T.B.A.R.; Silvestre da Silva, G.; Sousa de Brito, E.; Alves Filho, E.G.; Fernandes, F.A.N.; Rodrigues, S. Atmospheric Cold Plasma Frequency Imparts Changes on Cashew Apple Juice Composition and Improves Vitamin C Bioaccessibility. Food Res. Int. 2021, 147, 110479. [Google Scholar] [CrossRef]
- Khoshkalam Pour, A.; Khorram, S.; Ehsani, A.; Ostadrahimi, A.; Ghasempour, Z. Atmospheric Cold Plasma Effect on Quality Attributes of Banana Slices: Its Potential Use in Blanching Process. Innov. Food Sci. Emerg. Technol. 2022, 76, 102945. [Google Scholar] [CrossRef]
- Wang, X.-M.; Zhang, J.; Wu, L.-H.; Zhao, Y.-L.; Li, T.; Li, J.-Q.; Wang, Y.-Z.; Liu, H.-G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Billah, M.; Sajib, S.A.; Roy, N.C.; Rashid, M.M.; Reza, M.A.; Hasan, M.M.; Talukder, M.R. Effects of DBD Air Plasma Treatment on the Enhancement of Black Gram (Vigna Mungo l.) Seed Germination and Growth. Arch. Biochem. Biophys. 2020, 681, 108253. [Google Scholar] [CrossRef]
- Ji, W.; Li, M.; Yang, T.; Li, H.; Li, W.; Wang, J.; Ma, M. Effect of Cold Plasma on Physical–Biochemical Properties and Nutritional Components of Soybean Sprouts. Food Res. Int. 2022, 161, 111766. [Google Scholar] [CrossRef]
- Bahrami, N.; Bayliss, D.; Chope, G.; Penson, S.; Perehinec, T.; Fisk, I.D. Cold Plasma: A New Technology to Modify Wheat Flour Functionality. Food Chem. 2016, 202, 247–253. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, M.; Lu, L.; Sun, L.; Xu, M. Nitric Oxide Fumigation Stimulates Flavonoid and Phenolic Accumulation and Enhances Antioxidant Activity of Mushroom. Food Chem. 2012, 135, 1220–1225. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, S.; Li, M.; Zhang, R.; Liu, Z.; Wang, X. The Effects of LTP/CEO/SBA-15 Potato Starch Film on the Postharvest Quality of Agaricus bisporus. Sci. Hortic. 2024, 324, 112576. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef]
- Shao, S.; Hernandez, M.; Kramer, J.K.G.; Rinker, D.L.; Tsao, R. Ergosterol Profiles, Fatty Acid Composition, and Antioxidant Activities of Button Mushrooms as Affected by Tissue Part and Developmental Stage. J. Agric. Food Chem. 2010, 58, 11616–11625. [Google Scholar] [CrossRef]
- Feizollahi, E.; Misra, N.N.; Roopesh, M.S. Factors Influencing the Antimicrobial Efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in Food Processing Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 666–689. [Google Scholar] [CrossRef]
- Wang, J.; Fu, T.; Sang, X.; Liu, Y. Effects of High Voltage Atmospheric Cold Plasma Treatment on Microbial Diversity of Tilapia (Oreochromis Mossambicus) Fillets Treated during Refrigeration. Int. J. Food Microbiol. 2022, 375, 109738. [Google Scholar] [CrossRef]
- Simon, R.R.; Phillips, K.M.; Horst, R.L.; Munro, I.C. Vitamin D Mushrooms: Comparison of the Composition of Button Mushrooms (Agaricus bisporus) Treated Postharvest with UVB Light or Sunlight. J. Agric. Food Chem. 2011, 59, 8724–8732. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Verki, N.; Shapoorzadeh, A.; Razzaghi-Abyaneh, M.; Atyabi, S.-M.; Shams-Ghahfarokhi, M.; Jahanshiri, Z.; Gholami-Shabani, M. Cold Atmospheric Plasma Inhibits the Growth of Candida Albicans by Affecting Ergosterol Biosynthesis and Suppresses the Fungal Virulence Factors in Vitro. Photodiagnosis Photodyn. Ther. 2016, 13, 66–72. [Google Scholar] [CrossRef]
- Shapourzadeh, A.; Rahimi-Verki, N.; Atyabi, S.-M.; Shams-Ghahfarokhi, M.; Jahanshiri, Z.; Irani, S.; Razzaghi-Abyaneh, M. Inhibitory Effects of Cold Atmospheric Plasma on the Growth, Ergosterol Biosynthesis, and Keratinase Activity in Trichophyton Rubrum. Arch. Biochem. Biophys. 2016, 608, 27–33. [Google Scholar] [CrossRef]
Treatment | Packaging | Plasma Treatment |
---|---|---|
CP+PE | Yes | Yes |
PE | Yes | No |
CP | No | Yes |
Control | No | No |
Source | Y | L* | ||||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |||
Model | 20.29 | 0.0003 | significant | 1.39 | 0.3079 | not significant |
A-A | 20.76 | 0.0026 | 5.19 | 0.0459 | ||
B-B | 25.24 | 0.0015 | 0.0004 | 0.9851 | ||
C-C | 99.1 | <0.0001 | 0.0003 | 0.9857 | ||
AB | 0.0028 | 0.9589 | 1.26 | 0.2887 | ||
AC | 2.19 | 0.1826 | 0.8428 | 0.3802 | ||
BC | 5.03 | 0.0597 | 1.04 | 0.3316 | ||
A2 | 0.5301 | 0.4902 | ||||
B2 | 7.97 | 0.0257 | ||||
C2 | 20.74 | 0.0026 | ||||
Lack of Fit | 0.51 | 0.6966 | not significant | 0.0411 | 0.9992 | not significant |
R2 | 0.9631 | 0.4544 | ||||
Adjusted R2 | 0.9156 | 0.1271 | ||||
Predicted R2 | 0.7948 | 0.2984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Xia, S.; Shi, C.; Ma, N.; Pei, F.; Yang, W.; Hu, Q.; Kimatu, B.M.; Fang, D. The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms (Agaricus bisporus). Foods 2024, 13, 3393. https://doi.org/10.3390/foods13213393
Guo Y, Xia S, Shi C, Ma N, Pei F, Yang W, Hu Q, Kimatu BM, Fang D. The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms (Agaricus bisporus). Foods. 2024; 13(21):3393. https://doi.org/10.3390/foods13213393
Chicago/Turabian StyleGuo, Yalong, Shuqiong Xia, Chong Shi, Ning Ma, Fei Pei, Wenjian Yang, Qiuhui Hu, Benard Muinde Kimatu, and Donglu Fang. 2024. "The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms (Agaricus bisporus)" Foods 13, no. 21: 3393. https://doi.org/10.3390/foods13213393
APA StyleGuo, Y., Xia, S., Shi, C., Ma, N., Pei, F., Yang, W., Hu, Q., Kimatu, B. M., & Fang, D. (2024). The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms (Agaricus bisporus). Foods, 13(21), 3393. https://doi.org/10.3390/foods13213393