Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material and Sample
2.2. Method
2.3. Data Analysis
3. Results
3.1. Fruit Polyphenol Components of Malus Germplasm Resources
3.2. Differences in Polyphenol Components and Contents of Fruits of Malus Germplasm Resources
3.3. Principal Component Analysis of Polyphenols in Peel and Pulp of Apple Germplasm Resources
3.4. Cluster Analysis of Polyphenols in Peel and Pulp of Malus Germplasm Resources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sassa, H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breed. Sci. 2016, 66, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Z.; Wang, K.; Cao, Y.; Gong, X. Advances and prospect in research on apple germplasm resources in China. J. Fruit Sci. 2006, 23, 865–870. [Google Scholar] [CrossRef]
- Lu, Q.N.; Jia, D.X. The Fruit Tree Encyclopedia: Apple Volume; China Agricultural Science and Technology Press: Beijing, China; China Forestry Publishing House: Beijing, China, 1999; pp. 1–9. [Google Scholar]
- Li, Y.N. Researches of Germplasm Resources of Malus Mill; China Agriculture Press: Beijing, China, 2001; pp. 1–94. [Google Scholar]
- Zhang, Z. Overview of fruit trees in Xinjiang. Xinjiang Agric. Sci. 1959, 6, 210–230. [Google Scholar]
- Lin, P.J.; Cui, N.R. Tianshan Wild Fruit Forest Resources-Comprehensive Study of Yili Wild Fruit Forest; China Forestry Publishing House: Beijing, China, 2000; pp. 84–141. [Google Scholar]
- Duan, N.B.; Bai, Y.; Sun, H.H.; Wang, N.; Ma, Y.M.; Li, M.J.; Wang, X.; Jiao, C.; Legall, N.; Mao, L.Y.; et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat. Commun. 2017, 8, 249. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Hu, J.; Han, X.L.; Li, J.J.; Gao, Y.; Richards, C.M.; Zhang, C.X.; Tian, Y.; Liu, G.M.; Gul, H.; et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 2019, 10, 1494. [Google Scholar] [CrossRef]
- Sun, X.P.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.M.; Duan, N.B.; Khan, A.; Ban, S.; Xu, K.N.; Cheng, L.L.; et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 2020, 52, 1423–1432. [Google Scholar] [CrossRef]
- Yan, G.R.; Yu, W.W.; Yang, M.L.; Xu, Z.; Long, H.; Li, H.; Song, W.Q.; Zhang, Y.X.; Zhao, P.; Li, F.; et al. The Malus Sieviersii in China; China Forestry Publishing House: Beijing, China, 2020; pp. 1–10. [Google Scholar]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2012, 5, 408–420. [Google Scholar] [CrossRef]
- Wang, D.J.; Wang, K.; Li, J.; Gao, Y.; Zhao, J.R.; Liu, L.J.; Gong, X.; Dong, X.G. Variation and correlation analysis of polyphenolic compounds in Malus germplasm. J. Hortic. Sci. Biotechnol. 2018, 93, 26–36. [Google Scholar] [CrossRef]
- Biedrzycka, E.; Amarowicz, R. Diet and health: Apple polyphenols as antioxidants. Food Rev. Int. 2008, 24, 235–251. [Google Scholar] [CrossRef]
- Jung, M.; Triebel, S.; Anke, T.; Richling, E.; Erkel, G. Influence of apple polyphenols on inflammatory gene expression. Mol. Nutr. Food Res. 2009, 53, 1263–1280. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Wyness, L.; Stanner, S. Apple polyphenols and cardiovascular disease—A review of the evidence: Apple polyphenols and cardiovascular disease. Nutr. Bull. 2010, 35, 92–101. [Google Scholar] [CrossRef]
- Shao, J.W.; Dai, Y.C.; Xue, J.P.; Wang, J.C.; Lin, F.P.; Guo, Y.H. In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives. Eur. J. Med. Chem. 2011, 46, 2652–2661. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Q. The Mechanism of Apple Peel Polyphenol Extract Regulating Diversity of Interstinal Microflora and Intestinal Microecology. Master’s Thesis, South China University of Technology, Guangzhou, China, 2022. [Google Scholar]
- Shoji, T.; Akazome, Y.; Kanda, T.; Ikeda, M. The toxicology and safety of apple polyphenol extract. Food Chem. Toxicol. 2004, 42, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhai, H.; Liu, J.B.; Du, Y.P.; Chen, F.; Wei, S.W. Polyphenolic compound and degree of browning in processing apple varieties. Sci. Agric. Sin. 2007, 11, 2563–2568. [Google Scholar] [CrossRef]
- Maria, J.K.M.; Enkhtaivan, G.; Kim, J.J.; Kim, D.H. Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea). Food Chem. 2014, 163, 46–50. [Google Scholar] [CrossRef]
- Farneti, B.; Masuero, D.; Costa, F.; Magnago, P.; Malnoy, M.; Costa, G.; Vrhovsek, U.; Mattivi, F. Is there room for improving the nutraceutical composition of apple? J. Agric. Food Chem. 2015, 63, 2750–2759. [Google Scholar] [CrossRef]
- Nie, J.Y.; Lv, D.G.; Li, J.; Liu, F.Z.; Li, H.F.; Wang, K. A preliminary study on the flavonoids in fruits of 22 apple germplasm resources. Sci. Agric. Sin. 2010, 43, 4455–4462. [Google Scholar] [CrossRef]
- Li, J.; Nie, J.Y.; Cao, Y.F.; Li, Z.X.; Yan, Z.; Wu, Y.L. UPLC-PDA-MS/MS-ESI analysis of phenolic compounds in fruits of Dangshan Suli and Qiubaili pears (Pyrus bretschneideri). Acta Hortic. Sin. 2016, 43, 752–762. [Google Scholar] [CrossRef]
- Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple. J. Chromatogr. A 2013, 1316, 78–91. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, J.; Liu, X.; Wang, B.; Zhao, Y.; Liao, L.; Allan, A.C.; Sun, C.; Duan, N.Y.; Li, X.; et al. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol. 2023, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Skendrovic, B.M.; Lesicar, J.; Sic, Z.J.; Voca, S.; Buljeta, I.; Istuk, J. Polyphenol content, profile, and distribution in old, traditional apple varieties. Croat. J. Food Sci. Technol. 2020, 12, 110–117. [Google Scholar] [CrossRef]
- Huang, R.; Xu, C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1036–1074. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhu, Q.G.; Wang, W.Q.; Grierson, D.; Yin, X.R. Molecular basis of the formation and removal of fruit astringency. Food Chem. 2022, 372, 131234. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Guan, L.; Cao, Y.; Li, C.; Chen, J.; Li, J.; Liu, G.; Li, S.; Wu, B. Diversity of polyphenols in the peel of apple (Malus sp.) germplasm from different countries of origin. Int. J. Food Sci. Technol. 2016, 51, 222–230. [Google Scholar] [CrossRef]
- Chen, X.S.; Mao, Z.Q.; Wang, N.; Zhang, Z.Y.; Yin, C.M. Progress on evaluation, mining and utilization of germplasm resource of deciduous fruit trees in Xinjiang. J. Plant Genet. Resour. 2021, 22, 1483–1490. [Google Scholar] [CrossRef]
- Gao, Q.; Fang, T. Comparison of the contents of five polyphenol in different parts of apple. J. Anhui Agric. Sci. 2013, 41, 3127–3128. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Zhao, Y.M.; Liu, D.L. Determination of polyphenols in apple pericarp and apple grunt. Food Res. Dev. 2013, 34, 87–89. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, S.C.; Wang, C.T.; Gao, J.W.; Wang, W.; Bo, L.Y.; Guo, Y.F. Study on polyphenol contents and antioxidant capacity of apple peel and pulp from different varieties. Food Res. Dev. 2015, 36, 1–3+27. [Google Scholar] [CrossRef]
- Francini, A.; Romeo, S.; Cifelli, M.; Gori, D.; Domenici, V.; Sebastiani, L. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 2017, 221, 1206–1213. [Google Scholar] [CrossRef]
- Li, X.P.; Li, J.R.; Yang, J.R. HPLC method establishment for apple polyphenolic materials determination. J. Chin. Inst. Food Sci. Technol. 2008, 8, 116–121. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Bbrranco, A.; Abad, B.; Berrueta, L.A.; Gallo, B.; Vicente, F. Polyphenolic profiles of Basque cider apple cultivars and their technological properties. J. Agric. Food Chem. 2004, 52, 2938–2952. [Google Scholar] [CrossRef] [PubMed]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; Charles, M.T.; Vasantha, R.H.P. Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J. Food Compos. Anal. 2008, 21, 396–401. [Google Scholar] [CrossRef]
- Van, D.S.A.A.; Dekker, M.; De, J.A.; Jongen, W.M.F. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions. J. Agric. Food Chem. 2001, 49, 3606–3613. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Nie, J.Y.; Lv, D.G.; Li, J.; Liu, F.Z.; Li, P. Advances in studies on flavonoids in apple fruit. Acta Hortic. Sin. 2009, 36, 1390–1397. [Google Scholar] [CrossRef]
- Lamperi, L.; Chiumnatto, U.; Cincinelli, A.; Galvan, P.; Giorordani, E.; Lepri, L.; Del, B.M. Polyphenol levels and free radical scavenging activities of four apple cultivars from integrated and organic farming in different Italian areas. J. Agric. Food Chem. 2008, 56, 6536–6546. [Google Scholar] [CrossRef]
- Thompson-Witrick, K.A.; Goodrich, K.M.; Neilson, A.P.; Hhrleyek, E.K.; Peck, G.M.; Stewart, A.C. Characterization of the polyphenol composition of 20 cultivars of cider, processing, and dessert apples (Malus × domestica Borkh.) grown in Virginia. J. Agric. Food Chem. 2014, 62, 10181–10191. [Google Scholar] [CrossRef]
- Stefova, M.; Petkovska, A.; Ugarkovic, S.; Stanoeva, J.P. Strategy for optimized use of LC-MS for determination of the polyphenolic profiles of apple peel, flesh and leaves. Arab. J. Chem. 2019, 12, 5180–5186. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.F.; Yu, M.T.; Zhao, H.Y.; Yang, T.Z.; Wang, Q.; Zhang, X.J.; Gao, Y.; Hao, Y.Y. Determination of phenolics content and antioxidant capacity of red-fleshed apple. J. Shanxi Agric. Sci. 2020, 48, 1763–1766. [Google Scholar] [CrossRef]
- Jakopic, J.; Stampar, F.; Veberic, R. The influence of exposure to light on the phenolic content of ‘Fuji’ apple. Sci. Hortic. 2009, 123, 234–239. [Google Scholar] [CrossRef]
- Chen, C.S.; Zhang, D.; Wang, Y.Q.; Li, P.M.; Ma, F.W. Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of ‘Golden Delicious’, ‘Red Delicious’, and ‘Royal Gala’ apples. Sci. Hortic. 2012, 142, 68–73. [Google Scholar] [CrossRef]
- Feng, F.J.; Li, M.J.; Ma, F.W.; Cheng, L.L. The effects of bagging and debagging on external fruit quality, metabolites, and the expression of anthocyanin biosynthetic genes in ‘Jonagold’ apple (Malus domestica Borkh.). Sci. Hortic. 2014, 165, 123–131. [Google Scholar] [CrossRef]
- Monika, K.; Aleksandra, B.; Hannal, L.S.; Waldemar, P.; Wlodzimierz, L. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Song, J.; Amyotte, B.; Yu, C.H.J.; Campbell-Palmer, L.; Vinqvist-Tymchuk, M.; Rupasinghe, H.P.V. Untargeted metabolomics analysis reveals the biochemical variations of polyphenols in a diverse apple population. Fruit Res. 2023, 3, 29. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef]
- Challice, J. Chemotaxonomic studies in the family Rosaceae and the evolutionary origins of the subfamily Maloideae. Preslia 1981, 53, 289–304. [Google Scholar]
- Wald, B.B.; Galensar, R. Detection of fruit juice adulteration in apple and pear juice. Eur. Food Res. Technol. 1989, 188, 107–114. [Google Scholar] [CrossRef]
- Wei, X.C.; Li, H.H.; Cai, X.Y.; Liang, Z.; Tang, D.D. Polyphenols and antioxidant activity analysis of 15 red flesh crabapples. Sci. Technol. Food Ind. 2015, 36, 133–136, 144. [Google Scholar] [CrossRef]
- Li, C.X.; Zhao, X.H.; Zuo, W.F.; Zhang, T.L.; Zhang, Z.Y.; Chen, X.S. Phytochemical profiles, antioxidant, and antiproliferative activities of four red-fleshed apple varieties in China. J. Food Sci. 2020, 85, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, J.; Yu, L.; Zou, Q.; Guo, Z.W.; Mao, Z.L.; Wang, Y.C.; Jiang, S.H.; Fang, H.C.; Xu, H.F.; et al. Progress on the rssource breeding of kernel fruits II: Progress on the germplasm resources, quality development and genetic breeding of apples in China. J. Plant Genet. Resour. 2019, 20, 801–812. [Google Scholar] [CrossRef]
- Gong, J.H.; Shin, D.; Han, S.Y.; Park, S.H.; Kang, M.K.; Kim, J.L.; Kang, Y.H. Blockade of airway inflammation by kaempferol via disturbing Tyk-STAT signaling in airway epithelial cells and in asthmatic mice. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, S.; Mir, J.I.; Sharma, M.; Mir, M.A.; Masoodi, K.Z.; Chung, Y.S. Polyphenolic diversity and antioxidant potential of important apple (Malus domestica Borkh) cultivars. Plant Biotechnol. Rep. 2023, 17, 653–663. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, oral health and disease: A review. J. Dent. 2009, 37, 413–423. [Google Scholar] [CrossRef]
- Liu, T. Inhibitory Effect and Mechanism of Polyphenols from Young Apple Fruit on Oral Odorous Microorganisms. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2022. [Google Scholar]
- Du, G.R. Study on the Total Antioxidant Capacity and Bioactive Compounds of Kiwi, Persimmon and Apple Fruits. Ph.D. Thesis, Northwest Agriculture & Forestry University, Xianyang, China, 2009. [Google Scholar]
Fruit Part | Type | Average Total Polyphenol Content (mg/kg FW) |
---|---|---|
Peel | Wild resources | 2842.28 |
Local variety | 1744.36 | |
Pulp | Wild resources | 1809.63 |
Local variety | 1058.25 |
Polyphenol Component | Peel (mg·kg−1 FW) | Proportion (%) | Pulp (mg·kg−1 FW) | Proportion (%) |
---|---|---|---|---|
PROB1 | 87.82 | 3.41% | 57.65 | 3.54% |
CATE | 47.14 | 1.83% | 37.07 | 2.28% |
PROB2 | 607.24 | 23.55% | 456.95 | 28.05% |
EPI | 486.89 | 18.88% | 364.78 | 22.39% |
PROC1 | 428.63 | 16.62% | 272.16 | 16.70% |
RUTIN | 12.33 | 0.48% | nd | nd |
QUEGA | 85.45 | 3.31% | 0.1065 | 0.01% |
QUEGL | 60.76 | 2.36% | 0.065 | 0.00% |
QUEXY | 31.17 | 1.21% | 0.381 | 0.02% |
QUEPY | 4.43 | 0.17% | nd | nd |
QUEFU | 67.44 | 2.62% | 0.4151 | 0.03% |
QUERH | 42.98 | 1.67% | 2.4229 | 0.15% |
KAEGA | 0.7488 | 0.03% | 0.0019 | 0.00% |
KAEGL | 1.9377 | 0.08% | 0.0029 | 0.00% |
KAERG | 0.6156 | 0.02% | nd | nd |
KAEPY | 0.0105 | 0.00% | 0.0013 | 0.00% |
KAEFU | 1.0937 | 0.04% | 0.0147 | 0.00% |
KAERH | 0.513 | 0.02% | 0.0089 | 0.00% |
CHLAC | 178.92 | 6.94% | 311.32 | 19.11% |
4COUAC | 24.57 | 0.95% | 48.64 | 2.99% |
5COUAC | 1.82 | 0.07% | 1.9 | 0.12% |
HYDXY | 4.56 | 0.18% | 4.42 | 0.27% |
PHLHE | 2.74 | 0.11% | 1.1431 | 0.07% |
HYDGL | 7.55 | 0.29% | 0.7567 | 0.05% |
PHLXY | 205.84 | 7.98% | 34.26 | 2.10% |
PHLPE | 8.72 | 0.34% | 2.75 | 0.17% |
PHLPE1 | 6.59 | 0.26% | 5.02 | 0.31% |
PHLZI | 164.93 | 6.40% | 26.76 | 1.64% |
CYAGA | 4.59 | 0.18% | 0.2665 | 0.02% |
CYAGL | 0.0126 | 0.00% | 0.0021 | 0.00% |
CYA3AR | 0.1217 | 0.00% | 0.0034 | 0.00% |
PEOGA | 0.328 | 0.01% | nd | nd |
CYA7AR | 0.1022 | 0.00% | 0.0107 | 0.00% |
CYAXY | 0.1628 | 0.01% | 0.0279 | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wang, G.; Lu, X.; Liu, Z.; Sun, S.; Guo, H.; Tian, W.; Li, Z.; Wang, L.; Li, L.; et al. Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis. Foods 2024, 13, 3465. https://doi.org/10.3390/foods13213465
Wang D, Wang G, Lu X, Liu Z, Sun S, Guo H, Tian W, Li Z, Wang L, Li L, et al. Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis. Foods. 2024; 13(21):3465. https://doi.org/10.3390/foods13213465
Chicago/Turabian StyleWang, Dajiang, Guangyi Wang, Xiang Lu, Zhao Liu, Simiao Sun, Hanxin Guo, Wen Tian, Zichen Li, Lin Wang, Lianwen Li, and et al. 2024. "Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis" Foods 13, no. 21: 3465. https://doi.org/10.3390/foods13213465
APA StyleWang, D., Wang, G., Lu, X., Liu, Z., Sun, S., Guo, H., Tian, W., Li, Z., Wang, L., Li, L., Gao, Y., & Wang, K. (2024). Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis. Foods, 13(21), 3465. https://doi.org/10.3390/foods13213465