Oral Toxicity and Hypotensive Influence of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons of Bombyx mori in Rodent Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sericin-Derived Oligopeptide (SDO) Preparation
2.2. Animals
2.3. Acute Toxicity Test
2.4. Chronic Toxicity Test
2.5. Clinical Chemistry and Hematological Test
2.6. Histopathological Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Acute Toxicity Test
3.1.1. Body and Internal Organ Weight
3.1.2. Clinical Chemistry
3.1.3. Hematology and Histopathology
3.2. Chronic Toxicity Test
3.2.1. Body and Internal Organ Weight
3.2.2. Clinical Chemistry
3.2.3. Hematology
3.2.4. Blood Sugar Levels
3.2.5. Blood Pressure Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, W.; Yu, Y.; Zhang, Y.; Zhang, B.; Xu, J.; Wang, J. Effect of degumming degree on the structure and tensile properties of RSF/RSS composite films prepared by one-step extraction. Sci. Rep. 2023, 13, 6689. [Google Scholar] [CrossRef]
- Tsuchida, K.; Sakudoh, T. Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Arch. Biochem. Biophys. 2015, 572, 151–157. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Zhou, H.; Zhang, B.; Yu, M.; Wang, Y.; Liu, Y.; Chai, C. The Potential of Natural Carotenoids-Containing Sericin of the Domestic Silkworm Bombyx mori. Int. J. Mol. Sci. 2024, 25, 3688. [Google Scholar] [CrossRef] [PubMed]
- Tocharus, C.; Sutheerawattananonda, M. Hypoglycemic Ability of Sericin-Derived Oligopeptides (SDOs) from Bombyx mori Yellow Silk Cocoons and Their Physiological Effects on Streptozotocin (STZ)-Induced Diabetic Rats. Foods 2024, 13, 2184. [Google Scholar] [CrossRef]
- Onsa-Ard, A.; Shimbhu, D.; Tocharus, J.; Sutheerawattananonda, M.; Pantan, R.; Tocharus, C. Hypotensive and vasorelaxant effects of sericin-derived oligopeptides in rats. ISRN Pharmacol. 2013, 2013, 717529. [Google Scholar] [CrossRef]
- Sangsawad, P.; Katemala, S.; Pao, D.; Suwanangul, S.; Jeencham, R.; Sutheerawattananonda, M. Integrated Evaluation of Dual-Functional DPP-IV and ACE Inhibitory Effects of Peptides Derived from Sericin Hydrolysis and Their Stabilities during In Vitro-Simulated Gastrointestinal and Plasmin Digestions. Foods 2022, 11, 3931. [Google Scholar] [CrossRef]
- Wang, H.-D.; Zhong, Z.-H.; Weng, Y.-J.; Wei, Z.-Z.; Zhang, Y.-Q. Degraded Sericin Significantly Regulates Blood Glucose Levels and Improves Impaired Liver Function in T2D Rats by Reducing Oxidative Stress. Biomolecules 2021, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Miguel, G.A.; Álvarez-López, C. Extraction and antioxidant activity of sericin, a protein from silk. Braz. J. Food Technol. 2020, 23, e2019058. [Google Scholar] [CrossRef]
- Lapphanichayakool, P.; Sutheerawattananonda, M.; Limpeanchob, N. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats. J. Nat. Med. 2017, 71, 208–215. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.-J.; Kim, K.; Kweon, H.; Kim, H.-b.; Kim, S.R.; Kim, S.-W.; Park, J.W.; Kang, S.K. Antioxidant and cholesterol regulatory effect of flavonoid-rich silk sericin. Food Sci. Biotechnol. 2024, 33, 2623–2630. [Google Scholar] [CrossRef] [PubMed]
- Kaewkorn, W.; Limpeanchob, N.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol. Res. 2012, 45, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.-T.; Zhang, Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Yakul, K.; Kaewsalud, T.; Techapun, C.; Seesuriyachan, P.; Jantanasakulwong, K.; Watanabe, M.; Takenaka, S.; Chaiyaso, T. Enzymatic valorization process of yellow cocoon waste for production of antioxidative sericin and fibroin film. J. Chem. Technol. Biotechnol. 2021, 96, 953–962. [Google Scholar] [CrossRef]
- Manupa, W.; Wongthanyakram, J.; Jeencham, R.; Sutheerawattananonda, M. Storage stability and antioxidant activities of lutein extracted from yellow silk cocoons (Bombyx mori) in Thailand. Heliyon 2023, 9, e16805. [Google Scholar] [CrossRef] [PubMed]
- Jouni, Z.E.; Wells, M.A. Purification and Partial Characterization of a Lutein-binding Protein from the Midgut of the Silkworm Bombyx mori*. J. Biol. Chem. 1996, 271, 14722–14726. [Google Scholar] [CrossRef]
- Worldway Silk Amino Acids. Available online: http://www.worldway.co.kr/en/sub/sub04_01.php (accessed on 3 August 2024).
- Hwang, J.-T.; Cho, J.M.; Jeong, I.H.; Lee, J.-y.; Ha, K.-C.; Baek, H.-I.; Yang, H.J.; Kim, M.J.; Lee, J.H. The effect of silk peptide on immune system, A randomized, double-blind, placebo-controlled clinical trial. J. Funct. Foods 2019, 55, 275–284. [Google Scholar] [CrossRef]
- Shin, S.; Yeon, S.; Park, D.; Oh, J.; Kang, H.; Kim, S.; Joo, S.S.; Lim, W.-T.; Lee, J.-Y.; Choi, K.-C. Silk amino acids improve physical stamina and male reproductive function of mice. Biol. Pharm. Bull. 2010, 33, 273–278. [Google Scholar] [CrossRef]
- Moon, J.-H.; Pyo, K.-H.; Jung, B.-K.; Chun, H.S.; Chai, J.-Y.; Shin, E.-H. Resistance to Toxoplasma gondii infection in mice treated with silk protein by enhanced immune responses. Korean J. Parasitol. 2011, 49, 303. [Google Scholar] [CrossRef]
- Murugesh Babu, K. 3—Silk–production and future trends. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Kidlington, UK, 2020; pp. 121–145. [Google Scholar]
- Wu, X.; He, K.; Velickovic, T.C.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Herman, R.A.; Yan, C.-H.; Wang, J.-Z.; Xun, X.-M.; Wu, C.-K.; Li, Z.-N.; Ayepa, E.; You, S.; Gong, L.-C.; Wang, J. Insight into the silkworm pupae: Modification technologies and functionality of the protein and lipids. Trends Food Sci. Technol. 2022, 129, 408–420. [Google Scholar] [CrossRef]
- Brogan, E.N.; Park, Y.-L.; Matak, K.E.; Jaczynski, J. Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. LWT 2021, 152, 112314. [Google Scholar] [CrossRef]
- Altomare, A.A.; Baron, G.; Aldini, G.; Carini, M.; D’Amato, A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr. 2020, 8, 2652–2661. [Google Scholar] [CrossRef] [PubMed]
- Akande, A.O.; Jolayemi, O.S.; Adelugba, V.A.; Akande, S.T. Silkworm pupae (Bombyx mori) and locusts as alternative protein sources for high-energy biscuits. J. Asia-Pac. Entomol. 2020, 23, 234–241. [Google Scholar] [CrossRef]
- Yakul, K.; Takenaka, S.; Peterbauer, C.; Haltrich, D.; Techapun, C.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T. Functional modification of thermostable alkaline protease from Bacillus halodurans SE5 for efficient production of antioxidative and ACE-inhibitory peptides from sericin. Biocatal. Agric. Biotechnol. 2023, 54, 102943. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Weng, Y.J.; Zhang, Y.Q. Enhancing the In Vitro Biological Activity of Degraded Silk Sericin and Its Analog Metabolites. Biomolecules 2022, 12, 161. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, H.S.; Choi, J.W.; Ra, K.S.; Kim, J.M.; Suh, H.J. Novel tripeptides with α-glucosidase inhibitory activity isolated from silk cocoon hydrolysate. J. Agric. Food Chem. 2011, 59, 11522–11525. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Lee, C.; Choung, J.-S.; Jung, H.-S.; Jun, H.-S. Glucagon-like peptide 1 increases β-cell regeneration by promoting α-to β-cell transdifferentiation. Diabetes 2018, 67, 2601–2614. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Cui, X.; Jiang, Y.; Wang, K.; Wang, D.; Li, F.; Lin, X.; Gu, L.; Yang, K.; Yang, J. Glucagon acting at the GLP-1 receptor contributes to β-cell regeneration induced by glucagon receptor antagonism in diabetic mice. Diabetes 2023, 72, 599–610. [Google Scholar] [CrossRef]
- Krongdang, S.; Phokasem, P.; Venkatachalam, K.; Charoenphun, N. Edible Insects in Thailand: An Overview of Status, Properties, Processing, and Utilization in the Food Industry. Foods 2023, 12, 2162. [Google Scholar] [CrossRef]
- New, T.R.; Durst, P.B.; Johnson, D.V.; Leslie, R.N.; Shono, K. Forest insects as food: Humans bite back. J. Insect Conserv. 2011, 15, 483–484. [Google Scholar] [CrossRef]
- OECD. Test No. 420: Acute Oral Toxicity-Fixed Dose Procedure; OECD: Paris, France, 2002. [Google Scholar]
- Zainul Azlan, N.; Abd Ghafar, N.; Mohd Yusof, Y.A.; Makpol, S. Toxicity study of Chlorella vulgaris water extract on female Sprague Dawley rats by using the Organization for Economic Cooperation and Development (OECD) Guideline 420. J. Appl. Phycol. 2020, 32, 3063–3075. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Sakarkar, D.; Deshpande, S. Evaluation of acute and sub-acute toxicity of ethanolic extract of seed kernels of Caesalpinia crista (LINN.) in albino mice. Int. J. Pharm. Sci. Res. (IJPSR) 2012, 3, 1164–1168. [Google Scholar]
- da Silva, R.O.; Andrade, V.M.; Rêgo, E.S.B.; Dória, G.A.A.; dos Santos Lima, B.; da Silva, F.A.; de Souza Araújo, A.A.; de Albuquerque Júnior, R.L.C.; Cardoso, J.C.; Gomes, M.Z. Acute and sub-acute oral toxicity of Brazilian red propolis in rats. J. Ethnopharmacol. 2015, 170, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Sewell, F.; Ragan, I.; Horgan, G.; Andrew, D.; Holmes, T.; Manou, I.; Müller, B.P.; Rowan, T.; Schmitt, B.G.; Corvaro, M. New supporting data to guide the use of evident toxicity in acute oral toxicity studies (OECD TG 420). Regul. Toxicol. Pharmacol. 2024, 146, 105517. [Google Scholar] [CrossRef]
- OECD. Draft New Test Guideline 433: Acute Inhalation Toxicity, Fixed Concentration Procedure; OECD: Paris, France, 2017. [Google Scholar]
- Lipnick, R.L.; Cotruvo, J.A.; Hill, R.N.; Bruce, R.D.; Stitzel, K.A.; Walker, A.P.; Chu, I.; Goddard, M.; Segal, L.; Springer, J.A.; et al. Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures. Food Chem. Toxicol. 1995, 33, 223–231. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, G.; Wang, Z.; Yang, J.; Li, Y.; Wang, H.; Jin, H.; Qiao, J.; Wang, H.; et al. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J. Ginseng Res. 2020, 44, 222–228. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Ju, J.-X.; Wang, L.-J.; Huang, R.-Y.; Xu, Y.-F.; Zhang, H.-L.; Qi, J.-L. Gender differences in acute toxicity, toxicokinetic and tissue distribution of amphotericin B liposomes in rats. Toxicol. Lett. 2021, 338, 78–84. [Google Scholar] [CrossRef]
- Ugwah-Oguejiofor, C.J.; Okoli, C.O.; Ugwah, M.O.; Umaru, M.L.; Ogbulie, C.S.; Mshelia, H.E.; Umar, M.; Njan, A.A. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon 2019, 5, e01179. [Google Scholar] [CrossRef]
- Mukinda, J.T.; Eagles, P.F. Acute and sub-chronic oral toxicity profiles of the aqueous extract of Polygala fruticosa in female mice and rats. J. Ethnopharmacol. 2010, 128, 236–240. [Google Scholar] [CrossRef]
- Aliyu, A.; Shaari, M.R.; Ahmad Sayuti, N.S.; Reduan, M.F.H.; Sithambaram, S.; Noordin, M.M.; Shaari, K.; Hamzah, H. Subacute Oral Administration of Clinacanthus nutans Ethanolic Leaf Extract Induced Liver and Kidney Toxicities in ICR Mice. Molecules 2020, 25, 2631. [Google Scholar] [CrossRef] [PubMed]
- Kouadio, J.H.; Bleyere, M.N.; Kone, M.; Dano, S.D. Acute and sub-acute toxicity of aqueous extract of Nauclea latifolia in Swiss mice and in OFA rats. Trop. J. Pharm. Res. 2014, 13, 109–115. [Google Scholar] [CrossRef]
- FDA. International Conference on Harmonisation; addendum to International Conference on Harmonisation Guidance on S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals; availability. Notice. Fed. Regist. 2012, 77, 29665–29666. [Google Scholar]
- Sutheerawattananonda, M.; Limpeanchob, N.; Tocharus, C.; Tiyaboonchai, W.; Kanthalert, D.; Taepavarapruk, P.; Tocharus, J.; Khotcharrat, R.; Pannarunothai, S. Silk-Based Bioactive Oligopeptide Compositions and Manufacturing Process Therefor. Patent WO2013032411A1, 3 July 2013. [Google Scholar]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 29 October 2024).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/56712.html (accessed on 29 October 2024).
- Food and Drug Administration. Bacteriological Analytical Manual, Chapter 12, Staphylococcus aureus. 2016. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus (accessed on 29 October 2024).
- Food and Drug Administration. Bacteriological Analytical Manual, Chapter 3, Aerobic Plate Count. 2001. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count (accessed on 29 October 2024).
- Food and Drug Administration. Bacteriological Analytical Manual, Chapter 18, Yeasts, Molds and Mycotoxins. 2001. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins (accessed on 29 October 2024).
- EN 15662:2018; Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—Modular QuEChERS-Method. Available online: https://standards.iteh.ai/catalog/standards/cen/167a30bc-edf9-4cf8-b96b-cabd932f2f02/en-15662-2018 (accessed on 29 October 2024).
- Hayes, M. Measuring Protein Content in Food: An Overview of Methods. Foods 2020, 9, 1340. [Google Scholar] [CrossRef]
- Wicha, P.; Onsa-Ard, A.; Chaichompoo, W.; Suksamrarn, A.; Tocharus, C. Vasorelaxant and Antihypertensive Effects of Neferine in Rats: An In Vitro and In Vivo Study. Planta Med. 2020, 86, 496–504. [Google Scholar] [CrossRef]
- Halim, S.; Abdullah, N.; Afzan, A.; Rashid, B.A.; Jantan, I.; Ismail, Z. Acute toxicity study of Carica papaya leaf extract in Sprague Dawley rats. J. Med. Plants Res. 2011, 5, 1867–1872. [Google Scholar]
- Ecobichon, D. The Basis of Toxicology Testing; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Zordan, A.J.C.M.; Bertoncini-Silva, C.; Joaquim, A.G.; Rodrigues, M.; Machado, C.D.; Carlos, D.; Foss-Freitas, M.C.; Suen, V.M.M. Gingerol supplementation does not change glucose tolerance, lipid profile and does not prevent weight gain in C57BL/6 mice fed a high-fat diet. Clin. Nutr. Exp. 2020, 32, 11–19. [Google Scholar] [CrossRef]
- Drummond, L.R.; Campos, H.O.; de Andrade Lima, P.M.; da Fonseca, C.G.; Kunstetter, A.C.; Rodrigues, Q.T.; Szawka, R.E.; Natali, A.J.; Prímola-Gomes, T.N.; Wanner, S.P. Impaired thermoregulation in spontaneously hypertensive rats during physical exercise is related to reduced hypothalamic neuronal activation. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Ntchapda, F.; Bonabe, C.; Atsamo, A.D.; Kemeta Azambou, D.R.; Bekono Fouda, Y.; Imar Djibrine, S.; Seke Etet, P.F.; Théophile, D. Effect of aqueous extract of Adansonia digitata stem bark on the development of hypertension in L-NAME-induced hypertensive rat model. Evid.-Based Complement. Altern. Med. 2020, 2020, 3678469. [Google Scholar] [CrossRef]
- Tong, R.-C.; Qi, M.; Yang, Q.-M.; Li, P.-F.; Wang, D.-D.; Lan, J.-P.; Wang, Z.-T.; Yang, L. Extract of Plantago asiatica L. seeds ameliorates hypertension in spontaneously hypertensive rats by inhibition of angiotensin converting enzyme. Front. Pharmacol. 2019, 10, 403. [Google Scholar] [CrossRef]
- Chavalittumrong, P.; Chivapat, S.; Attawish, A.; Bansiddhi, J.; Phadungpat, S.; Chaorai, B.; Butraporn, R. Chronic toxicity study of Portulaca grandiflora Hook. J. Ethnopharmacol. 2004, 90, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Olayode, O.A.; Daniyan, M.O.; Olayiwola, G. Biochemical, hematological and histopathological evaluation of the toxicity potential of the leaf extract of Stachytarpheta cayennensis in rats. J. Tradit. Complement. Med. 2020, 10, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.H.; Gebru, G.; Debella, A.; Makonnen, E.; Asefa, M.; Woldekidan, S.; Lengiso, B.; Bashea, C. Chronic (52-week) oral toxicity study of herbal tea of Moringa stenopetala and Mentha spicata leaves formulation in Wistar albino rats. Int. J. Pharm. Sci. Dev. Res. 2022, 8, 13–22. [Google Scholar]
- Crissman, J.W.; Goodman, D.G.; Hildebrandt, P.K.; Maronpot, R.R.; Prater, D.A.; Riley, J.H.; Seaman, W.J.; Thake, D.C. Best practices guideline: Toxicologic histopathology. Toxicol. Pathol. 2004, 32, 126–131. [Google Scholar] [CrossRef]
- Society of Toxicologic Pathology. Standardized System of Nomenclature and Diagnostic Criteria (SSNDC) Guides; Society of Toxicologic Pathology: Reston, VA, USA, 2024. [Google Scholar]
- Park, M.-Y.; Choi, H.-Y.; Kim, J.-D.; Lee, H.-S.; Ku, S.-K. Single Oral Dose Toxicity Test of Kong-Jin-Dan, a Polyherbal Formula in ICR Mice. J. Appl. Pharmacol. 2007, 15, 245–251. [Google Scholar] [CrossRef]
- Kramer, J.A.; O’Neill, E.; Phillips, M.E.; Bruce, D.; Smith, T.; Albright, M.M.; Bellum, S.; Gopinathan, S.; Heydorn, W.E.; Liu, X.; et al. Early Toxicology Signal Generation in the Mouse. Toxicol. Pathol. 2010, 38, 452–471. [Google Scholar] [CrossRef]
- Balogun, S.O.; da Silva, I.F., Jr.; Colodel, E.M.; de Oliveira, R.G.; Ascêncio, S.D.; Martins, D.T. Toxicological evaluation of hydroethanolic extract of Helicteres sacarolha A. St.- Hil. et al. J. Ethnopharmacol. 2014, 157, 285–291. [Google Scholar] [CrossRef]
- Sellers, R.S.; Morton, D.; Michael, B.; Roome, N.; Johnson, J.K.; Yano, B.L.; Perry, R.; Schafer, K. Society of Toxicologic Pathology position paper: Organ weight recommendations for toxicology studies. Toxicol. Pathol. 2007, 35, 751–755. [Google Scholar] [CrossRef]
- Stevens, M.T. The value of relative organ weights. Toxicology 1976, 5, 311–318. [Google Scholar] [CrossRef]
- Raina, P.; Chandrasekaran, C.V.; Deepak, M.; Agarwal, A.; Ruchika, K.G. Evaluation of subacute toxicity of methanolic/aqueous preparation of aerial parts of O. sanctum in Wistar rats: Clinical, haematological, biochemical and histopathological studies. J. Ethnopharmacol. 2015, 175, 509–517. [Google Scholar] [CrossRef]
- Murwanti, R.; Nurrochmad, A.; Gani, A.P.; Sasmito, E.; Edwina, A.E.; Chandra, M.K.; Suryawan, F.H.; Wardana, A.R.; Natalia; Budiningsih, J. Acute and Subchronic Oral Toxicity Evaluation of Herbal Formulation: Piper crocatum Ruiz and Pav., Typhonium flagelliforme (Lodd.) Blume, and Phyllanthus niruri L. in Sprague-Dawley Rats. J. Toxicol. 2023, 2023, 7511397. [Google Scholar] [CrossRef] [PubMed]
- Serfilippi, L.M.; Pallman, D.R.; Russell, B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. Contemp. Top. Lab. Anim. Sci. 2003, 42, 46–52. [Google Scholar] [PubMed]
- Patel, S.; Patel, S.; Kotadiya, A.; Patel, S.; Shrimali, B.; Joshi, N.; Patel, T.; Trivedi, H.; Patel, J.; Joharapurkar, A.; et al. Age-related changes in hematological and biochemical profiles of Wistar rats. Lab. Anim. Res. 2024, 40, 7. [Google Scholar] [CrossRef]
- Harini, M.; Astirin, O.P. Blood cholesterol levels of hypercholesterolemic rat (Rattus norvegicus) after VCO treatment. Nusant. Biosci. 2009, 1, 53–58. [Google Scholar] [CrossRef]
- Okamura, T.; Suzuki, S.; Ogawa, T.; Kobayashi, J.; Kusuoka, O.; Hatayama, K.; Mochizuki, M.; Hoshiya, T.; Okazaki, S.; Tamura, K. Background Data for General Toxicology Parameters in RccHan:WIST Rats at 8, 10, 19 and 32 Weeks of Age. J. Toxicol. Pathol. 2011, 24, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Keller, J. Gastrointestinal Digestion and Absorption. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 354–359. [Google Scholar]
- Huo, A.; Xiong, X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci. 2023, 331, 122070. [Google Scholar] [CrossRef]
- Chandel, N.S. Nucleotide Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040592. [Google Scholar] [CrossRef]
- Singer, D.; Schunck, O.; Bach, F.; Kuhn, H.J. Size effects on metabolic rate in cell, tissue, and body calorimetry. Thermochim. Acta 1995, 251, 227–240. [Google Scholar] [CrossRef]
- Anderson, A.K.; Honeywell, H.E.; Santy, A.C.; Pederson, S. The Composition of Normal Rat Blood. J. Biol. Chem. 1930, 86, 157–160. [Google Scholar] [CrossRef]
- Banno, A.; Wang, J.; Okada, K.; Mori, R.; Mijiti, M.; Nagaoka, S. Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells. Sci. Rep. 2019, 9, 19416. [Google Scholar] [CrossRef]
- Olagunju, H.; Oruambo, I.; Oyelowo, H.; Obediah, G. Effects of some selected solvent extracts of avocado pear (Persea americana) on cholesterol/HDL ratio in Albino rats. J. Glob. Biosci. 2017, 6, 5205–5211. [Google Scholar]
- Arsenault, B.J.; Rana, J.S.; Stroes, E.S.; Després, J.P.; Shah, P.K.; Kastelein, J.J.; Wareham, N.J.; Boekholdt, S.M.; Khaw, K.T. Beyond low-density lipoprotein cholesterol: Respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J. Am. Coll. Cardiol. 2009, 55, 35–41. [Google Scholar] [PubMed]
- Liu, Y.; Feng, X.; Yang, J.; Zhai, G.; Zhang, B.; Guo, Q.; Zhou, Y. The relation between atherogenic index of plasma and cardiovascular outcomes in prediabetic individuals with unstable angina pectoris. BMC Endocr. Disord. 2023, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Ampawong, S.; Isarangkul, D.; Aramwit, P. Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis. Exp. Cell Res. 2017, 358, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Barter, P. The role of HDL-cholesterol in preventing atherosclerotic disease. Eur. Heart J. Suppl. 2005, 7 (Suppl. F), F4–F8. [Google Scholar] [CrossRef]
- Han, Y.H.; Onufer, E.J.; Huang, L.H.; Sprung, R.W.; Davidson, W.S.; Czepielewski, R.S.; Wohltmann, M.; Sorci-Thomas, M.G.; Warner, B.W.; Randolph, G.J. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021, 373, eabe6729. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar]
- Kotani, K.; Sakane, N.; Ueda, M.; Mashiba, S.; Hayase, Y.; Tsuzaki, K.; Yamada, T.; Remaley, A.T. Oxidized high-density lipoprotein is associated with increased plasma glucose in non-diabetic dyslipidemic subjects. Clin. Chim. Acta 2012, 414, 125–129. [Google Scholar] [CrossRef]
- Heinecke, J.W. Lipoprotein oxidation in cardiovascular disease: Chief culprit or innocent bystander? J. Exp. Med. 2006, 203, 813–816. [Google Scholar] [CrossRef]
- Wu, J.-H.; Wang, Z.; Xu, S.-Y. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochem. 2008, 43, 480–487. [Google Scholar] [CrossRef]
- Hussein, F.A.; Chay, S.Y.; Ghanisma, S.B.M.; Zarei, M.; Auwal, S.M.; Hamid, A.A.; Ibadullah, W.Z.W.; Saari, N. Toxicity study and blood pressure–lowering efficacy of whey protein concentrate hydrolysate in rat models, plus peptide characterization. J. Dairy Sci. 2020, 103, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Heimburger, D.C.; Geels, V.J.; Bilbrey, J.; Redden, D.T.; Keeney, C. Effects of small-peptide and whole-protein enteral feedings on serum proteins and diarrhea in critically ill patients: A randomized trial. JPEN J. Parenter. Enter. Nutr. 1997, 21, 162–167. [Google Scholar] [CrossRef]
- Yakubu, M.; Bilbis, L.; Lawal, M.; Akanji, M. Evaluation Of Selected Parameters Of Rat Liver And Kidney Function Following Repeated Administration Of Yohimbine. Biokemistri 2003, 15, 50–56. [Google Scholar]
- Huang, Y.; Peng, Q.; Li, H.Y.; Jia, Z.D.; Li, Y.; Gao, Y. Novel sericin-based hepatocyte serum-free medium and sericin’s effect on hepatocyte transcriptome. World J. Gastroenterol. 2018, 24, 3398–3413. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.Y.; Weng, Y.J.; Zhang, Y.Q. The Protective Effect of Sericin on AML12 Cells Exposed to Oxidative Stress Damage in a High-Glucose Environment. Antioxidants 2022, 11, 712. [Google Scholar] [CrossRef]
- Rahimpour, S.; Jabbari, H.; Yousofi, H.; Fathi, A.; Mahmoodi, S.; Jafarian, M.J.; Shomali, N.; Shotorbani, S.S. Regulatory effect of sericin protein in inflammatory pathways; A comprehensive review. Pathol.-Res. Pract. 2023, 243, 154369. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.; Ribeiro, L.F.; Natali, M.R. Silkworm Sericin: Properties and Biomedical Applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [PubMed]
- Bunarsa, S.; Promphet, P.; Sutheerawattananonda, M.; Kunthalert, D. Hematological assessments of sericin-derived oligopeptides in BALB/c mice. Sci. Res. Essays 2013, 8, 17–21. [Google Scholar]
- Jantaruk, P.; Promphet, P.; Sutheerawattananonda, M.; Kunthalert, D. Augmentation of natural killer cell activity in vitro and in vivo by sericin-derived oligopeptides. J. Appl. Biomed. 2015, 13, 249–256. [Google Scholar] [CrossRef]
- Ojo, O.; Oloyede, O.; Olarewaju, O.; Ojo, A.; Basiru, A.; Onikanni, S. Toxicity Studies of the Crude Aqueous Leaves Extracts of Ocimum gratissimum in Albino Rats. IOSR J. Environ. Sci. Toxicol. Food Technol. (IOSR-JESTFT) 2013, 5, 34–39. [Google Scholar]
- Hu, D.; Li, T.; Liang, W.; Wang, Y.; Feng, M.; Sun, J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J. Control. Release 2023, 353, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Toda, G.; Ikeda, Y.; Kako, M.; Oka, H.; Oda, T. Mechanism of elevation of serum alkaline phosphatase activity in biliary obstruction: An experimental study. Clin. Chim. Acta 1980, 107, 85–96. [Google Scholar] [PubMed]
- Shu, J.; Tan, A.; Li, Y.; Huang, H.; Yang, J. The correlation between serum total alkaline phosphatase and bone mineral density in young adults. BMC Musculoskelet. Disord. 2022, 23, 467. [Google Scholar] [CrossRef]
- Giknis, M.L.A.; Clifford, C.B. Clinical Laboratory Parameters for Crl: Wi(Han) Rats; Charles River Laboratories International: Wilmington, MA, USA, 2008; pp. 1–17. [Google Scholar]
- Kim, K.O.; Park, H.; Kim, H.S. Effects of High-Protein Diet and/or Resveratrol Supplementation on the Immune Response of Irradiated Rats. Prev. Nutr. Food Sci. 2014, 19, 156–163. [Google Scholar] [CrossRef]
- Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. 2018, 5, 316. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.-M.; Wang, X.-F. The roles of basophils in mediating the immune responses. Eur. J. Inflamm. 2021, 19, 20587392211047644. [Google Scholar] [CrossRef]
- Wen, T.; Rothenberg, M.E. The Regulatory Function of Eosinophils. Microbiol. Spectr. 2016, 4, 257–269. [Google Scholar] [CrossRef]
- Thurber, A.E.; Omenetto, F.G.; Kaplan, D.L. In vivo bioresponses to silk proteins. Biomaterials 2015, 71, 145–157. [Google Scholar] [CrossRef]
- Ballesteros-Ramírez, R.; Lasso, P.; Urueña, C.; Saturno, J.; Fiorentino, S. Assessment of Acute and Chronic Toxicity in Wistar Rats (Rattus norvegicus) and New Zealand Rabbits (Oryctolagus cuniculus) of an Enriched Polyphenol Extract Obtained from Caesalpinia spinosa. J. Toxicol. 2024, 2024, 3769933. [Google Scholar] [CrossRef]
- Kanerva, R.L.; Lefever, F.R.; Alden, C.L. Comparison of fresh and fixed organ weights of rats. Toxicol. Pathol. 1983, 11, 129–131. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP Technical Report on the Toxicology Studies of Tetrabromobisphenol A (CASRN 79-94-7) in F344/NTac Rats and B6C3F1/N Mice and Toxicology and Carcinogenesis Studies of Tetrabromobisphenol A in Wistar Han [Crl:WI(Han)] Rats and B6C3F1/N Mice (Gavage Studies); National Toxicology Program Technical Report Series; National Toxicology Program: Research Triangle Park, NC, USA, 2014; Volume 587.
- Lee, S.A.; Joshi, P.; Kim, Y.; Kang, D.; Kim, W.J. The Association of Dietary Macronutrients with Lung Function in Healthy Adults Using the Ansan-Ansung Cohort Study. Nutrients 2020, 12, 2688. [Google Scholar] [CrossRef] [PubMed]
- Song, C.J.; Yang, Z.J.; Tang, Q.F.; Chen, Z.H. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes. Int. J. Clin. Exp. Med. 2015, 8, 10411–10419. [Google Scholar] [PubMed]
- Koo, J.M.; Shim, B.S. Significance of Serum Testosterone for Prostate-Specific Antigen (PSA) Elevation and Prediction of Prostate Cancer in Patients with PSA Above 10 ng/ml. Korean J. Urol. 2010, 51, 831–835. [Google Scholar] [CrossRef]
- Mahran, Y.F.; El-Demerdash, E.; Nada, A.S.; El-Naga, R.N.; Ali, A.A.; Abdel-Naim, A.B. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis. PLoS ONE 2015, 10, e0140055. [Google Scholar] [CrossRef]
- Bøtkjær, J.A.; Poulsen, L.l.C.; Noer, P.R.; Grøndahl, M.L.; Englund, A.L.M.; Franks, S.; Hardy, K.; Oxvig, C.; Andersen, C.Y. Dynamics of IGF Signaling During the Ovulatory Peak in Women Undergoing Ovarian Stimulation. J. Clin. Endocrinol. Metab. 2024, dgae132. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, S.A.; Webber, L.J.; Stark, J.; Rice, S.; Margara, R.; Lavery, S.; Trew, G.H.; Hardy, K.; Franks, S. Role of Insulin-like Growth Factors in Initiation of Follicle Growth in Normal and Polycystic Human Ovaries. J. Clin. Endocrinol. Metab. 2013, 98, 3298–3305. [Google Scholar] [CrossRef]
- Bae, G.H.; Lee, H.Y.; Jung, Y.S.; Shim, J.W.; Kim, S.D.; Baek, S.H.; Kwon, J.Y.; Park, J.S.; Bae, Y.S. Identification of novel peptides that stimulate human neutrophils. Exp. Mol. Med. 2012, 44, 130–137. [Google Scholar] [CrossRef]
- Wang, S.-L.; Zhuo, J.-J.; Fang, S.-M.; Xu, W.; Yu, Q.-Y. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024, 14, 723. [Google Scholar] [CrossRef]
- He, Q.; Su, G.; Liu, K.; Zhang, F.; Jiang, Y.; Gao, J.; Liu, L.; Jiang, Z.; Jin, M.; Xie, H. Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method. PLoS ONE 2017, 12, e0189837. [Google Scholar] [CrossRef]
- Giani, E.; Masi, I.; Colombo, C.; Galli, C. Sex differences in platelet thromboxane and arterial prostacyclin production in control and n-6 fatty acid supplemented rats. Prostaglandins 1984, 28, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Gilbert, M.P.; Pratley, R.E. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. 2020, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 inhibitors for treating T2DM-hype or hope? an analysis based on the current literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef]
- Najafian, M. The Effects of Curcumin on Alpha Amylase in Diabetics Rats. Zahedan J. Res. Med. Sci. 2015, 17, e5198. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Xiang, X.; Zhu, Y.; Men, J.; He, M. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu = J. Hyg. Res. 2010, 39, 133–137, 142. [Google Scholar]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.M.T.d.; Soares, L.L.; Drummond, F.R.; Suarez, P.Z.; Leite, L.; Rodrigues, J.A.; Leal, T.; Favarato, L.; Reis, E.C.C.; Favarato, E.; et al. Is the Wistar Rat a more Suitable Normotensive Control for SHR to Test Blood Pressure and Cardiac Structure and Function? Int. J. Cardiovasc. Sci. 2022, 35, 161–171. [Google Scholar] [CrossRef]
- Rassler, B.; Hawlitschek, C.; Brendel, J.; Zimmer, H.G. How Do Young and Old Spontaneously Hypertensive Rats Respond to Antihypertensive Therapy? Comparative Studies on the Effects of Combined Captopril and Nifedipine Treatment. Biomedicines 2022, 10, 3059. [Google Scholar] [CrossRef]
- Denninger, J.W.; Marletta, M.A. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim. Biophys. Acta 1999, 1411, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Buys, E.; Sips, P. New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 2014, 23, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Kamei, K.; Srichana, T. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J. Biomater. Sci. Polym. Ed. 2009, 20, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Grześk, E.; Stolarek, W.; Wiciński, M.; Szadujkis-Szadurska, K.; Malinowski, B.; Tejza, B.; Kołtan, S.; Gołębiewska, M.; Kołtan, A.; Grześk, G. Effect of acetylcholine on vascular smooth muscle contraction induced by phenylephrine, angiotensin II and mastoparan-7. Med. Res. J. 2014, 2, 98–101. [Google Scholar]
- Limpeanchob, N.; Trisat, K.; Duangjai, A.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells. J. Agric. Food Chem. 2010, 58, 12519–12522. [Google Scholar] [CrossRef]
- Fonseca Hernandez, D.; Mojica, L.; Gonzalez de Mejia, E. Legume-derived bioactive peptides: Role in cardiovascular disease prevention and control. Curr. Opin. Food Sci. 2024, 56, 101132. [Google Scholar] [CrossRef]
- Du, J.; Xiao, M.; Sudo, N.; Liu, Q. Bioactive peptides of marine organisms: Roles in the reduction and control of cardiovascular diseases. Food Sci. Nutr. 2024, 12, 5271–5284. [Google Scholar] [CrossRef]
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef]
Items | Specification |
---|---|
Source | Yellow silk cocoon |
Molecular weight | <5 kDa |
Color | Wheaten powder |
pI | pH 10–12 |
% moisture | Approx. 5% |
Purity | 95–99% (Kjeldahl method using 6.25 conversion factor) [55] |
Trace metals: | |
Pb max | 0.045 |
Cd max | 0.003 |
Hg max | 0.007 |
As max | 0.035 |
Zn max | 14.333 |
Ni max | 0.518 |
Microbial standards: | |
Total plate counts | 85 CFU/g |
Yeast and Molds | 20 CFU/g |
E. coli | <3.0 MPN/g |
Salmonella spp. | Not detected |
Staphylococcus aureus | Not detected |
Coliforms (MPN) | <3.0 MPN/g |
Listeria monocytogenes | Not Detected |
Pesticide residue: | |
Carbamate group | Not detected |
Organochlorine group | Not detected |
Organophosphate group | Not detected |
Pyrethroid group | Not detected |
Parameters | Female ICR Mice | Female Wistar Rats | ||
---|---|---|---|---|
Control | BW | Control | BW | |
Body weight (g) Heart (g) % | 35.67 ± 3.67 | 35.67 ± 2.88 | 236.33 ± 4.08 | 234.50 ± 4.76 |
0.13 ± 0.01 | 0.13 ± 0.01 | 0.78 ± 0.03 | 0.81 ± 0.06 | |
0.36 ± 0.04 | 0.36 ± 0.02 | 0.24 ± 0.03 | 0.24 ± 0.01 | |
Lung (g) % | 0.17 ± 0.01 | 0.17 ± 0.01 | 1.00 ± 0.06 | 0.97 ± 0.03 |
0.49 ± 0.05 | 0.47 ± 0.05 | 0.31 ± 0.05 | 0.28 ± 0.01 | |
Liver (g) % | 1.25 ± 0.10 | 1.26 ± 0.06 | 7.42 ± 0.15 | 7.18 ± 0.62 |
3.52 ± 0.45 | 3.53 ± 0.18 | 2.27 ± 0.32 | 2.08 ± 0.15 | |
Kidney (g) % | 0.38 ± 0.01 | 0.38 ± 0.01 | 1.59 ± 0.14 | 1.55 ± 0.05 |
1.09 ± 0.10 | 1.07 ± 0.07 | 0.49 ± 0.10 | 0.45 ± 0.02 | |
Adrenal gland (g) % | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.10 ± 0.01 | 0.09 ± 0.01 |
0.03 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.00 | |
Ovary (g) % | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.21 ± 0.02 | 0.15 ± 0.02 * |
0.06 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.00 * |
Parameters | Female ICR Mice | Female Wistar Rats | ||
---|---|---|---|---|
Control | BW | Control | BW | |
Glucose (mg/dL) | 98.00 ± 4.86 | 100.00 ± 4.34 | 105.67 ± 5.13 | 97.83 ± 8.89 |
BUN (mg/dL) | 22.13 ± 1.32 | 23.47 ± 1.81 | 28.28 ± 3.00 | 32.22 ± 8.98 |
Creatinine (mg/dL) | 0.29 ± 0.04 | 0.31 ± 0.05 | 0.64 ± 0.08 | 0.62 ± 0.05 |
Uric acid (mg/dL) | 3.68 ± 0.18 | 3.55 ± 0.12 | 1.46 ± 0.15 | 1.84 ± 0.23 * |
Total cholesterol (mg/dL) | 89.83 ± 4.17 | 99.67 ± 3.72 * | 49.02 ± 3.89 | 66.48 ± 7.21 * |
HDL (mg/dL) | - | - | 26.85 ± 2.66 | 36.48 ± 3.73 * |
Triglyceride (mg/dL) | - | - | 57.67 ± 16.72 | 64.50 ± 33.58 |
Total protein (g/dL) | - | - | 5.77 ± 0.29 | 6.36 ± 0.32 * |
Albumin (g/dL) | - | - | 1.76 ± 0.11 | 1.97 ± 0.12 * |
Globulin (g/dL) | - | - | 4.00 ± 0.19 | 4.39 ± 0.21 * |
Total bilirubin (mg/dL) | - | - | 0.72 ± 0.11 | 0.82 ± 0.16 |
Direct bilirubin (mg/dL) | - | - | 0.09 ± 0.03 | 0.12 ± 0.04 |
AST/SGOT (U/L) | 95.17 ± 3.49 | 93.50 ± 5.68 | 67.67 ± 8.69 | 66.33 ± 6.25 |
ALT/SGPT (U/L) | 22.50 ± 1.87 | 17.50 ± 1.87 * | 22.50 ± 3.62 | 25.00 ± 2.61 |
Alkaline phosphatase (U/L) | 82.33 ± 10.33 | 98.00 ± 8.00 * | 106.83 ± 12.64 | 103.83 ± 13.47 |
Parameters | Female ICR Mice | Female Wistar Rats | ||
---|---|---|---|---|
Control | BW | Control | BW | |
Hemoglobin (g/dL) | 13.70 ± 1.26 | 13.97 ± 0.77 | 13.90 ± 2.91 | 15.48 ± 0.70 |
Hematocrit (%) | 41.75 ± 4.29 | 44.12 ± 4.41 | 39.45 ± 8.96 | 44.17 ± 2.02 |
WBC (×103 cell/µL) | 0.88 ± 0.29 | 1.30 ± 0.32 * | 1.97 ± 0.27 | 3.53 ± 0.34 * |
Neutrophil (%) | 24.50 ± 5.73 | 17.63 ± 3.64 * | 10.10 ± 2.41 | 8.75 ± 2.35 |
Lymphocyte (%) | 66.65 ± 5.79 | 76.28 ± 4.02 * | 87.68 ± 2.85 | 89.52 ± 2.32 |
Monocyte (%) | 0.68 ± 0.49 | 0.65 ± 0.23 | 0.62 ± 0.42 | 0.72 ± 0.36 |
Eosinophil (%) | 2.78 ± 1.36 | 1.87 ± 0.94 | 0.43 ± 0.14 | 0.15 ± 0.05 * |
Basophil (%) | 5.38 ± 0.84 | 3.57 ± 0.77 * | 1.17 ± 0.23 | 0.87 ± 0.39 |
Platelet count (×103 cell/µL) | 680.33 ± 109.35 | 622.50 ± 91.20 | 663.17 ± 33.36 | 650.17 ± 46.90 |
MCV (fL) | 52.00 ± 1.10 | 53.17 ± 1.47 | 58.33 ± 1.51 | 58.50 ± 1.38 |
MCH (pg) | 17.00 ± 0.40 | 17.20 ± 0.42 | 20.72 ± 1.09 | 20.42 ± 0.63 |
MCHC (%) | 32.80 ± 0.55 | 32.55 ± 0.28 | 35.48 ± 1.29 | 35.05 ± 0.37 |
Parameters | Male Wistar Rats | Female Wistar Rats | ||||||
---|---|---|---|---|---|---|---|---|
BW) | BW) | |||||||
Control | 50 | 100 | 200 | Control | 50 | 100 | 200 | |
Body weight (g) | 515.33 ± 17.64 | 516.17 ± 26.25 | 516.33 ± 21.97 | 518.17 ± 20.42 | 274.33 ± 7.28 | 282.83 ± 10.46 | 276.00 ± 5.93 | 281.83 ± 7.28 |
Heart (g) % | 1.22 ± 0.07 | 1.21 ± 0.05 | 1.19 ± 0.06 | 1.16 ± 0.08 | 0.77 ± 0.07 | 0.83 ± 0.03 | 0.82 ± 0.07 | 0.84 ± 0.03 |
0.24 ± 0.02 | 0.24 ± 0.02 | 0.23 ± 0.01 | 0.22 ± 0.01 | 0.28 ± 0.03 | 0.29 ± 0.01 | 0.30 ± 0.02 | 0.30 ± 0.01 | |
Lung (g) % | 1.40 ± 0.06 | 1.46 ± 0.06 | 1.45 ± 0.03 | 1.41 ± 0.03 | 0.99 ± 0.05 | 1.00 ± 0.11 | 0.97 ± 0.11 | 1.14 ± 0.07 * |
0.27 ± 0.01 | 0.28 ± 0.02 | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.36 ± 0.02 | 0.35 ± 0.05 | 0.35 ± 0.03 | 0.40 ± 0.02 | |
Liver (g) % | 12.92 ± 1.04 | 12.56 ± 1.09 | 12.15 ± 0.77 | 12.63 ± 1.27 | 7.18 ± 0.28 | 7.38 ± 0.22 | 7.40 ± 0.27 | 7.38 ± 0.13 |
2.50 ± 0.12 | 2.43 ± 0.16 | 2.35 ± 0.08 | 2.44 ± 0.21 | 2.62 ± 0.13 | 2.61 ± 0.11 | 2.68 ± 0.12 | 2.62 ± 0.07 | |
Kidney (g) % | 2.17 ± 0.11 | 2.06 ± 0.10 | 2.11 ± 0.07 | 2.21 ± 0.16 | 1.50 ± 0.07 | 1.57 ± 0.09 | 1.52 ± 0.08 | 1.53 ± 0.09 |
0.42 ± 0.01 | 0.40 ± 0.02 | 0.41 ± 0.01 | 0.43 ± 0.03 | 0.55 ± 0.02 | 0.55 ± 0.04 | 0.55 ± 0.03 | 0.54 ± 0.02 | |
Adrenal gland (g) % | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.07 ± 0.01 |
0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 | |
Spleen (g) % | 0.77 ± 0.08 | 0.78 ± 0.10 | 0.86 ± 0.08 | 0.82 ± 0.09 | 0.57 ± 0.05 | 0.61 ± 0.08 | 0.65 ± 0.09 | 0.61 ± 0.07 |
0.15 ± 0.02 | 0.15 ± 0.02 | 0.17 ± 0.01 | 0.16 ± 0.02 | 0.21 ± 0.01 | 0.22 ± 0.03 | 0.23 ± 0.03 | 0.22 ± 0.02 | |
Prostate gland (g) % | 0.21 ± 0.08 | 0.28 ± 0.06 | 0.28 ± 0.08 | 0.32 ± 0.08 * | - | - | - | - |
0.04 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 | - | - | - | - | |
Seminal vesicle (g) % | 0.99 ± 0.08 | 1.03 ± 0.09 | 0.94 ± 0.10 | 1.06 ± 0.08 | - | - | - | - |
0.19 ± 0.02 | 0.20 ± 0.02 | 0.18 ± 0.02 | 0.20 ± 0.02 | - | - | - | - | |
Epididymis (g) % | 1.42 ± 0.05 | 1.44 ± 0.08 | 1.43 ± 0.10 | 1.43 ± 0.14 | - | - | - | - |
0.27 ± 0.01 | 0.28 ± 0.02 | 0.28 ± 0.02 | 0.28 ± 0.02 | - | - | - | - | |
Testis (g) % | 3.98 ± 0.15 | 3.97 ± 0.12 | 3.96 ± 0.11 | 3.93 ± 0.19 | - | - | - | - |
0.77 ± 0.04 | 0.77 ± 0.04 | 0.77 ± 0.03 | 0.76 ± 0.05 | - | - | - | - | |
Ovary (g) % | - | - | - | - | 0.09 ± 0.03 | 0.13 ± 0.04 * | 0.13 ± 0.04 * | 0.09 ± 0.02 |
- | - | - | - | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.01 |
Parameters | Male Wistar Rats | Female Wistar Rats | ||||||
---|---|---|---|---|---|---|---|---|
BW) | BW) | |||||||
Control | 50 | 100 | 200 | Control | 50 | 100 | 200 | |
Total cholesterol (mg/dL) | 63.83 ± 7.78 | 55.83 ± 5.85 | 58.67 ± 8.85 | 53.33 ± 9.67 * | 52.00 ± 7.43 | 55.17 ± 7.52 | 52.83 ± 8.98 | 52.83 ± 8.30 |
HDL (mg/dL) | 50.88 ± 6.68 | 46.07 ± 5.90 | 49.12 ± 4.73 | 45.98 ± 5.12 | 41.97 ± 4.48 | 45.38 ± 6.10 | 42.78 ± 7.60 | 43.03 ± 5.83 |
Triglyceride (mg/dL) | 62.33 ± 9.91 | 69.50 ± 18.25 | 54.00 ± 16.20 | 54.17 ± 15.54 | 47.00 ± 9.67 | 49.33 ± 8.31 | 42.50 ± 8.67 | 41.17 ± 8.52 |
BUN (mg/dL) | 27.73 ± 1.40 | 28.52 ± 1.77 | 28.12 ± 2.30 | 28.68 ± 2.83 | 32.53 ± 4.45 | 38.63 ± 9.75 | 30.17 ± 3.51 | 29.83 ± 2.57 |
Creatinine (mg/dL) | 0.76 ± 0.13 | 0.66 ± 0.06 | 0.70 ± 0.13 | 0.65 ± 0.17 | 0.57 ± 0.09 | 0.62 ± 0.04 | 0.62 ± 0.14 | 0.60 ± 0.08 |
Uric acid (mg/dL) | 1.78 ± 0.19 | 1.95 ± 0.23 | 1.73 ± 0.17 | 2.09 ± 0.36 * | 2.14 ± 0.48 | 1.87 ± 0.37 | 2.19 ± 0.26 | 1.79 ± 0.17 |
Total protein (g/dL) | 6.39 ± 0.22 | 6.32 ± 0.36 | 6.45 ± 0.22 | 6.53 ± 0.36 | 6.37 ± 0.29 | 6.62 ± 0.51 | 6.58 ± 0.39 | 6.36 ± 0.51 |
Albumin (g/dL) | 3.10 ± 0.08 | 3.15 ± 0.07 | 3.22 ± 0.07 * | 3.26 ± 0.07 * | 3.17 ± 0.18 | 3.15 ± 0.06 | 3.23 ± 0.07 | 3.13 ± 0.11 |
Total bilirubin (mg/dL) | 0.59 ± 0.07 | 0.58 ± 0.09 | 0.58 ± 0.06 | 0.58 ± 0.04 | 0.64 ± 0.09 | 0.59 ± 0.08 | 0.70 ± 0.08 | 0.61 ± 0.08 |
Direct bilirubin (mg/dL) | 0.08 ± 0.02 | 0.09 ± 0.03 | 0.08 ± 0.03 | 0.12 ± 0.04 | 0.14 ± 0.02 | 0.13 ± 0.03 | 0.13 ± 0.02 | 0.13 ± 0.03 |
AST/SGOT (U/L) | 105.67 ± 10.19 | 105.33 ± 6.68 | 107.83 ± 10.32 | 105.67 ± 9.07 | 114.17 ± 6.59 | 108.50 ± 7.69 | 116.50 ± 9.16 | 113.67 ± 10.69 |
ALT/SGPT (U/L) | 35.17 ± 6.24 | 34.17 ± 3.49 | 32.67 ± 8.50 | 33.67 ± 3.20 | 43.33 ± 8.87 | 41.83 ± 2.23 | 43.17 ± 9.13 | 48.00 ± 6.84 |
Alkaline phosphatase (U/L) | 114.50 ± 15.07 | 113.83 ± 9.39 | 113.83 ± 13.17 | 116.67 ± 11.18 | 80.83 ± 5.49 | 86.50 ± 9.89 | 78.17 ± 10.26 | 102.33 ± 14.46 * |
Parameters | Male Wistar Rats | Female Wistar Rats | ||||||
---|---|---|---|---|---|---|---|---|
BW) | BW) | |||||||
Control | 50 | 100 | 200 | Control | 50 | 100 | 200 | |
Hemoglobin (g/dL) | 14.57 ± 0.77 | 14.82 ± 0.48 | 14.65 ± 0.68 | 14.65 ± 0.37 | 14.88 ± 1.14 | 14.50 ± 1.12 | 14.73 ± 0.81 | 14.50 ± 0.32 |
Hematocrit (%) | 42.50 ± 2.43 | 42.50 ± 1.05 | 42.83 ± 2.64 | 42.67 ± 0.82 | 42.67 ± 3.14 | 42.00 ± 3.10 | 42.50 ± 2.07 | 41.50 ± 0.84 |
WBC (×103 cell/µL) | 3.67 ± 0.34 | 3.38 ± 0.35 | 3.32 ± 0.39 | 3.23 ± 0.48 | 2.43 ± 0.65 | 2.22 ± 0.26 | 2.55 ± 0.39 | 2.88 ± 0.28 |
Neutrophil (%) | 14.17 ± 1.94 | 14.33 ± 2.42 | 20.83 ± 7.57 * | 21.33 ± 2.34 * | 23.00 ± 5.48 | 21.67 ± 3.27 | 22.83 ± 7.60 | 17.67 ± 5.20 |
Lymphocyte (%) | 84.67 ± 2.25 | 84.67 ± 2.42 | 78.00 ± 7.51 * | 77.50 ± 2.07 * | 74.67 ± 5.01 | 76.83 ± 4.07 | 74.50 ± 8.41 | 81.17 ± 4.88 |
Monocyte (%) | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.67 ± 0.52 | 0.67 ± 0.52 | 1.17 ± 0.75 | 1.17 ± 0.41 | 1.50 ± 0.55 | 0.83 ± 0.41 |
Eosinophil (%) | 0.17 ± 0.41 | 0.00 ± 0.00 | 0.50 ± 0.55 | 0.50 ± 0.55 | 1.00 ± 0.89 | 0.17 ± 0.41 | 1.17 ± 0.98 | 0.33 ± 0.52 |
Basophil (%) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.17 ± 0.41 | 0.17 ± 0.41 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Platelet count (×103 cell/µL) | 575.17 ± 38.79 | 560.83 ± 39.10 | 560.00 ± 37.21 | 527.50 ± 38.20 * | 575.33 ± 58.81 | 615.50 ± 31.85 | 602.33 ± 38.66 | 645.00 ± 37.30 * |
MCV (fL) | 54.50 ± 1.05 | 54.33 ± 1.37 | 54.50 ± 1.87 | 54.50 ± 2.07 | 56.67 ± 1.97 | 56.17 ± 1.17 | 57.33 ± 2.42 | 57.00 ± 1.10 |
MCH (pg) | 18.67 ± 0.52 | 18.83 ± 0.75 | 19.00 ± 0.63 | 18.83 ± 0.75 | 20.00 ± 1.10 | 19.50 ± 0.55 | 20.17 ± 0.75 | 20.17 ± 0.75 |
MCHC (%) | 34.33 ± 0.82 | 34.83 ± 0.75 | 34.67 ± 0.82 | 34.33 ± 1.21 | 35.00 ± 0.63 | 34.83 ± 0.41 | 34.83 ± 0.41 | 34.83 ± 0.41 |
Months | Male Wistar Rats | Female Wistar Rats | ||||||
---|---|---|---|---|---|---|---|---|
BW) | BW) | |||||||
Control | 50 | 100 | 200 | Control | 50 | 100 | 200 | |
Initial | 70.17 ± 1.94 | 70.33 ± 2.07 | 69.33 ± 2.07 | 70.00 ± 2.68 | 65.17 ± 3.49 | 65.00 ± 3.90 | 64.67 ± 3.14 | 64.83 ± 3.13 |
1 | 73.83 ± 5.34 | 64.83 ± 3.31 * | 64.33 ± 4.76 * | 70.33 ± 4.84 | 67.00 ± 4.65 | 64.33 ± 3.50 | 63.33 ± 2.34 | 59.50 ± 4.89 * |
2 | 69.17 ± 4.26 | 67.83 ± 5.08 | 67.50 ± 2.35 | 67.33 ± 3.08 | 61.67 ± 3.39 | 65.00 ± 5.18 | 62.33 ± 6.50 | 64.17 ± 3.82 |
3 | 69.83 ± 5.15 | 69.50 ± 4.18 | 70.17 ± 3.97 | 69.17 ± 4.17 | 62.83 ± 5.00 | 59.50 ± 6.75 | 60.33 ± 2.25 | 61.17 ± 3.31 |
4 | 70.50 ± 3.39 | 68.83 ± 4.88 | 68.00 ± 3.90 | 65.67 ± 6.15 | 63.33 ± 4.08 | 67.50 ± 5.17 | 59.83 ± 4.75 | 65.83 ± 4.22 |
5 | 71.17 ± 2.64 | 69.83 ± 2.56 | 71.33 ± 3.14 | 68.67 ± 3.93 | 63.33 ± 5.57 | 67.33 ± 9.37 | 66.33 ± 4.08 | 65.00 ± 4.34 |
6 | 71.00 ± 3.74 | 67.50 ± 4.04 | 70.50 ± 3.73 | 66.00 ± 4.73 * | 61.33 ± 3.39 | 61.33 ± 4.80 | 58.83 ± 6.68 | 66.17 ± 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocharus, C.; Prum, V.; Sutheerawattananonda, M. Oral Toxicity and Hypotensive Influence of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons of Bombyx mori in Rodent Studies. Foods 2024, 13, 3505. https://doi.org/10.3390/foods13213505
Tocharus C, Prum V, Sutheerawattananonda M. Oral Toxicity and Hypotensive Influence of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons of Bombyx mori in Rodent Studies. Foods. 2024; 13(21):3505. https://doi.org/10.3390/foods13213505
Chicago/Turabian StyleTocharus, Chainarong, Virakboth Prum, and Manote Sutheerawattananonda. 2024. "Oral Toxicity and Hypotensive Influence of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons of Bombyx mori in Rodent Studies" Foods 13, no. 21: 3505. https://doi.org/10.3390/foods13213505
APA StyleTocharus, C., Prum, V., & Sutheerawattananonda, M. (2024). Oral Toxicity and Hypotensive Influence of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons of Bombyx mori in Rodent Studies. Foods, 13(21), 3505. https://doi.org/10.3390/foods13213505