Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies
Abstract
:1. Introduction
2. Persistent Organic Pollutants
2.1. Polychlorinated Biphenyls
2.2. Polycyclic Aromatic Hydrocarbons
2.3. Perfluoroalkyl Substances
2.4. Flame Retardants and Other POPs
3. Metals
4. Microplastics and Nanoplastics
5. Strategies for Environmental Contaminant Restriction and Removal
5.1. Regulatory Efforts
5.2. Wastewater Treatments
5.3. Bioremediation
5.4. Alternative Technologies and Future Perspectives
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomsen, S.T.; Assunção, R.; Afonso, C.; Boué, G.; Cardoso, C.; Cubadda, F.; Garre, A.; Kruisselbrink, J.W.; Mantovani, A.; Pitter, J.G.; et al. Human health risk–benefit assessment of fish and other seafood: A scoping review. Crit. Rev. Food Sci. Nutr. 2021, 62, 7479–7502. [Google Scholar] [CrossRef] [PubMed]
- Visciano, P. Chemicals and safety of chemical contaminants in seafood. In Food Safety Chemistry. Toxicant Occurrence, Analysis and Mitigation; Yu, L., Wang, S., Sun, B.G., Eds.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2015; Chapter 11; pp. 215–236. [Google Scholar]
- Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose tissue as a site of toxin accumulation. Compr. Physiol. 2017, 7, 1085–1135. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. 2017, 24, 4223–4227. [Google Scholar] [CrossRef]
- Visciano, P.; Perugini, M.; Manera, M.; Salese, C.; Martino, G.; Amorena, M. Nutritional quality and safety related to trace element content in fish from Tyrrhenian Sea. Bull. Environ. Contam. Toxicol. 2014, 92, 557–561. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 915/2023 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) 1881/2006. Off. J. Eur. Union L 2023, 119, 103–157. [Google Scholar]
- De Witte, B.; Coleman, B.; Bekaert, K.; Boitsov, S.; Botelho, M.J.; Castro-Jiménez, J.; Duffy, C.; Habedank, F.; McGovern, E.; Parmentier, K.; et al. Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 2022, 138, 108978. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 835/2011 of 19 August 2011 amending Regulation (EC) 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union L 2011, 215, 4–8. [Google Scholar]
- Ochs, C.; Garrison, K.; Saxena, P.; Romme, K.; Sarkar, A. Contamination of aquatic ecosystems by persistent organic pollutants (POPs) originating from landfills in Canada and the United States: A rapid scoping review. Sci. Total Environ. 2024, 924, 171490. [Google Scholar] [CrossRef]
- Camacho-Jiménez, L.; González-Ruiz, R.; Yepiz-Plascencia, G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. Mar. Environ. Res. 2023, 192, 106184. [Google Scholar] [CrossRef]
- Bom, F.C.; Sá, F. Are bivalves a source of microplastics for humans? A case study in the Brazilian markets. Mar. Pollut. Bull. 2022, 181, 113823. [Google Scholar] [CrossRef]
- Abdallah, M.A.M.; Mohamed, A.A. Mobility and risk assessment of heavy metals by sequential extraction in coastal sediment south Mediterranean Sea, Egypt. Mar. Syst. Ocean Technol. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Brachner, A.; Fragouli, D.; Duarte, I.F.; Farias, P.M.A.; Dembski, S.; Ghosh, M.; Barisic, I.; Zdzieblo, D.; Vanoirbeek, J.; Schwabl, P.; et al. Assessment of human health risks posed by nano-and microplastics is currently not feasible. Int. J. Environ. Res. Public Health 2020, 17, 8832. [Google Scholar] [CrossRef] [PubMed]
- Bartalini, A.; Muñoz-Arnanz, J.; Baini, M.; Panti, C.; Galli, M.; Giani, D.; Fossi, M.C.; Jeménez, B. Relevance of current PCB concentrations in edible fish species from the Mediterranean Sea. Sci. Total Environ. 2020, 737, 139520. [Google Scholar] [CrossRef]
- Mitra, S.; Corsolini, S.; Pozo, K.; Audy, O.; Sarkar, S.K.; Biswas, J.K. Characterization, source identification and risk associated with polyaromatic and chlorinated organic contaminants (PAHs, PCBs, PCBzs and OCPs) in the surface sediments of Hooghly estuary, India. Chemosphere 2019, 221, 154–165. [Google Scholar] [CrossRef]
- Polak-Juszczak, L.; Waszak, I.; Szlinder-Richert, J.; Wójcik, I. Levels, time trends, and distribution of dioxins and polychlorinated biphenyls in fishes from the Baltic Sea. Chemosphere 2022, 306, 135614. [Google Scholar] [CrossRef]
- Lyon, F.; IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100F; Chemical Agents and Related Occupations: Lyon, France, 2012; pp. 339–378. [Google Scholar]
- Cui, L.; Wang, S.; Yang, X.; Gao, L.; Zheng, M.; Wang, R.; Qiao, L.; Xu, C. Fatty acids, polychlorinated dibenzo-p-dioxins and dibenzofurans, and dioxin-like polychlorinated biphenyls in paired muscle and skin from fish from the Bohai coast, China: Benefits and risks associated with fish consumption. Sci. Total Environ. 2018, 639, 952–960. [Google Scholar] [CrossRef]
- Mikolajczyk, S.; Warenik-Bany, M.; Maszewski, S.; Pajurek, M. Dioxins and PCBs e Environment impact on freshwater fish contamination and risk to consumers. Environ. Pollut. 2020, 263, 114611. [Google Scholar] [CrossRef]
- Mauffret, A.; Chouvelon, T.; Wessel, N.; Cresson, P.; Bănaru, D.; Baudrier, J.; Bustamante, P.; Chekri, R.; Jitaru, P.; Le Loc’h, F.; et al. Trace elements, dioxins and PCBs in different fish species and marine regions: Importance of the taxon and regional features. Environ. Res. 2023, 216, 114624. [Google Scholar] [CrossRef] [PubMed]
- Nøstbakken, O.J.; Rasinger, J.D.; Hannisdal, R.; Sanden, M.; Frøyland, L.; Duinker, A.; Frantzen, S.; Dahl, L.M.; Lundebye, A.-K.; Madsen, L. Levels of omega 3 fatty acids, vitamin D, dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk–benefit assessments of oily seafood. Environ. Int. 2021, 147, 106322. [Google Scholar] [CrossRef]
- Frechner, C.; Frantzen, S.; Lindtner, O.; Mathisenm, G.H.; Lillegaard, I.T.L. Human dietary exposure to dioxins and dioxin-like PCBs through the consumption of Atlantic herring from fishing areas in the Norwegian Sea and Baltic Sea. J. Consum. Prot. Food Saf. 2023, 18, 19–25. [Google Scholar] [CrossRef]
- Mikolajczyk, S.; Warenik-Bany, M.; Pajurek, M. Polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls in bivalve molluscs. Risk to Polish consumers? J. Vet. Res. 2023, 67, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Carro, N.; Cobas, J.; García, I.; Ignacio, M.; Mouteira, A.; Miranda, M.; Picado, L. Organochlorine compounds and polycyclic aromatic hydrocarbons in mussels from Ria de Vigo (the Northern Spanish coast). Current levels and long-term trends (2010–2019). Relationship with human pressures. Reg. Stud. Mar. Sci. 2021, 44, 101742. [Google Scholar] [CrossRef]
- Visciano, P.; Scortichini, G.; Suzzi, G.; Diletti, G.; Schirone, M.; Martino, G. Concentrations of contaminants with regulatory limits in samples of clams (Chamelea gallina) collected along the Abruzzi region coast in Central Italy. J. Food Prot. 2015, 78, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Premnath, N.; Mohanrasu, K.; Guru Raj Rao, R.; Dinesh, G.H.; Siva Prakash, G.; Ananthi, V.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A crucial review on polycyclic aromatic hydrocarbons—Environmental occurrence and strategies for microbial degradation. Chemosphere 2021, 280, 130608. [Google Scholar] [CrossRef]
- Kumari, A.; Upadhyay, V.; Kumar, S. A critical insight into occurrence and fate of polycyclic aromatic hydrocarbons and their green remediation approaches. Chemosphere 2023, 329, 138579. [Google Scholar] [CrossRef]
- Behera, B.K.; Das, A.; Sarkar, D.J.; Weerathunge, P.; Parida, P.K.; Das, B.K.; Thavamani, P.; Ramanathan, R.; Bansal, V. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environ. Pollut. 2018, 241, 212e233. [Google Scholar] [CrossRef]
- Paik, Y.; Kim, H.-S.; Joo, Y.-S.; Lee, J.W.; Lee, K.-W. Evaluation of polycyclic aromatic hydrocarbon contents in marine products in South Korea and risk assessment using the total diet study. Food Sci. Biotechnol. 2024, 33, 2377–2390. [Google Scholar] [CrossRef]
- Visciano, P.; Perugini, M.; Manera, M.; Amorena, M. Selected polycyclic aromatic hydrocarbons in smoked tuna, swordfish and Atlantic salmon fillets. Int. J. Food Sci. Technol. 2009, 44, 2028–2032. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Z.; Hui, S.P. Effect of charcoal grilling on polycyclic aromatic hydrocarbons (PAHs): Content, composition, and health risk in edible fish in Japan. Anal. Sci. 2022, 38, 515–523. [Google Scholar] [CrossRef]
- Ferrante, M.; Zanghì, G.; Cristaldi, A.; Copat, C.; Grasso, A.; Fiore, M.; Signorelli, S.S.; Zuccarello, P.; Oliveri Conti, G. PAHs in seafood from the Mediterranean Sea: An exposure risk assessment. Food Chem. Toxicol. 2018, 115, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Moubarz, G.; Saad-Hussein, A.; Shahy, E.M.; Mahdy-Abdallah, H.; Mohammed, A.M.F.; Saleh, I.A.; Abo-Zeid, M.A.M.; Abo-Elfadl, M. Lung cancer risk in workers occupationally exposed to polycyclic aromatic hydrocarbons with emphasis on the role of DNA repair gene. Int. Arch. Occup. Environ. Health 2023, 96, 313–329. [Google Scholar] [CrossRef]
- Ju, Y.-R.; Chen, C.-F.; Wang, M.-H.; Chen, C.-W.; Dong, C.-D. Assessment of polycyclic aromatic hydrocarbons in seafood collected from coastal aquaculture ponds in Taiwan and human health risk assessment. J. Hazard. Mater. 2022, 421, 126708. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Valsecchi, S.; Polesello, S.; Rusconi, M.; Melis, M.; Palmiotto, M.; Manenti, A.; Davoli, E.; Zuccato, E. Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy. J. Hazard. Mater. 2015, 282, 51–60. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.S.; Pandit, S.; Mishra, R.K.; Joshi, S.; Idris, A.M.; Tusher, T.R. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. Sci. Total Environ. 2024, 916, 170142. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Hidalgo, F.; García-Corcoles, M.T.; Ibáñez-Yuste, A.J.; Alonso, E.; Vilchez, J.L.; Zafra-Gómez, A. Bioaccumulation of perfluoroalkyl substances in marine echinoderms: Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791. Chemosphere 2019, 215, 261–271. [Google Scholar] [CrossRef]
- Langberg, H.A.; Breedveld, G.D.; Kallenborn, R.; Ali, A.M.; Choyke, S.; Mc Donough, C.A.; Higgins, C.P.; Jenssen, B.M.; Jartun, M.; Allan, I.; et al. Human exposure to per- and polyfluoroalkyl substances (PFAS) via the consumption of fish leads to exceedance of safety thresholds. Environ. Int. 2024, 190, 108844. [Google Scholar] [CrossRef]
- Fair, P.A.; Wolf, B.; White, N.D.; Arnott, S.A.; Kannan, K.; Karthikraj, R.; Vena, J.E. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. Environ. Res. 2019, 171, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Cara, B.; Lies, T.; Thimo, G.; Robin, L.; Lieven, B. Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea: Distribution and human health risk implications. Environ. Pollut. 2022, 311, 119907. [Google Scholar] [CrossRef] [PubMed]
- Hedgespeth, M.L.; Taylor, D.L.; Balint, S.; Schwartz, M.; Cantwell, M.G. Ecological characteristics impact PFAS concentrations in a U.S. North Atlantic food web. Sci. Total Environ. 2023, 880, 163302. [Google Scholar] [CrossRef] [PubMed]
- Zafeiraki, E.; Gebbink, W.A.; Hoogenboom, R.L.A.P.; Kotterman, M.; Kwadijk, C.; Dassenakis, E.; van Leeuwen, S.P.J. Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in The Netherlands. Chemosphere 2019, 232, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Koponen, J.; Airaksinen, R.; Hallikainen, A.; Vuorinen, P.J.; Mannio, J.; Kiviranta, H. Perfluoroalkyl acids in various edible Baltic, freshwater, and farmed fish in Finland. Chemosphere 2015, 129, 186–191. [Google Scholar] [CrossRef]
- European Chemicals Agency. Regulatory Strategy for Flame Retardants; European Chemicals Agency: Helsinki, Finland, 2023; pp. 1–85. [Google Scholar] [CrossRef]
- European Food Safety Authority. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J. 2024, 22, e8497. [Google Scholar] [CrossRef]
- Sun, R.-X.; Pan, C.-G.; Peng, F.-J.; Yu, Z.-L.; Shao, H.-Y.; Yang, B.-Z.; Chen, Z.-B.; Mai, B.-X. Evidence of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) in wild fish species from the remote tropical marine environment, south China sea. Environ. Pollut. 2024, 361, 124885. [Google Scholar] [CrossRef]
- La Guardia, M.J.; Mainor, T.M.; Luellen, D.R.; Harvey, E.; Hale, R.C. Twenty years later: PBDEs in fish from U.S. sites with historically extreme contamination. Chemosphere 2024, 351, 141126. [Google Scholar] [CrossRef]
- Babichuk, N.; Sarkar, A.; Mulay, S.; Knight, J.; Bautista, J.J.; Young, C.J. Polybrominated Diphenyl Ethers (PBDEs) in Marine Fish and Dietary Exposure in Newfoundland. EcoHealth 2022, 19, 99–113. [Google Scholar] [CrossRef]
- Liu, B.; Lehmler, H.J.; Ye, Z.; Yuan, X.; Yan, Y.; Ruan, Y.; Wang, Y.; Yang, Y.; Chen, S.; Bao, W. Exposure to polybrominated diphenyl ethers and risk of all-cause and cause-specific mortality. JAMA Network Open 2024, 7, e243127. [Google Scholar] [CrossRef]
- Nagar, N.; Saxena, H.; Pathak, A.; Mishra, A.; Poluri, K.M. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. Chemosphere 2023, 332, 138877. [Google Scholar] [CrossRef]
- Sun, H.; Chen, H.; Yao, L.; Chen, J.; Zhu, Z.; Kafaei, R.; Arfaeinia, H.; Savari, A.; Mahmoodi, M.; Rezaei, M.; et al. Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere 2020, 240, 124983. [Google Scholar] [CrossRef]
- Chen, L.; Qian, Y.; Jia, Q.; Weng, R.; Zhang, X.; Li, Y.; Qiu, J. A large geographicscale characterization of organochlorine pesticides (OCPs) in surface sediments and multiple aquatic foods of inland freshwater aquaculture ponds in China: Cooccurrence, source and risk assessment. Environ. Pollut. 2022, 308, 119716. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, L.; Yang, Q.; Wu, Y.; Zheng, M.; Yang, L.; Lyu, B.; Liu, X.; Jin, R.; Sun, Y. Comprehensive evaluation of dietary exposure and health risk of polychlorinated naphthalenes. Environ. Sci. Technol. 2022, 56, 5520–5529. [Google Scholar] [CrossRef]
- Ghelli, E.; Cariou, R.; Dervilly, G.; Pagliuca, G.; Gazzotti, T. Dechlorane plus and related compounds in food—A review. Int. J. Environ. Res. Public Health 2021, 18, 690. [Google Scholar] [CrossRef] [PubMed]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol. Rep. 2017, 69, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, F.; Bellante, A.; Quinci, E.; Gherardi, S.; Placenti, F.; Sabatino, N.; Buffa, G.; Avellone, G.; Di Stefano, V.; Del Core, M. Persistent and Emerging Organic Pollutants in the Marine Coastal Environment of the Gulf of Milazzo (Southern Italy): Human Health Risk Assessment. Front. Environ. Sci. 2020, 8, 117. [Google Scholar] [CrossRef]
- Perugini, M.; Visciano, P.; Manera, M.; Zaccaroni, A.; Olivieri, V.; Amorena, M. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monit. Assess. 2014, 186, 2205–2213. [Google Scholar] [CrossRef]
- Cayabo, G.D.B.; Lim, Y.C.; Albarico, F.P.J.B.; Chen, C.F.; Wang, M.H.; Chen, C.W.; Dong, C.D. Contrasting metal bioaccumulation in marine benthic invertebrate groups in polluted harbor sediments. Mar. Pollut. Bull. 2024, 207, 116859. [Google Scholar] [CrossRef]
- Chen, B.J.; Xu, J.; Wang, X. Trophic transfer without biomagnification of cadmium in a soybean-dodder parasitic system. Plants 2021, 10, 2690. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Mar. Pollut. Bull. 2024, 340, 122815. [Google Scholar] [CrossRef]
- Yu, X.; Khan, S.; Khan, A.; Tang, Y.; Nunes, L.M.; Yan, J.; Ye, X.; Li, G. Methyl mercury concentrations in seafood collected from Zhoushan Islands, Zhejiang, China, and their potential health risk for the fishing community Capsule: Methyl mercury in seafood causes potential health risk. Environ. Int. 2020, 137, 105420. [Google Scholar] [CrossRef] [PubMed]
- Fulke, A.B.; Ratanpal, S.; Sonker, S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Mar. Pollut. Bull. 2024, 206, 116707. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Visciano, P.; Manera, M.; Abete, M.C.; Gavinelli, S.; Amorena, M. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium. Environ. Sci. Pollut. Res. 2013, 20, 8255–8262. [Google Scholar] [CrossRef] [PubMed]
- Chahouri, A.; Lamine, I.; Ouchene, H.; Yacoubi, B.; Moukrim, A.; Banaoui, A. Assessment of heavy metal contamination and ecological risk in Morocco’s marine and estuarine ecosystems through a combined analysis of surface sediment and bioindicator species: Donax trunculus and Scrobicularia plana. Mar. Pollut. Bull. 2023, 192, 115076. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Boezen, H.M.; Huo, X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere 2016, 148, 408–415. [Google Scholar] [CrossRef]
- Zou, R.X.; Gu, X.; Huang, C.; Wang, H.L.; Chen, X.T. Chronic Pb exposure impairs learning and memory abilities by inhibiting excitatory projection neuro-circuit of the hippocampus in mice. Toxicology 2024, 502, 153717. [Google Scholar] [CrossRef]
- Anwar, A.; De Ayreflor Reyes, S.R.; John, A.A.; Breiling, E.; O’Connor, A.M.; Reis, S.; Shim, J.H.; Shah, A.A.; Srinivasan, J.; Farny, N.G. Nucleic acid aptamers protect against lead (Pb(II)) toxicity. New Biotechnol. 2024, 83, 36–45. [Google Scholar] [CrossRef]
- Chen, S.; Abdulla, A.; Yan, H.; Mi, Q.; Ding, X.; He, J.; Yan, C. Proteome signatures of joint toxicity to arsenic (As) and lead (Pb) in human brain organoids with optic vesicles. Environ. Res. 2024, 243, 117875. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100C, Arsenic, Metals, Fibres, and Dusts; International Agency for Research on Cancer: Lyon, France, 2012; pp. 121–146. [Google Scholar]
- Koutros, S.; Lenz, P.; Hewitt, S.M.; Kida, M.; Jones, M.; Schned, A.R.; Baris, D.; Pfeiffer, R.; Schwenn, M.; Johnson, A.; et al. RE: Elevated bladder cancer in northern new England: The role of drinking water and arsenic. JNCI 2018, 110, 1273–1274. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Basu, N.; Bastiansz, A.; Dórea, J.G.; Fujimura, M.; Horvat, M.; Shroff, E.; Weihe, P.; Zastenskaya, I. Our evolved understanding of the human health risks of mercury. Ambio 2023, 52, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Wang, J.; Guo, S.; Yang, L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. Sci. Total Environ. 2024, 943, 173577. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, F.; Sun-Waterhouse, D.; Li, D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem. 2024, 460, 140483. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, J.H.; Le Kim, M.D.; Suh, W.D.; Kim, J.E.; Yeon, H.J.; Park, S.Y.; Kim, S.H.; Oh, Y.H.; Jo, G.H. Exposure assessment and safe intake guidelines for heavy metals in consumed fishery products in the Republic of Korea. Environ. Sci. Pollut. Res. 2020, 27, 33042–33051. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- USEPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 2: Risk Assessment and Fish Consumption Limits, 3rd ed.; EPA 823-B-00-008; Office of Science and Technology Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2000; pp. 1–61. [Google Scholar]
- Sadighara, P.; Jahanbakhsh, M.; Nazari, Z.; Mostashari, P. The organotin contaminants in food: Sources and methods for detection: A systematic review and meta-analysis. Food Chem. 2021, X 12, 100154. [Google Scholar] [CrossRef]
- Shu, S.-N.; Jiang, R.-T.; Yin, J.; Wang, Q.; Su, L.; Craig, N.J.; Li, Y.-J. Characteristics, sources and health risks of organotincompounds in marine organisms from the seas adjacent to the eastern ports of China. Reg. Stud. Mar. Sci. 2023, 61, 102929. [Google Scholar] [CrossRef]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Kanwar, R.S.; Jovanovi, B. Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. Integr. Environ. Assess. Manag. 2023, 19, 474–488. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Kopatz, V.; Wen, K.; Kovács, T.; Keimowitz, A.S.; Pichler, V.; Widder, J.; Vethaak, A.D.; Hollóczki, O.; Kenner, L. Micro- and nanoplastics breach the blood–brain barrier (BBB): Biomolecular corona’s role revealed. Nanomaterials 2023, 13, 1404. [Google Scholar] [CrossRef] [PubMed]
- Brynzak-Schreiber, E.; Schögl, E.; Bapp, C.; Cseh, K.; Kopatz, V.; Jakupec, M.A.; Weber, A.; Lange, T.; Toca-Herrera, J.L.; del Favero, G.; et al. Microplastics role in cell migration and distribution during cancer cell division. Chemosphere 2024, 353, 141463. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef]
- Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I.; Benson, N.U.; Ayejuyo, O.O.; Palanisami, T. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 2020, 706, 135978. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef]
- Gao, F.; Li, J.; Sun, C.; Zhang, L.; Jiang, F.; Cao, W.; Zheng, L. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar. Pollut. Bull. 2019, 144, 61–67. [Google Scholar] [CrossRef]
- Siwach, S.; Bharti, M.; Yadav, S.; Dolkar, P.; Modeel, S.; Yadav, P.; Negi, T.; Negi, R.K. Unveiling the ecotoxicological impact of microplastics on organisms—The persistent organic pollutant (POP): A comprehensive review. J. Contam. Hydrol. 2024, 266, 104397. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Ecotoxicology and environmental safety different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicol. Environ. Saf. 2018, 147, 648–655. [Google Scholar] [CrossRef]
- Zuo, L.; Li, H.; Lin, L.; Sun, Y.; Diao, Z.; Liu, S.; Zhang, Z.; Xu, X. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co-terephtalate) microplastics. Chemosphere 2019, 215, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; He, Y.; Hu, G.; Cheng, L.; Wang, M. Microplastics at an environmentally relevant dose enhance mercury toxicity in a marine copepod under multigenerational exposure: Multi-omics perspective. J. Hazard. Mater. 2024, 478, 135529. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Bellas, J.; Vidal-Liñán, L.; Santos-Echeandía, J.; Campillo, J.A.; León, V.M.; Albentosa, M. Microplastics increase the toxicity of mercury, chlorpyrifos and fluoranthene to mussel and sea urchin embryos. Environ. Pollut. 2023, 336, 122410. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous hichhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef]
- Zhao, B.; Rehati, P.; Yang, Z.; Cai, Z.; Guo, C.; Li, Y. The potential toxicity of microplastics on human health. Sci. Total Environ. 2024, 912, 168946. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Schwabl, P.; Koppel, S.; Konigshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Milne, M.H.; De Frond, H.; Rochman, C.M.; Mallos, N.J.; Leonard, G.H.; Baechler, B.R. Exposure of U.S. adults to microplastics from commonly-consumed proteins. Environ. Pollut. 2024, 343, 123233. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants of 31 July 2006. Off. J. Eur. Union L 2006, 209, 3–29.
- United Nations Environment Programme (UNEP). Stockholm Convention on Persistent Organic Pollutants Text and Annexes Revised in 2019; Secretariat of the Stockholm Convention (SSC): Stockholm, Sweden, 2020; pp. 1–77. [Google Scholar]
- USEPA. Contaminants to Monitor in Fish and Shellfish Advisory Programs July 2024; Fact Sheet EPA 823-F-24-011; USEPA: Washington, DC, USA, 2024; pp. 1–4. [Google Scholar]
- Regulation (EU) 2021/2019 of 20 June 2019 on Persistent Organic Pollutants. Off. J. Eur. Union L 169, 1–40. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1021 (accessed on 15 September 2024).
- Directive (EU) 904/2019 of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. Off. J. Eur. Union L 155, 1–19. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj (accessed on 15 September 2024).
- Rebello, S.; Sivaprasad, M.S.; Anoopkumar, A.N.; Jayakrishnan, L.; Aneesh, E.M.; Narisetty, V.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Pandey, A. Cleaner technologies to combat heavy metal toxicity. J. Environ. Manag. 2021, 296, 113231. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Wanjari, U.R.; Chakraborty, R.; Renu, K.; Vellingiri, B.; George, A.; Sundara Rajan, C.R.; Gopalakrishnan, A.V. A review on modern and smart technologies for efficient waste disposal and management. J. Environ. Manag. 2021, 297, 113347. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, A.J.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Maier, D.; Benisek, M.; Blaha, L.; Dondero, F.; Giesy, J.P.; Köhler, H.R.; Richter, D.; Scheurer, M.; Triebskorn, R. Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish. Ecotoxicol. Environ. Saf. 2016, 132, 47–58. [Google Scholar] [CrossRef]
- Nasir, M.S.; Tahir, I.; Ali, A.; Ayub, I.; Nasir, A.; Abbas, N.; Sajjad, U.; Hamid, K. Innovative technologies for removal of micro plastic: A review of recent advances. Heliyon 2024, 10, e25883. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef]
- Bilgin, M.; Yurtsever, M.; Karadagli, F. Microplastic removal by aerated grit chambers versus settling tanks of a municipal wastewater treatment plant. J. Water Process Eng. 2020, 38, 101604. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Enerijiofi, K.E. Bioremediation of environmental contaminants: A sustainable alternative to environmental management. In Bioremediation for Environmental Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Chapter 19; pp. 461–480. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.K.; Kim, S.H.; Singh, S.P.; Chaturvedi, P.; Varjani, S. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ. Technol. Innov. 2021, 24, 101826. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The role of microorganisms in bioremediation—A review. J. Environ. Biol. 2017, 2, 38–46. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Verma, A.; Gangola, S.; Bhandari, G.; Chen, S. Microbial glycoconjugates in organic pollutant bioremediation: Recent advances and applications. Microb. Cell Fact. 2021, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. In Heavy Metals; Saleh, H., Aglan, R., Eds.; W1W 5PF; IntechOpen Limited: London, UK, 2018; Volume 10, pp. 115–132. [Google Scholar] [CrossRef]
- Gałwa-Widera, M. Biochar—Production, Properties, and Service to Environmental Protection against Toxic Metals. In Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology; Prasad, M.N.V., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 53–75. [Google Scholar] [CrossRef]
- Wang, M.; Cai, Y.; Zhou, B.; Yuan, R.; Chen, Z.; Chen, H. Removal of PFASs from water by carbon-based composite photocatalysis with adsorption and catalytic properties: A review. Sci. Total Environ. 2022, 836, 155652. [Google Scholar] [CrossRef]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef]
- Dey, D.; Shafi, T.; Chowdhury, S.; Dubey, B.K.; Sen, R. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). Chemosphere 2024, 351, 141164. [Google Scholar] [CrossRef] [PubMed]
- Militao, I.M.; Roddick, F.; Fan, L.; Zepeda, L.C.; Parthasarathy, R.; Bergamasco, R. PFAS removal from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar. J. Water Process Eng. 2023, 53, 103616. [Google Scholar] [CrossRef]
- Liu, N.; Wu, C.; Lyu, G.; Li, M. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Sci. Total Environ. 2021, 798, 149191. [Google Scholar] [CrossRef]
- Steigerwald, J.M.; Ray, J.R. Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent. J. Hazard. Mater. Lett. 2021, 2, 100025. [Google Scholar] [CrossRef]
- Omo-Okoro, P.N.; Curtis, C.J.; Marco, A.M.; Melymuk, L.; Okonkwo, J.O. Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons. J. Enviro. Health Sci. Eng. 2021, 19, 217–236. [Google Scholar] [CrossRef]
- Bitencourt, J.A.P.; Chequer, L.P.T.; Waite, C.C.; Oliveira, G.; Oliveira, A.M.S.; Pereira, D.C.; Crapez, M.A.C. Biomass and enzymatic activities of marine bacteria in the presence of multiple metals. Braz. J. Microbiol. 2023, 54, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Chasapis, C.T.; Peana, M.; Bekiari, V. Structural Identification of Metalloproteomes in Marine Diatoms, an Efficient AlgaeModel in Toxic Metals Bioremediation. Molecules 2022, 27, 378. [Google Scholar] [CrossRef]
- Pieper, D.H.; Reineke, W. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 2000, 11, 262–270. [Google Scholar] [CrossRef]
- Valbona Aliko, V.; Multisanti, C.R.; Turani, B.; Faggio, C. Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy. Sustainability 2022, 14, 11784. [Google Scholar] [CrossRef]
- Khan, A.U.; Khan, A.N.; Waris, A.; Ilyas, M.; Zamel, D. Phytoremediation of pollutants from wastewater: A concise review. Open Life Sci. 2022, 17, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Cappello, S.; Mancini, G. Use of nanomaterials for marine bioremediation: A perspective. Ann. Mater. Sci. Eng. 2019, 4, 1035. [Google Scholar] [CrossRef]
- European Food Safety Authority. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- European Food Safety Authority. Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 2021, 19, 7033. [Google Scholar] [CrossRef]
Contaminants | Fish | Cephalopods | Crustaceans | Bivalve Mollusks |
---|---|---|---|---|
Lead | 0.30 | 0.30 | 0.50 | 1.5 |
Cadmium | 0.050 | 1.0 | 0.50 | 1.0 |
Mercury | 0.50 | 0.30 | 0.50 | 0.50 |
Sum of dioxins | 3.5 × 10−9 | 3.5 × 10−9 | 3.5 × 10−9 | 3.5 × 10−9 |
Sum of dioxins and dioxin-like PCBs * | 6.5 × 10−9 | 6.5 × 10−9 | 6.5 × 10−9 | 6.5 × 10−9 |
Sum of non-dioxin-like PCBs | 0.000075 | 0.000075 | 0.000075 | 0.000075 |
Benzo(a)pyrene | - | - | - | 0.005 |
Sum of PAHs ** | - | - | - | 0.03 |
Sum of PFASs *** | 0.002 | - | 0.005 | 0.005 |
Contaminants | Acronyms |
---|---|
Persistent organic pollutants | POPs |
Polycyclic aromatic hydrocarbons | PAHs |
Polychlorinated biphenyls | PCBs |
Polychlorinated dibenzo-para-dioxins | PCCDs |
Polychlorinated dibenzofurans | PCDFs |
2,3,7,8-tetrachlorodibenzo-para-dioxin | 2,3,7,8-TCDD |
Polybrominated diphenyl ethers | PBDEs |
Perfluoroalkyl substances | PFASs |
Perfluorooctane sulfonic acid | PFOS |
Perfluorooctanoic acid | PFOA |
Perfluorononanoic acid | PFNA |
Perfluorohexane sulfonic acid | PFHxS |
Organochlorine pesticides | OCPs |
Polychlorinated naphthalene | PCN |
Dechlorane plus | DP |
Hexachlorobenzene | HCB |
Arsenic | As |
Lead | Pb |
Cadmium | Cd |
Methylmercury | MeHg |
Microplastics | MPs |
Nanoplastics | NPs |
Fish Meals/Month * | iArsenic ** | Cadmium | Methylmercury | Selenium | Tributyltin |
---|---|---|---|---|---|
Unrestricted (<16) | 0–0.088 | 0–0.088 | 0–0.029 | 0–1.5 | 0–0.088 |
16 | >0.088–0.18 | >0.088–0.18 | >0.029–0.059 | >1.5–2.9 | >0.088–0.18 |
12 | >0.18–0.23 | >0.18–0.23 | >0.059–0.078 | >2.9–3.9 | >0.18–0.23 |
8 | >0.23–0.35 | >0.23–0.35 | >0.078–0.12 | >3.9–5.9 | >0.23–0.35 |
4 | >0.35–0.70 | >0.35–0.70 | >0.12–0.23 | >5.9–12 | >0.35–0.70 |
3 | >0.70–0.94 | >0.70–0.94 | >0.23–0.31 | >12–16 | >0.70–0.94 |
2 | >0.94–1.4 | >0.94–1.4 | >0.31–0.47 | >16–23 | >0.94–1.4 |
1 | >1.4–2.8 | >1.4–2.8 | >0.47–0.94 | >23–47 | >1.4–2.8 |
0.5 | >2.8–5.6 | >2.8–5.6 | >0.94–1.9 | >47–94 | >2.8–5.6 |
None (<0.5) | >5.6 | >5.6 | >1.9 | >94 | >5.6 |
Fish Meals/Month * | PAHs | PCBs | Dioxins/Furans |
---|---|---|---|
Unrestricted (<16) | 0–0.0004 | 0–0.0015 | 0–0.019 |
16 | >0.0004–0.0008 | >0.0015–0.0029 | >0.019–0.038 |
12 | >0.0008–0.0011 | >0.0029–0.0039 | >0.038–0.050 |
8 | >0.0011–0.0016 | >0.0039–0.0059 | >0.050–0.075 |
4 | >0.0016–0.0032 | >0.0059–0.012 | >0.075–0.15 |
3 | >0.0032–0.0043 | >0.012–0.016 | >0.15–0.20 |
2 | >0.0043–0.0064 | >0.016–0.023 | >0.20–0.30 |
1 | >0.0064–0.013 | >0.023–0.047 | >0.30–0.60 |
0.5 | >0.013–0.026 | >0.047–0.094 | >0.60–1.2 |
None (<0.5) | >0.026 | >0.094 | >1.2 |
Technique | Advantages | Disadvantages |
---|---|---|
Bioremediation | Cost-effective and eco-friendly | Complexity of biological materials |
Physical treatments | Low-cost and easy application | Efficiency influenced by density of pollutants |
Chemical treatments | Simple and available equipment | Efficiency influenced by structural characteristics of pollutants |
Nanotechnology | Future applications | Low availability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visciano, P. Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies. Foods 2024, 13, 3511. https://doi.org/10.3390/foods13213511
Visciano P. Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies. Foods. 2024; 13(21):3511. https://doi.org/10.3390/foods13213511
Chicago/Turabian StyleVisciano, Pierina. 2024. "Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies" Foods 13, no. 21: 3511. https://doi.org/10.3390/foods13213511
APA StyleVisciano, P. (2024). Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies. Foods, 13(21), 3511. https://doi.org/10.3390/foods13213511