Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiology
2.1.1. Preparation of Microbial Suspension
2.1.2. Preparation of Soybean Paste Samples
2.1.3. Microbial Enumeration
2.2. Processing
2.2.1. Thermal Processing
2.2.2. Thermosonication Processing
2.3. Scanning Electron Microscopy
2.4. Physicochemical Properties
2.4.1. Color
2.4.2. Viscosity
2.4.3. Flavor
2.4.4. The pH, Total Acid (TA), Amino Acid Nitrogen (AN), and Reducing Sugar (RS)
2.5. P. membranaefaciens Inactivation Model in Soybean Paste
2.6. Statistical Analysis
3. Results and Discussion
3.1. Modeling the Thermosonication Inactivation Kinetics in Soybean Paste
3.2. Morphological Observation of P. membranaefaciens Cells
3.3. Effects of Thermosonication Treatment on Physicochemical Properties of Soybean Paste
3.4. Flavor Compound Analysis of Soybean Paste
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.K.; Lee, K.G. Correlating consumer perception and consumer acceptability of traditional Doenjang in Korea. J. Food Sci. 2014, 79, S2330–S2336. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.L.; Zhang, K.N.; Zhang, Z.C.; Zhang, C.; Sun, Y.; Feng, Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res. Int. 2022, 158, 111575. [Google Scholar] [CrossRef] [PubMed]
- Kanno, R.; Koshizuka, T.; Miyazaki, N.; Kobayashi, T.; Ishioka, K.; Ozaki, C.; Chiba, H.; Suzutani, T. Protection of fatty liver by the intake of fermented soybean paste, Miso, and its pre-fermented mixture. Foods 2021, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.B.; Lagarde, F.; Mizuno, T.; Sauvaget, C.; Fukuhara, T.; Allen, N.; Suzuki, G.; Tokuoka, S. Relationship of hepatocellular carcinoma to soya food consumption: A cohort-based, case-control study in Japan. Int. J. Cancer 2005, 115, 290–295. [Google Scholar] [CrossRef]
- Hirayama, T. Relationship of soybean paste soup intake to gastric cancer risk. Nutr. Cancer 2009, 3, 223–233. [Google Scholar] [CrossRef]
- Perpetuini, G.; Tittarelli, F.; Schirone, M.; Di Gianvito, P.; Corsetti, A.; Arfelli, G.; Tofalo, R. Adhesion properties and surface hydrophobicity of Pichia manshurica strains isolated from organic wines. LWT Food Sci.Technol. 2017, 87, 385–392. [Google Scholar] [CrossRef]
- Cho, W.; Yi, J.Y.; Chung, M. Pasteurization of fermented red pepper paste by ohmic heating. Innov. Food Sci. Emerg. 2016, 34, 180–186. [Google Scholar] [CrossRef]
- Dadan, M.; Nowacka, M.; Wiktor, A.; Sobczynska, A.; Witrowa-Rajchert, D. Ultrasound to improve drying processes and prevent thermolabile nutrients degradation. In Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound; Barba, F.J., Cravotto, G., Chemat, F., Rodriguez, J.M.L., Munekata, P.E.S., Eds.; Elsevier Academic Press: London, UK, 2021; pp. 55–110. [Google Scholar]
- Kentish, S.; Ashokkumar, M. The physical and chemical effect of ultrasound. In Ultrasound Technologies for Food and Bioprocessin; Feng, H., Barosa-Canovas, G.V., Weiss, J., Eds.; Springer: New York, NY, USA, 2011; pp. 1–12. [Google Scholar]
- Nowacka, M.; Dadan, M. Ultrasound-Assisted Drying of Food. In Emerging Food Processing Technologies; Gavahian, M., Ed.; Humana: New York, NY, USA, 2022; pp. 93–112. [Google Scholar]
- Cho, E.R.; Kang, D.H. Development and investigation of ultrasound-assisted pulsed ohmic heating for inactivation of foodborne pathogens in milk with different fat content. Food Res. Int. 2024, 179, 113978. [Google Scholar] [CrossRef]
- Qi, Y.J.; Hu, X.; Chen, Y.; Lv, R.L.; Ding, T. Inactivation effect and mechanism of ultrasound combined with ultraviolet treatment on Bacillus cereus spores. J. Agric. Food Res. 2024, 18, 101382. [Google Scholar] [CrossRef]
- Pala, Ç.U.; Zorba, N.N.D.; Özcan, G. Microbial inactivation and physicochemical properties of ultrasound processed pomegranate juice. J. Food Protect. 2015, 78, 531–539. [Google Scholar] [CrossRef]
- Piñon, M.I.; Alarcon-Rojo, A.D.; Renteria, A.L.; Carrillo-Lopez, L.M. Microbiological properties of poultry breast meat treated with high-intensity ultrasound. Ultrasonics 2020, 102, 105680. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, C.; Xu, X.L.; Zeng, X.M.; Xing, T. Ultrasound combined with carrageenan and curdlan addition improved the gelation properties of low-salt chicken meat paste. LWT Food Sci. Technol. 2022, 172, 114230. [Google Scholar] [CrossRef]
- Gul, O.; Sahin, M.S.; Saricaoglu, F.T.; Atalar, I. Effect of sesame protein isolate modified by high-pressure homogenization, high-intensity ultrasound, and high-pressure processing on the colloidal stability of sesame paste: Determination of physicochemical, rheological, microstructural properties and storage stability. Innov. Food Sci. Emerg. 2024, 96, 103786. [Google Scholar]
- Kim, D.Y.; Kim, J.H.; Shin, H.S. Improving the quality of fermented soybean products using low-frequency airborne ultrasonicated Koji. LWT Food Sci. Technol. 2022, 168, 113936. [Google Scholar] [CrossRef]
- Fan, L.H.; Hou, F.R.; Muhammad, A.I.; Ruiling, L.V.; Watharkar, R.B.; Guo, M.M.; Ding, T.; Liu, D.H. Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores. Food Res. Int. 2019, 116, 1094–1102. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing. Ultrason. Sonochem. 2012, 19, 975–983. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing—Food quality assurance and food safety. Trends Food Sci. Technol. 2012, 26, 88–98. [Google Scholar] [CrossRef]
- Guo, Y.T.; Wu, B.G.; Guo, X.Y.; Liu, D.D.; Qiu, C.C.; Ma, H.L. Thermosonication inactivation of horseradish peroxidase with different frequency modes: Effect on activity, structure, morphology and mechanisms. Food Chem. 2022, 384, 132537. [Google Scholar] [CrossRef]
- Cameron, M.; Mcmaster, L.D.; Britz, T.J. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci. Technol. 2009, 89, 83–98. [Google Scholar] [CrossRef]
- Beatty, N.F.; Walsh, M.K. Influence of thermosonication on Geobacillus stearothermophilus inactivation in skim milk. Int. Dairy J. 2016, 61, 10–17. [Google Scholar] [CrossRef]
- Fan, L.H.; Ismail, B.B.; Gao, L.X.; Liu, D.H. Comparison of high-and low-frequency thermosonication and carvacrol treatments of carrot juice: Microbial inactivation and quality retention. Appl. Food Res. 2022, 2, 100462. [Google Scholar] [CrossRef]
- Garud, S.R.; Priyanka, B.S.; Negi, P.S.; Rastogi, N.K. Effect of thermosonication on bacterial count in artificially inoculated model system and natural microflora of sugarcane juice. J. Food Process. Preserv. 2017, 1, e12813. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Cadwallader, K.R.; Feng, H.; Martin, S.E. Sonication in combination with heat and low pressure as an alternative pasteurization treatment—Effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrason. Sonochem. 2013, 20, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.R.; Martin, S.E.; Feng, H. Power ultrasound treatment of Listeria monocytogenes in apple cider. J. Food Protect. 2005, 68, 2333–2340. [Google Scholar] [CrossRef]
- Yang, S.S.; Piao, Y.Q.; Li, X.F.; Mu, D.L.; Ji, S.Q.; Wu, R.N.; Wu, J.R. A new decontamination method for Bacillus subtilis in pasteurized milk: Thermosonication treatment. Food Res. Int. 2023, 163, 112291. [Google Scholar] [CrossRef]
- Khanal, S.N.; Anand, S.; Muthukumarappan, K. Evaluation of high-intensity ultrasonication for the inactivation of endospores of 3 Bacillus species in nonfat milk. J. Dairy Sci. 2014, 97, 5952–5963. [Google Scholar] [CrossRef]
- Farhadi Chitgar, M.; Aalami, M.; Maghsoudlou, Y.; Milani, E. Comparative study on the effect of heat treatment and sonication on the quality of barberry (Berberis vulgaris) juice. J. Food Process. Preserv. 2017, 41, e12956. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Wang, Y.H.; Li, X.H.; Li, B.; Liu, S.W.; Chang, N.; Jie, D.; Ning, C.; Gao, H.Y.; Meng, X.J. Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrason. Sonochem. 2017, 37, 251–259. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.M.; Roig, A.X.; García-Galindo, H.S.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Wahia, H.; Zhou, C.S.; Fakayode, O.A.; Amanor-Atiemoh, R.; Zhang, L.; Mustapha, A.T.; Zhang, J.; Xu, B.G.; Zhang, R.; Ma, H.L. Quality attributes optimization of orange juice subjected to multi-frequency thermosonication: Alicyclobacillus acidoterrestris spore inactivation and applied spectroscopy ROS characterization. Food Chem. 2021, 361, 130108. [Google Scholar] [CrossRef]
- Evelyn, E.; Silva, F.V.M. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Int. J. Food Microbiol. 2015, 214, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Evelyn, E.; Silva, F.V.M. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry. Int. J. Food Microbiol. 2015, 206, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.Y.; Zhao, F.; Zhang, Z.X.; Huo, S.H.; Ma, H.L. Effects of ultrasound combined with mild heat and potassium sorbate on Pichia membranaefaciens and the quality of soy sauce. Flavour Fragr. J. 2023, 38, 368–377. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Tremarin, A.; Canbaz, E.A.; Brandão, T.R.; Silva, C.L. Modelling Alicyclobacillus acidoterrestris inactivation in apple juice using thermosonication treatments. Food Sci. Technol. 2019, 102, 159–163. [Google Scholar] [CrossRef]
- Li, J.; Cheng, H.; Liao, X.Y.; Liu, D.H.; Xiang, Q.S.; Wang, J.; Chen, S.G.; Ye, X.Q.; Ding, T. Inactivation of Bacillus subtilis and quality assurance in Chinese bayberry (Myrica rubra) juice with ultrasound and mild heat. LWT—Food Sci. Technol. 2019, 108, 113–119. [Google Scholar] [CrossRef]
- Dinçer, C.; Topuz, A. Inactivation of Escherichia coli and quality changes in black mulberry juice under pulsed sonication and continuous thermosonication treatments. J. Food Process. Preserv. 2015, 39, 1744–1753. [Google Scholar] [CrossRef]
- Evelyn, E.; Kim, H.J.; Silva, F.V.M. Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control. 2016, 59, 530–537. [Google Scholar] [CrossRef]
- Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Energy efficient inactivation of Saccharomyces cerevisiae via controlled hydrodynamic cavitation. Energy Sci. Eng. 2015, 3, 221–238. [Google Scholar] [CrossRef]
- Xu, B.G.; Feng, M.; Chitrakar, B.; Cheng, J.N.; Wei, B.X.; Wang, B.; Zhou, C.S.; Ma, H.L. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innov. Food Sci. Emerg. 2023, 84, 103295. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioprod. Process. 2009, 87, 102–107. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crop. Prod. 2013, 50, 1–7. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Han, Z.; Sun, D.W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.C.; Khan, M.A.; Zeng, X.X. Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem. 2014, 21, 984–990. [Google Scholar] [CrossRef]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.C.; Zeng, X.X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT—Food Sci. Technol. 2015, 64, 452–458. [Google Scholar] [CrossRef]
- Deng, Y.; Bi, H.; Yin, H.; Yu, J.H.; Dong, J.J.; Yang, M.; Ma, Y.L. Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrason. Sonochem. 2018, 40, 166–173. [Google Scholar] [CrossRef]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Valinger, D.; Denoya, G.I.; Barba, F.J.; Ganić, K.K. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. Ultrason. Sonochem. 2019, 59, 104725. [Google Scholar] [CrossRef]
- Wang, Z.B.; Li, T.T.; Liu, F.; Zhang, C.S.; Ma, H.L.; Wang, L.; Zhao, S. Effects of ultrasonic treatment on the maturation of Zhenjiang vinegar. Ultrason. Sonochem. 2017, 39, 272–280. [Google Scholar] [CrossRef]
- Zhao, J.X.; Dai, X.C.; Liu, X.M.; Zhang, H.; Tang, J.; Chen, W. Comparison of aroma compounds in naturally fermented and inoculated Chinese soybean pastes by GC-MS and GC-Olfactometry analysis. Food Control. 2011, 22, 1008–1013. [Google Scholar] [CrossRef]
- Lee, S.J.; Ahn, B. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction with sensory characterization. Food Chem. 2009, 114, 600–609. [Google Scholar] [CrossRef]
Model | Treatment | Parameters | Adj-R2 | |
---|---|---|---|---|
b | n | |||
Weibull | TS | |||
60 °C | 3.06 ± 0.20 | 0.60 ± 0.07 | 0.982 | |
55 °C | 1.98 ± 0.09 | 0.46 ± 0.03 | 0.998 | |
50 °C | 0.80 ± 0.08 | 0.67 ± 0.04 | 0.997 | |
40 °C | 0.31 ± 0.03 | 0.71 ± 0.03 | 0.997 | |
25 °C | 0.001 ± 7.24 × 10−4 | 2.14 ± 0.24 | 0.982 | |
T | ||||
65 °C | 0.36 ± 0.07 | 0.90 ± 0.07 | 0.989 | |
60 °C | 0.30 ± 0.01 | 0.80 ± 0.02 | 0.999 | |
55 °C | 0.20 ± 0.04 | 0.78 ± 0.07 | 0.987 | |
50 °C | 0.08 ± 0.05 | 0.85 ±0.22 | 0.907 | |
First-order kinetic | T | |||
65 °C | 0.27 ± 0.01 | 1 | 0.987 | |
60 °C | 0.18 ± 0.01 | 1 | 0.982 | |
55 °C | 0.11 ± 0.00 | 1 | 0.968 | |
50 °C | 0.05 ± 0.00 | 1 | 0.917 |
Treatment | Color | pH | TA (g/100 g) | AN (g/100 g) | RS (g/100 g) | ||
---|---|---|---|---|---|---|---|
L* | a* | b* | |||||
Control | 35.30 ± 1.19 a | 8.60 ± 0.89 a | 12.57 ± 0.24 a | 5.30 ± 0.01 a | 1.00 ± 0.06 bc | 0.76 ± 0.01 bc | 5.00 ± 0.03 ab |
T65°C | 34.39 ± 0.9 b | 8.36 ± 0.76 a | 10.94 ± 1.29 b | 5.30 ± 0.02 a | 1.06 ± 0.02 ab | 0.73 ± 0.02 c | 4.87 ± 0.04 c |
TS50°C | 35.19 ± 0.36 ab | 8.51 ± 0.53 a | 13.02 ± 0.35 a | 5.29 ± 0.01 a | 0.98 ± 0.05 c | 0.81 ± 0.03 a | 5.03 ± 0.27 a |
TS55°C | 35.21 ± 0.40 a | 8.41 ± 0.15 a | 12.78 ± 0.91 a | 5.31 ± 0.00 a | 1.01 ± 0.02 abc | 0.80 ± 0.01 ab | 5.07 ± 0.13 a |
TS60°C | 34.37 ± 0.17 b | 8.27 ± 0.68 a | 12.64 ± 0.66 a | 5.30 ± 0.01 a | 1.08 ± 0.13 a | 0.77 ± 0.03 abc | 4.90 ± 0.07 bc |
Number | Retention Time | Compounds | Area% | ||||
---|---|---|---|---|---|---|---|
Control | T65°C | TS50°C | TS55°C | TS60°C | |||
1 | 9.83 | 2-Methylfuran | 0.20 | 0.31 | |||
2 | 10.21 | Ethyl Acetate | 1.87 | 2.15 | 2.23 | 2.66 | 2.22 |
3 | 10.94 | 2-Methylbutanal | 5.5 | 5.95 | 6.15 | 6.83 | 6.14 |
4 | 11.06 | 3-Methylbutanal | 4.8 | 5.13 | 5.47 | 5.98 | 5.75 |
5 | 11.58 | Ethanol | 10.68 | 3.84 | 4.95 | 5.29 | 4.05 |
6 | 15.48 | 2-Butenal | 0.39 | 0.36 | |||
7 | 23.97 | 2-Methyl-1-butanol | 0.14 | ||||
8 | 24.09 | 3-Methyl-1-butanol | 0.55 | 0.49 | |||
9 | 25.73 | 3-Octanone | 5.46 | 6.35 | 5.91 | 5.76 | 7.92 |
10 | 28.50 | 3-Hydroxy-2-butanone | 0.48 | 0.57 | 0.46 | ||
11 | 36.09 | 1-Octen-3-ol | 0.43 | ||||
12 | 36.24 | Acetic acid | 1.95 | 2.21 | 2.06 | 2.27 | |
13 | 39.84 | Benzaldehyde | 2.37 | 2.87 | 3.67 | 3.82 | 4.30 |
14 | 40.35 | 2,3-Butanediol | 1.73 | 1.80 | 1.58 | 1.67 | 1.65 |
15 | 41.58 | 1,3-Butanediol | 0.63 | 0.48 | |||
16 | 43.72 | Benzene acetaldehyde | 0.84 | 0.80 | 0.34 | ||
17 | 44.00 | 2-Furanmethanol | 12.65 | 9.45 | 9.53 | 10.30 | 10.35 |
18 | 44.42 | Ethyl benzoate | 3.94 | 3.68 | 4.78 | 4.7 | 4.84 |
19 | 45.94 | Oxime-, methoxy-phenyl | 2.5 | 2.84 | 2.62 | 2.86 | 2.6 |
20 | 46.57 | Ethyl linoleate | 1.59 | 0.93 | 0.23 | 0.96 | 2.01 |
21 | 47.06 | Ethyl phenyl acetate | 6.48 | 7.73 | 7.80 | 8.37 | 7.95 |
22 | 49.38 | Phenyl ethyl alcohol | 1.56 | 1.38 | 1.41 | 1.71 | 1.8 |
23 | 49.83 | 2-Ethylhexanoic acid | 7.36 | 9.62 | 7.12 | 7.04 | 8.32 |
24 | 54.08 | 2-Methoxy-4-vinylphenol | 2.81 | 2.27 | 2.53 | 2.31 | 1.43 |
25 | 54.78 | Ethyl palmitate | 7.38 | 6.74 | 7.45 | 4.87 | 5.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Chen, S.; Huo, S.; Wang, F.; Zou, B.; Zhou, C.; Zhang, L.; Ma, H. Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication. Foods 2024, 13, 3600. https://doi.org/10.3390/foods13223600
Qian J, Chen S, Huo S, Wang F, Zou B, Zhou C, Zhang L, Ma H. Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication. Foods. 2024; 13(22):3600. https://doi.org/10.3390/foods13223600
Chicago/Turabian StyleQian, Jingya, Shubei Chen, Shuhao Huo, Feng Wang, Bin Zou, Cunshan Zhou, Lei Zhang, and Haile Ma. 2024. "Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication" Foods 13, no. 22: 3600. https://doi.org/10.3390/foods13223600
APA StyleQian, J., Chen, S., Huo, S., Wang, F., Zou, B., Zhou, C., Zhang, L., & Ma, H. (2024). Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication. Foods, 13(22), 3600. https://doi.org/10.3390/foods13223600