Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Steam Explosion Modification Process
2.3. SDF Extraction
2.4. Structure Analysis
2.4.1. Monosaccharide Composition Determination
2.4.2. Molecular Weight Analysis
2.4.3. Infrared (IR) Spectroscopic Analysis
2.4.4. Scanning Electron Microscopy (SEM)
2.5. Determination of Hyperlipidemic Effects of SDF and SE-SDF on HepG2 Cells
2.5.1. Cell Culture and Cell Viability Analysis
2.5.2. Determination of Intracellular Triglyceride (TG) and Cholesterol (TC) Content
2.6. Experimental Design for the Mouse Obesity Model
2.7. Biochemical Analysis
2.8. Histopathology Analysis of Liver
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of SDF Extracted from F. velutipes
3.2. Fourier Transform IR Analysis
3.3. Scanning Electron Microscopy
3.4. Effect of SDF and SE-SDF on HepG2 Cell Viability and TG Content
3.5. Effect of SE-SDF on Body Weight, Organ Weight, and Blood Lipid Levels of Mice
3.6. Effect of SE-SDF on Liver Biochemical Parameters and Oxidative Stress in HFD-Fed Mice
3.7. Effect of SE-SDF on Liver Tissue Morphology in Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Dariush, M.; Swinburn, B.; Majid, E. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Atlas Obesity; World Obesity Federation: London, UK, 2023. [Google Scholar]
- Song, D.; Cheng, L.; Zhang, X.; Wu, Z.; Zheng, X. The modulatory effect and the mechanism of flavonoids on obesity. J. Food Biochem. 2019, 43, e12954. [Google Scholar] [CrossRef] [PubMed]
- Christou, G.A.; Katsiki, N.; Blundell, J.; Fruhbeck, G.; Kiortsis, D.N. Semaglutide as a promising antiobesity drug. Obes. Rev. 2019, 20, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Stier, C.; Corteville, C. Endoskopisches Komplikationsmanagement nach Schlauchmagenbildung [Endoscopic management of complications after laparoscopic sleeve gastrectomy]. Der Chir. 2018, 89, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Zhang, L.; Wang, X.; Lin, L. Effect of steam explosion modification and in vitro simulated digestion on antioxidant capacity of dietary fiber of pineapple peel. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 042055. [Google Scholar] [CrossRef]
- Liu, J.; Hua, J.; Chen, S.; Zhao, L.; Wang, Q.; Zhou, A. The potential mechanisms of bergamot-derived dietary fiber alleviating high-fat diet-induced hyperlipidemia and obesity in rats. Food Funct. 2022, 13, 8228–8242. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Xiao, N.N.; Deng, Y.L.; He, P.F.; Sun, P.L. Purification and structural investigation of a water-soluble polysaccharide from Flammulina velutipes. Carbohydr. Polym. 2012, 87, 2279–2283. [Google Scholar] [CrossRef]
- Feng, T.; Jia, W.; Wang, W.H.; Lin, C.C.; Fan, H.; Zhang, J.S.; Bao, H.Y. Structural Characterization and Immunological Activities of a Novel Water-Soluble Polysaccharide from the Fruiting Bodies of Culinary-Medicinal Winter Mushroom, Flammulina velutipes (Agaricomycetes). Int. J. Med. Mushrooms 2016, 18, 807–819. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, Q.; Ma, G.; Su, A.; Xie, M.; Li, X.; Chen, G.; Zhao, L. Effects of Flammulina velutipes polysaccharide on immune response and intestinal microbiota in mice. J. Funct. Foods 2019, 56, 255–264. [Google Scholar] [CrossRef]
- Xu, H.; Hu, Y.; Hu, Q.; Liu, J.; Su, A.; Xie, M.; Ma, G.; Pei, F.; Mariga, A.M.; Yang, W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int. J. Biol. Macromol. 2021, 189, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, G.; He, W.; Shi, L.; Pan, H.; Fan, L. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes. Carbohydr. Polym. 2013, 98, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Telrandhe, U.B.; Kurmi, R.; Uplanchiwar, V.; Mansoori, M.H.; Jain, S.K. Nutraceuticals—A Phenomenal Resource in Modern Medicine. Int. J. Pharm. Life Sci. 2012, 2, 179–195. [Google Scholar]
- Sui, W.; Xie, X.; Liu, R.; Wu, T.; Zhang, M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll. 2018, 84, 571–580. [Google Scholar] [CrossRef]
- Liu, W.; Niu, J.; Han, F.; Zhong, K.; Li, R.; Sui, W.; Ma, C.; Wu, M. Steam Explosion-Assisted Extraction of Ergosterol and Polysaccharides from Flammulina velutipes (Golden Needle Mushroom) Root Waste. Foods 2024, 13, 1860. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Y.; Jia, Y.; Geng, X.; Pan, L.; Jiang, W.; Xie, B.; Zhu, Z. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int. J. Biol. Macromol. 2021, 185, 194–205. [Google Scholar] [CrossRef]
- Sui, W.; Li, S.; Zhou, X.; Dou, Z.; Liu, R.; Wu, T.; Jia, H.; Wang, G.; Zhang, M. Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions. Molecules 2021, 26, 3841. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, J.; Li, Y. Enzymatic extraction and characterization of polysaccharides from Flammulina velutipes and their effects on lipid metabolism. Int. J. Biol. Macromol. 2018, 118, 1113–1120. [Google Scholar]
- Berktas, S.; Cam, M. Effects of acid, alkaline and enzymatic extraction methods on functional, structural and antioxidant properties of dietary fiber fractions from quince (Cydonia oblonga Miller). Food Chem. 2024, 464, 141596. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Carbonero, E.R.; Mellinger, C.G.; Sassaki, G.L.; Gorin, P.A.; Iacomini, M. Structural characterization of a polysaccharide and a β-glucan isolated from the ed- ible mushroom Flammulina velutipes. Phytochemistry 2006, 67, 2189–2196. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G.; Yang, S.; Xiao, L. Comparison of acid and alkaline extraction methods for polysaccharides from Ganoderma lucidum: Yield, structural characteristics, and biological activities. Food Chem. 2016, 211, 463–470. [Google Scholar]
- AOAC. Total, Soluble, and Insoluble Dietary Fiber in Foods; AOAC Official Method 991.43; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Winters, A.L.; Minchin, F.R. Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes—ScienceDirect. Anal. Biochem. 2005, 346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Chandler, S.F.; Dodds, J.H. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of solanum laciniatum. Plant Cell Rep. 1983, 2, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Ibrahim, S.A.; Gao, S.-S.; Yang, H.; Huang, W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr. Polym. 2016, 145, 71–77. [Google Scholar] [CrossRef]
- Zhao, X.; Jiao, G.; Yang, Y.; Li, M.; Li, Q.; Wang, X.; Cai, C.; Li, G.; Hao, J.; Yu, G. Structure and immunomodulatory activity of a sulfated agarose with pyruvate and xylose substitutes from Polysiphonia senticulosa Harvey. Carbohydr. Polym. 2017, 176, 29–37. [Google Scholar] [CrossRef]
- Marwa, C.R.; Souhir, A.; Sabu, T.; Hamadi, A.; Dorra, G. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies. Int. J. Biol. Macromol. 2018, 116, 901–910. [Google Scholar]
- Kang, M.C.; Kim, S.Y.; Kim, E.A.; Lee, J.H.; Kim, Y.S.; Yu, S.K.; Chae, J.B.; Choe, I.H.; Cho, J.H.; Jeon, Y.J. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model. Carbohydr. Polym. 2015, 127, 38–46. [Google Scholar] [CrossRef]
- Yue, C.; Li, M.; Li, J.; Han, X.; Zhu, H.; Yu, G.; Cheng, J. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE−/− mice. Food Funct. 2020, 11, 5142–5155. [Google Scholar] [CrossRef]
- Zheng, M.; Ma, M.; Wang, L.; Yang, X.; Zhang, Y.; Man, C.; Zhao, Q.; Jiang, Y. Lactobacillus plantarum J26 postbiotics alleviate high-fat and high-cholesterol diet-induced hypercholesterolemia via regulating the LXRα-CYP7A1-bile acid-excretion pathway. Food Front. 2023, 4, 2045–2057. [Google Scholar] [CrossRef]
- Ma, C.; Ni, L.; Guo, Z.; Zeng, H.; Wu, M.; Zhang, M.; Zheng, B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022, 11, 3370. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.X.; Huang, L.L.; Zhang, Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J. Agric. Food Chem. 2012, 60, 7177–7184. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, E.V.; Vicente, S.J.V.; Cruz, R.J.; Torres, E.A.F.D. Hypolipidemic and antioxidant effects of grape processing by-products in high-fat/cholesterol diet-induced hyperlipidemic hamsters. Food Sci. Technol. Int. 2020, 40, 558–567. [Google Scholar] [CrossRef]
- Ramos, V.P.; Rocha, J.S.; Macedo, M.L.R.; Franco, J.J.; Mendes, A.M.C.; Freitas, K.M. Hypolipidemic and anti-inflammatory properties of phenolic-rich Butia odorata fruit extract: Potential involvement of paraoxonase activity. Biomarkers 2020, 25, 417–424. [Google Scholar] [CrossRef]
- Ye, H.; Xu, Y.; Sun, Y.; Liu, B.; Chen, B.; Liu, G.; Cao, Y.; Miao, J. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res. Int. 2023, 165, 112450. [Google Scholar] [CrossRef]
- Song, J.; Qiu, H.; Du, P.; Mou, F.; Nie, Z.; Zheng, Y.; Wang, M. Polyphenols extracted from shanxi-aged vinegar exert hypolipidemic effects on oa-induced hepg2 cells via the pparα-lxrα-abca1 pathway. J. Food Biochem. 2022, 46, e14029. [Google Scholar] [CrossRef]
- Ma, J.W.; Qiao, Z.Y.; Xiang, X. Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities. Carbohydr. Polym. 2011, 84, 1061–1068. [Google Scholar]
- Wu, D.; Zhang, Y.; Wang, D.; Liu, T.; Zhang, S.; Yang, C. Research of inonotus obliquus oligosaccharide in prevention of hyperlipidemia. J. Food Qual. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Yu, C.H.; Dai, X.Y.; Chen, Q.; Zang, J.N.; Deng, L.L.; Liu, Y.H.; Ying, H.-Z. Hypolipidemic and antioxidant activities of polysaccharides from rosae laevigatae fructus in rats. Carbohydr. Polym. 2013, 94, 56–62. [Google Scholar] [CrossRef]
- Zhang, T.T.; Xue, J.F.; Wang, C.H.; Liao, Y.M.; Mao, W.Z. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2018, 197, 147–156. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Sain, M.; Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crops Prod. 2006, 23, 1–8. [Google Scholar] [CrossRef]
- Sui, W.; Zhou, M.; Xu, Y.; Wang, G.; Zhao, H.; Lv, X. Hydrothermal deglycosylation and deconstruction effect of steam explosion: Application to high-valued glycyrrhizic acid derivatives from liquorice. Food Chem. 2020, 307, 125558. [Google Scholar] [CrossRef] [PubMed]
- Auxenfans, T.; Crônier, D.; Chabbert, B.; Paës, G. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol. Biofuels 2017, 10, 36–51. [Google Scholar] [CrossRef]
- Sun, X.F.; Xu, F.; Sun, R.C.; Geng, Z.C.; Fowler, P.; Baird, M.S. Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydr. Polym. 2005, 60, 15–26. [Google Scholar] [CrossRef]
- He, L.; Wang, C.; Shi, H.; Zhou, W.; Zhang, Q.; Chen, X. Combination of steam explosion pretreatment and anaerobic alkalization treatment to improve enzymatic hydrolysis of Hippophae rhamnoides. Bioresour. Technol. 2019, 289, 121693. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, K.; Tian, X.; Sui, W.; Wu, T.; Wang, S.; Jin, Y.; Zhu, Q.; Meng, J.; Zhang, M. Combined Modification of Soluble Dietary Fibers from Apple Pomace by Steam Explosion and Enzymatic Hydrolysis to Improve its Structural, Physicochemical and Functional Properties. Waste Biomass Valorization 2022, 13, 4869–4879. [Google Scholar] [CrossRef]
- Zhai, X.; Ao, H.; Liu, W.; Zheng, J.; Li, X.; Ren, D. Physicochemical and structural properties of dietary fiber from Rosa roxburghii pomace by steam explosion. J. Food Sci. Technol. 2021, 59, 2381–2391. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.; Jin, W.; Tian, Y. Effect of steam explosion on dietary fiber, polysaccharide, protein, and antioxidant properties of soybean residue. Food Chem. 2014, 157, 34–39. [Google Scholar]
- Li, B.; Yang, W.; Nie, Y.; Kang, F.; Goff, H.D.; Cui, S.W. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocoll. 2019, 94, 48–56. [Google Scholar] [CrossRef]
- Pintor, A.V.B.; Queiroz, L.D.; Barcelos, R.; Primo, L.S.G.; Maia, L.C.; Alves, G.G. Mtt versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. Int. Endod. J. 2020, 53, 1348–1373. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fattyacid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-J.; Wi, H.-R.; Kim, H.-R.; Park, K.; Hwang, K.-A. Pinus densiflora Sieb. et Zucc. alleviates lipogenesis and oxidative stress during oleic acid-induced steatosis in HepG2 cells. Nutrients 2014, 6, 2956–2972. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Mu, D.; Yang, H.; Feng, Y.; Ji, R.; Wu, R.; Wu, J. Preparation, structural characterization and bioactivities of polysaccharides from mulberry (Mori Fructus). Food Biosci. 2022, 46, 101604. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Zhang, W. Potentilla anserina L. attenuates oleic acid-induced steatosis in HepG2 cells and hyperlipidemia in high fat diet-induced obese mice. J. Funct. Foods 2023, 109, 105772. [Google Scholar] [CrossRef]
- Loo, Y.T.; Howell, K.; Suleria, H.; Zhang, P.; Gu, C.; Ng, K. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Food Chem. 2022, 385, 132665. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Yan, X.H.; Zhang, J.L.; Wang, L.-Y.; Xue, H.; Jiang, G.-C.; Ma, X.-T.; Liu, X.J. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from ganoderma lucidum. Int. J. Biol. Macromol. 2019, 135, 706–716. [Google Scholar] [CrossRef]
- Zhao, R.; Ji, Y.; Chen, X.; Hu, Q.; Zhao, L. Polysaccharide from Flammulina velutipes attenuates markers of metabolic syndrome by modulating the gut microbiota and lipid metabolism in high fat diet-fed mice. Food Funct. 2021, 12, 6964–6980. [Google Scholar] [CrossRef]
- Ji, Y.; Mao, K.; Gao, J.; Chitrakar, B.; Sadiq, F.A.; Wang, Z.; Wu, J.; Xu, C.; Sang, Y. Pear pomace soluble dietary fiber ameliorates the negative effects of high-fat diet in mice by regulating the gut microbiota and associated metabolites. Front. Nutr. 2022, 9, 1025511. [Google Scholar] [CrossRef]
- Nguepi Tsopmejio, I.S.; Ding, M.; Wei, J.; Zhao, C.; Jiang, Y.; Li, Y.L.; Song, H. Auricularia polytricha and Flammulina velutipes ameliorate inflammation and modulate the gut microbiota via regulation of NF-κB and Keap1/Nrf2 signaling pathways on DSS-induced inflammatory bowel disease. Food Biosci. 2022, 47, 101426. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Q.; Lin, Z.; Liu, S.; Su, Q.; Pan, Y.; Zhangzhou, C. Therapeutic effects of chitin from Pleurotus eryngii on high-fat diet induced obesity in rats. Acta Sci. Polonorum. Technol. Aliment. 2020, 19, 279–289. [Google Scholar]
- Merli, M.; Lattanzi, B.; Aprile, F. Sarcopenic obesity in fatty liver. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Caz, V.; Gil-Ramírez, A.; Largo, C.; Tabernero, M.; Santamaría, M.; Martín-Hernández, R.; Marín, F.R.; Reglero, G.; Soler-Rivas, C. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms. J. Agric. Food Chem. 2015, 63, 7371–7380. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “big bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef]
- Marie-Eve, P.; André, T.; Jean-Pierre, D. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar]
- Zheng, M.; Ouyang, H.; Li, Z.; Hong, T.; Zhu, Y.; Yang, Y.; Guo, X.; Ni, H.; Jiang, Z. Ultra-high pressure assisted extraction of polysaccharide from Bangia fusco-purpurea: Structure and in vitro hypolipidemic activity. Int. J. Biol. Macromol. 2024, 280, 135687. [Google Scholar] [CrossRef]
- Wang, G.; Zhong, D.; Liu, H.; Yang, T.; Liang, Q.; Wang, J.; Zhang, R.; Zhang, Y. Water soluble dietary fiber from walnut meal as a prebiotic in preventing metabolic syndrome. J. Funct. Foods 2021, 78, 104358. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, Q.; Xu, X.; Feng, L.; Chen, Q.; Chen, Y.; Li, Z.; Liu, C.; Chen, K. Burdock fructooligosaccharide ameliorates the hypercholesterolemia and vascular inflammation in mice by regulating cholesterol homeostasis and anti-inflammatory properties. J. Funct. Foods 2023, 107, 105678. [Google Scholar] [CrossRef]
- Tang, T.; Song, J.J.; Li, J.; Wang, H.W.; Zhang, Y.; Suo, H.Y. A synbiotic consisting of lactobacillus plantarum s58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating ampk signaling and modulating the gut microbiota. Carbohydr. Polym. 2020, 243, 116398. [Google Scholar] [CrossRef]
- Li, X.; Zeng, F.; Huang, Y.; Liu, B. The positive effects of Grifola frondosa heteropolysaccharide on NAFLD and regulation of the gut microbiota. Int. J. Mol. Sci. 2019, 20, 5302. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Z.; Liu, Z.H. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol. J. 2015, 10, 866–885. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gloria, K.D.; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; Shiva; Kostas, E.T.; Aparicio, E.; Sanchez, A.; López-Sandin, I.; Ruiz, H.A. Scale-up of hydrothermal processing: Liquid hot water and pilot-scale tubular steam explosion batch reactor for bioethanol production using macroalgae sargassum spp biomass. Bioresour. Technol. 2022, 369, 128448. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Sugar (%) | Phenol (%) | Protein (%) | Monosaccharide Composition (%) | Molecular Weight (kDa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rha | Fuc | Xyl | Man | Gal | Glu | Ara | |||||
SDF | 82.68 ± 0.27 | 0.69 ± 0.04 | 2.16 ± 0.09 | 3.66 ± 0.01 | 5.60 ± 0.03 | 9.25 ± 0.03 | 8.81 ± 0.01 | 13.25 ± 0.02 | 56.74 ± 0.08 | 2.70 ± 0.01 | 312.5 |
SE-SDF | 87.71 ± 0.42 | 0.84 ± 0.03 | 3.51 ± 0.05 | 2.06 ± 0.01 | 2.92 ± 0.01 | 14.66 ± 0.02 | 17.91 ± 0.03 | 7.82 ± 0.01 | 52.54 ± 0.05 | 2.10 ± 0.01 | 122.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Ni, L.; Sun, M.; Hu, F.; Guo, Z.; Zeng, H.; Sun, W.; Zhang, M.; Wu, M.; Zheng, B. Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion. Foods 2024, 13, 3621. https://doi.org/10.3390/foods13223621
Ma C, Ni L, Sun M, Hu F, Guo Z, Zeng H, Sun W, Zhang M, Wu M, Zheng B. Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion. Foods. 2024; 13(22):3621. https://doi.org/10.3390/foods13223621
Chicago/Turabian StyleMa, Chao, Liying Ni, Mengxue Sun, Fuxia Hu, Zebin Guo, Hongliang Zeng, Wenlong Sun, Ming Zhang, Maoyu Wu, and Baodong Zheng. 2024. "Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion" Foods 13, no. 22: 3621. https://doi.org/10.3390/foods13223621
APA StyleMa, C., Ni, L., Sun, M., Hu, F., Guo, Z., Zeng, H., Sun, W., Zhang, M., Wu, M., & Zheng, B. (2024). Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion. Foods, 13(22), 3621. https://doi.org/10.3390/foods13223621