Interactions Between Corn Starch and Ethyl Maltol Under Heat-Moisture Treatment and Its Application in Fried Chicken Nuggets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sample and Determination of Structure and Digestibility Properties
2.2.1. Preparation of Corn Starch–Ethyl Maltol Complex and Mixture Sample
2.2.2. Complexing Ratio
2.2.3. Amylose Content
2.2.4. Scanning Electron Microscope (SEM)
2.2.5. X-Ray Diffraction (XRD)
2.2.6. Fourier Infrared (FT-IR)
2.2.7. 13C Solid-State Nuclear Magnetic Resonance (13C-NMR)
2.2.8. Differential Scanning Calorimetry (DSC)
2.2.9. Digestive Properties
2.2.10. First-Order Kinetic Fitting
- Ct (%): the percentage of starch digested in time t (min);
- C∞ (%): the estimated percentage of starch digested at the end of the reaction;
- k (min−1): digestion rate coefficient, estimated by transforming the equation using the slope analysis (LOS).
2.3. Application of Complex to Refried Chicken Nuggets
2.3.1. Preparation of Coating Powder
2.3.2. Preparation of Refried Chicken Nuggets
2.3.3. Coating Pick-Up and Oil Absorption Rate
2.3.4. Texture Test
2.3.5. Colors
2.3.6. Sensory Evaluation
2.4. Data Analysis
3. Results and Discussions
3.1. Structure–Digestibility Analysis of Starch–Ethyl Maltol Samples
3.1.1. Analysis of Complexation Ratio
3.1.2. Analysis of Amylose Content
3.1.3. Morphology Observation
3.1.4. Long-Range Ordering Analysis
3.1.5. Short-Range Ordering Analysis
3.1.6. 13C Solid-State NMR Analysis
3.1.7. Thermal Properties Analysis
3.1.8. Digestive Characteristics Analysis
3.1.9. First-Order Kinetic Analysis
3.2. Application of Complex to Pre-Fried Chicken Pieces
3.2.1. Coating Pick-Up and Oil Absorption Rate of Chicken Nuggets Prepared with the Complex with Different Addition Ratios
3.2.2. Colors of Chicken Nuggets Prepared Using the Complex with Different Addition Ratios
3.2.3. Texture of the Chicken Nuggets Prepared Using the Complex with Different Addition Ratios
3.2.4. Sensory Evaluation of Chicken Nuggets Prepared Using the Complex with Different Addition Ratios
3.2.5. Comparison of the Texture of Chicken Nuggets Fried for Different Times
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhuiyan, M.H.R.; Ngadi, M. Application of batter coating for modulating oil, texture and structure of fried foods: A review. Food Chem. 2024, 453, 139655. [Google Scholar] [CrossRef] [PubMed]
- Liberty, J.T.; Dehghannya, J.; Nngadi, M.O. Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends Food Sci. Tech. 2019, 92, 172–183. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, M.; Liu, W.; Mujumdar, A.S.; Bai, B. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1979–2001. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Fan, D.; Li, J.; Fan, L. The description of oil absorption behavior of potato chips during the frying. LWT-Food Sci. Technol. 2018, 96, 119–126. [Google Scholar] [CrossRef]
- Chen, C.L.; Li, P.Y.; Hu, W.H.; Lan, M.H.; Chen, M.J.; Chen, H.H. Using HPMC to improve crust crispness in microwave-reheated battered mackerel nuggets: Water barrier effect of HPMC. Food Hydrocoll. 2008, 22, 1337–1344. [Google Scholar] [CrossRef]
- Wang, X.; Mcclements, D.J.; Xu, Z.; Meng, M.; Qiu, C.; Long, J.; Jin, Z.Y.; Chen, L. Preparation and characterization of calcium-binding starch and its application in microwaveable pre-fried foods. Food Hydrocoll. 2024, 156, 110328. [Google Scholar] [CrossRef]
- Primo-Martin, C. Cross-linking of wheat starch improves the crispness of deep-fried battered food. Food Hydrocoll. 2012, 28, 53–58. [Google Scholar] [CrossRef]
- Zou, P.; Zhang, S.Y.; Jia, L.Y.; He, Z.Y.; Shu, J.; Liu, C.H.; Zhu, Y.Y. A study on the release behavior of ethyl maltol during pyrolysis of its metal complexes. Thermochim. Acta 2022, 176, 179323. [Google Scholar] [CrossRef]
- Wang, R.; Li, M.; Brennan, M.; Dhital, S.; Kulasiri, D.; Brennan, C.; Guo, B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3185–3211. [Google Scholar] [CrossRef]
- Obiro, W.C.; Ray, S.S.; Emmambux, M.N. V-amylose Structural Characteristics, Methods of Preparation, Significance, and Potential Applications. Food Rev. Int. 2012, 28, 412–438. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Puentes, A.A.; Yobanny Reyes-Lopez, S.; Ruiz Baltazar, A.D.J.; Lopez-Teros, V.; Wall-Medrano, A. Molecular interaction of β-carotene with sweet potato starch: A bleaching-restitution assay. Food Hydrocoll. 2022, 127, 107522. [Google Scholar] [CrossRef]
- Chai, Y.; Wang, M.; Zhang, G. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J. Agric. Food Chem. 2013, 61, 8608–8615. [Google Scholar] [CrossRef]
- Gao, Q.; Zheng, J.; Meeren, P.V.D.; Zhang, B.; Fu, X.; Huang, Q. A comparative study on stabilizing and releasing thymol by pre-formed V-type starch and β-cyclodextrin. Food Hydrocoll. 2024, 156, 110233. [Google Scholar] [CrossRef]
- Chang, F.; He, X.; Huang, Q. Effect of lauric acid on the v-amylose complex distribution and properties of swelled normal cornstarch granules. J. Cereal Sci. 2013, 58, 89–95. [Google Scholar] [CrossRef]
- Liu, H.F.; Meng, P.; Zhang, Y.; Zheng, B.D.; Zeng, H.L. Complexation of V-type lotus seed starch and butyric acid: Structure and in vitro digestion. Food Hydrocollo. 2024, 149, 109527. [Google Scholar] [CrossRef]
- Xu, M.J.; Saleh, A.S.M.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W.H. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res. Int. 2018, 111, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Xu, M.J.; Tang, W.; Wen, L.R.; Yang, B. Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chem. 2019, 309, 125733. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.Z.; Shen, H.S.; Sun, X.X.; Liang, W.; Zhuang, X.Y.; Sun, Z.Z.; Lu, Y.F.; Li, W.H. Insight into the improving effect on multi-scale structure, physicochemical and rheology properties of granular cold water soluble rice starch by dielectric barrier discharge cold plasma processing. Food Hydrocoll. 2022, 130, 107732. [Google Scholar] [CrossRef]
- Zou, J.; Feng, Y.T.; Xu, M.J.; Yang, P.Y.; Zhao, X.D.; Yang, B. The structure-glycemic index relationship of Chinese yam (Dioscorea opposita thunb.) starch. Food Chem. 2023, 421, 136228. [Google Scholar] [CrossRef]
- Gong, B.; Xu, M.J.; Li, B.; Wu, H.; Liu, Y.; Zhang, G.; Ouyang, S.H.; Li, W.H. Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Res. Int. 2017, 102, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Chen, J.; Jin, W.Y.; Chen, J.X.; Ding, Y.D.; Shi, M.M.; Guo, X.D.; Yan, Y.Z. Effect of Inulin on Thermal Properties, Pasting, Rheology, and In Vitro Digestion of Potato Starch. Starch-Stärke 2023, 75, 2200217. [Google Scholar] [CrossRef]
- Chen, H.M.; Huang, Q.; Fu, X.; Luo, F.X. Ultrasonic effect on the octenyl succinate starch synthesis and substitution patterns in starch granules. Food Hydrocoll. 2014, 35, 636–643. [Google Scholar] [CrossRef]
- Gayary, M.A.; Marboh, V.; Mahnot, N.K.; Chutia, H.; Mahanta, C.L. Characteristics of rice starches modified by single and dual heat moisture and osmotic pressure treatments. Int. J. Biol. Macromol. 2024, 255, 127932. [Google Scholar] [CrossRef]
- Zhao, B.B.; Sun, S.W.; Lin, H.; Chen, L.D.; Qin, S.; Wu, W.G.; Zheng, B.D.; Guo, Z.B. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrason. Sonochem. 2019, 52, 50–61. [Google Scholar] [CrossRef]
- Kumar, K.; Loos, K. Deciphering structures of inclusion complexes of amylose with natural phenolic amphiphiles. ACS Omega 2019, 4, 17807–17813. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, X.; Chen, L. Evolution of microstructures and hydrogen bond interactions within choline amino acid ionic liquid and water mixtures. Phys. Chem Chem Phys. 2022, 24, 17792–17808. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, J.J.G.; Tournois, H.; De Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohyd. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT-Food Sci. Technol. 2020, 125, 109227. [Google Scholar] [CrossRef]
- Xu, H.; Hao, Z.; Zhang, J. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and a-amylase activity perspective. Carbohyd. Polym. 2023, 314, 120940. [Google Scholar] [CrossRef]
- Morgan, K.R.; Furneaux, R.H.; Stanley, R.A. Observation by solid-state 3C CP MAS NMR spectroscopy of the transformations of wheat starch associated with the making and staling of bread. Carbohyd. Polym. 1992, 235, 15–22. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1059–1083. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Thuy Ho, V.T.; Turner, M.S.; Dhital, S. Encapsulation of Lactobacillus plantarum in porous maize starch. LWT-Food Sci. Technol. 2016, 74, 542–549. [Google Scholar] [CrossRef]
- Shi, M.M.; Song, X.; Chen, J.; Ji, X.L.; Yan, Y.Z. Effect of Oat Beta-Glucan on Physicochemical Properties and Digestibility of Fava Bean Starch. Foods 2024, 13, 2046. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.X.; Chen, S.Y.; Hu, Y.Y.; Ye, X.Q.; Wang, S.Y.; Tian, J.H. The cooperation of maize starch and ferulic acid under different treatments and its effect on postprandial blood glucose level. Food Hydrocoll. 2024, 27, 110361. [Google Scholar] [CrossRef]
- Dhital, S.; Shrestha, A.K.; Gidley, M.J. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohyd. Polym. 2010, 82, 480–488. [Google Scholar] [CrossRef]
- Yao, T.; Sui, Z.; Janaswamy, S. Complexing curcumin and resveratrol in the starch crystalline network alters in vitro starch digestion: Towards developing healthy food materials. Food Chem. 2023, 425, 136471. [Google Scholar] [CrossRef]
- Mani, R.; Bhattacharya, M. Properties of injection moulded starch/synthetic polymer blends-iii. effect of amylopectin to amylose ratio in starch. Eur. Polym. J. 1998, 34, 1467–1475. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R.; Zhang, Z.; Mcclements, D.J.; Tian, Y. Impact of frying conditions on hierarchical structures and oil absorption of normal maize starch. Food Hydrocoll. 2019, 97, 105231. [Google Scholar] [CrossRef]
- Zhou, X.; Chang, Q.; Li, J.; Jiang, L.; Jin, Z. Preparation of V-type porous starch by amylase hydrolysis of V-type granular starch in aqueous ethanol solution. Int. J. Biol. Macromol. 2021, 183, 890–897. [Google Scholar] [CrossRef]
- Wang, Q.L.; Yang, Q.; Kong, X.P.; Chen, H.Q. The addition of resistant starch and protein to the batter reduces oil uptake and improves the quality of the fried batter-coated nuts. Food Chem. 2024, 438, 137992. [Google Scholar] [CrossRef] [PubMed]
- Ziaiifar, A.M.; Achir, N.; Courtois, F.; Trezzani, I.; Trystram, G. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. Int. J. Food Sci. Tech. 2008, 43, 1410–1423. [Google Scholar] [CrossRef]
- Salehi, F. Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. Int. J. Food Prop. 2019, 22, 511–519. [Google Scholar] [CrossRef]
- Jiranuntakul, W.; Puttanlek, C.; Rungsardthong, V.; Puncha-arnon, S.; Uttapap, D. Amylopectin structure of heat–moisture treated starches. Starch-Starke 2021, 64, 470–480. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Samborska, K.; Mitrus, M.; Oniszczuk, T.; Combrzyński, M.; Soja, J.; Lewko, P.; Drozd, K.K.; Oniszczuk, A. Structure and texture characteristics of novel snacks expanded by various methods. Materials 2023, 16, 1541. [Google Scholar] [CrossRef]
Scores | Color | Crispness | Surface Structure | Palatability | Flavor | Comprehensive Evaluation |
---|---|---|---|---|---|---|
8–10 | Golden yellow, uniform color | Crisp, moderately hard, no sticking | Fish scale, moderate thickness of coating powder | Appropriate oil content | Full meat aroma, no pungent taste | Favorite |
5–7 | Light yellow | Medium crispy, harder or softer | Poor fish scale, high or low thickness of coating powder | Medium suitable greasiness | Faint meat aroma | General |
0–4 | Dark color, uneven color | Too hard or too soft | Too thick or too thin coating powder | Excessive greasiness | Meatless flavor | Unacceptable |
Samples | Amylose Content | C-O-H def., CH2 | R1053/1020 | RC | Peaks | Chemical Shift (ppm) | Area Ratio (%) |
---|---|---|---|---|---|---|---|
Native starch | 986 | 1.96 ± 0.04 b | 20.06 ± 0.01 a | Peaka | 96.5 | 27.44 | |
31.77 ± 0.21 a | Peakb | 99.1 | 26.10 | ||||
Peakc | 101.5 | 29.39 | |||||
Peakd | 103.6 | 17.06 | |||||
Mixture | 980 | 1.29 ± 0.03 c | 18.45 ± 0.01 c | Peaka | 97.7 | 19.56 | |
Peakb | 99.9 | 13.32 | |||||
31.47 ± 0.07 a | Peakc | 101.3 | 36.98 | ||||
Peakd | 103 | 30.12 | |||||
Complex | 988 | 2.60 ± 0.02 a | 22.50 ± 0.01 b | Peaka | 96.5 | 13.54 | |
Peakb | 99.4 | 39.58 | |||||
26.29 ± 0.08 b | Peakc | 101.9 | 33.38 | ||||
Peakd | 104.0 | 13.33 |
Parameters | Native Starch | Mixture | Complex | Ethyl Maltol | |
---|---|---|---|---|---|
Thermal parameters | To (°C) | 65.05 ± 1.77 c | 66.35 ± 0.07 c | 74.30 ± 0.42 b | 84.86 ± 0.25 a |
Tp (°C) | 74.55 ± 0.50 c | 74.55 ± 0.35 c | 108.32 ± 0.12 a | 93.10 ± 0.42 b | |
Tc (°C) | 77.40 ± 0.71 c | 76.98 ± 0.30 c | 115.69 ± 0.20 a | 108.16 ± 0.25 b | |
ΔH/(J/g) | 9.28 ± 0.07 c | 8.97 ± 0.09 c | 13.31 ± 0.16 a | 11.61 ± 0.10 b | |
Starch components | RDS | 39.83 ± 1.15 b | 43.42 ± 0.56 a | 28.97 ± 1.32 c | |
SDS | 21.67 ± 1.40 a | 23.14 ± 0.53 a | 23.13 ± 0.33 a | ||
RS | 38.5 ± 0.31 b | 33.44 ± 0.84 c | 47.9 ± 1.11 a | ||
Hydrolysis parameters | K1 | 0.090 ± 0.001 a | 0.081 ± 0.006 a | 0.078 ± 0.006 a | |
C1∞ | 50.08 ± 1.110 b | 58.67 ± 3.071 a | 37.33 ± 1.590 c | ||
K2 | 0.037 ± 0.006 a | 0.041 ± 0.010 a | 0.024 ± 0.001 a | ||
C2∞ | 60.05 ± 1.680 b | 67.88 ± 0.094 a | 55.32 ± 0.153 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Liu, T.; Gao, X.; Shi, Y.; Zhao, X.; Zou, J. Interactions Between Corn Starch and Ethyl Maltol Under Heat-Moisture Treatment and Its Application in Fried Chicken Nuggets. Foods 2024, 13, 3629. https://doi.org/10.3390/foods13223629
Xu M, Liu T, Gao X, Shi Y, Zhao X, Zou J. Interactions Between Corn Starch and Ethyl Maltol Under Heat-Moisture Treatment and Its Application in Fried Chicken Nuggets. Foods. 2024; 13(22):3629. https://doi.org/10.3390/foods13223629
Chicago/Turabian StyleXu, Meijuan, Tianwen Liu, Xueqin Gao, Yuran Shi, Xiaodong Zhao, and Jian Zou. 2024. "Interactions Between Corn Starch and Ethyl Maltol Under Heat-Moisture Treatment and Its Application in Fried Chicken Nuggets" Foods 13, no. 22: 3629. https://doi.org/10.3390/foods13223629
APA StyleXu, M., Liu, T., Gao, X., Shi, Y., Zhao, X., & Zou, J. (2024). Interactions Between Corn Starch and Ethyl Maltol Under Heat-Moisture Treatment and Its Application in Fried Chicken Nuggets. Foods, 13(22), 3629. https://doi.org/10.3390/foods13223629