The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Participants
2.2. Ethical Aspects
2.3. Sample Collection
2.4. Dietary Intervention
2.5. Kombucha Production and Dosage
2.6. Quality of Life and Gastrointestinal Questionnaires
2.7. Intestinal Permeability, Fecal pH, and Short-Chain Fatty Acids (SCFA)
2.8. Statistical Analysis
2.9. Microbiota Analysis
2.10. Untargeted Blood Metabolome
3. Results
3.1. Participants’ Characteristics and Lifestyle Variables
3.2. Quality of Life
3.3. Intestinal Parameters and Questionnaires
3.4. Fecal Microbiota
3.5. Serum Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on Fermented Foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- de Costa, M.A.C.; Vilela, D.L.d.S.; Fraiz, G.M.; Lopes, I.L.; Coelho, A.I.M.; Castro, L.C.V.; Martin, J.G.P. Effect of Kombucha Intake on the Gut Microbiota and Obesity-Related Comorbidities: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3851–3866. [Google Scholar] [CrossRef] [PubMed]
- Diez-Ozaeta, I.; Astiazaran, O.J. Fermented Foods: An Update on Evidence-Based Health Benefits and Future Perspectives. Food Res. Int. 2022, 156, 111133. [Google Scholar] [CrossRef]
- Morales, D. Biological Activities of Kombucha Beverages: The Need of Clinical Evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Gasmi Benahmed, A.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the Gut and Oral Microbiome with Obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef]
- Prajapati, K.; Prajapati, J.; Patel, D.; Patel, R.; Varshnei, A.; Saraf, M.; Goswami, D. Multidisciplinary Advances in Kombucha Fermentation, Health Efficacy, and Market Evolution. Arch. Microbiol. 2024, 206, 366. [Google Scholar] [CrossRef]
- Dey, P.; Sasaki, G.Y.; Wei, P.; Li, J.; Wang, L.; Zhu, J.; McTigue, D.; Yu, Z.; Bruno, R.S. Green Tea Extract Prevents Obesity in Male Mice by Alleviating Gut Dysbiosis in Association with Improved Intestinal Barrier Function That Limits Endotoxin Translocation and Adipose Inflammation. J. Nutr. Biochem. 2019, 67, 78–89. [Google Scholar] [CrossRef]
- de Costa, M.A.C.; Dias Moreira, L.d.P.; Duarte, V.d.S.; Cardoso, R.R.; São José, V.P.B.d.; Silva, B.P.d.; Grancieri, M.; Corich, V.; Giacomini, A.; Bressan, J.; et al. Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients 2022, 14, 5234. [Google Scholar] [CrossRef]
- Farag, M.A.; Abdelwareth, A.; Sallam, I.E.; el Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Serena Schäpe, S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L.A.; et al. Metabolomics Reveals Impact of Seven Functional Foods on Metabolic Pathways in a Gut Microbiota Model. J. Adv. Res. 2020, 23, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Fraiz, G.M.; Bonifácio, D.B.; Lacerda, U.V.; Cardoso, R.R.; Corich, V.; Giacomini, A.; Martino, H.S.D.; Echeverría, S.E.; de Barros, F.A.R.; Milagro, F.I.; et al. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024, 16, 3186. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Committee on Physical Status the Use of and Interpretation of Anthropometry Report of a WHO Expert Committee. 1995. Available online: https://www.who.int/publications/i/item/9241208546 (accessed on 1 May 2024).
- Natacci, L.C.; Ferreira Júnior, M. The Three Factor Eating Questionnaire—R21: Tradução Para o Português e Aplicação Em Mulheres Brasileiras. Rev. Nutr. 2011, 24, 383–394. [Google Scholar] [CrossRef]
- Kang, H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hase, T.; Tokimitsu, I. A Green Tea Extract High in Catechins Reduces Body Fat and Cardiovascular Risks in Humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef]
- Matsudo, S.; Araújo, T.; Matsudo, V.; Andrade, D.; Andrade, E.; Oliveira, L.C.; Braggion, G. Questionário Internacional de Atividade Física (IPAQ): Estudo de Validade e Reprodutibilidade No Brasil. Rev. Bras. Ativ. Fís. Saúde 2012, 6, 5–18. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatísica (IBGE) Pesquisa de Orçamentos Familiares 2008–2009 Análise Do Consumo Alimentar Pessoal No Brasil. 2011. Available online: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_análise_consumo/pofanalise_2008_2009.pdf (accessed on 1 October 2023).
- Institute Of Medicine (IOM). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; Available online: https://nap.nationalacademies.org/read/10490/chapter/1 (accessed on 1 May 2024).
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Loria, C.M.; et al. AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef]
- University of São Paulo (USP). Food Research Center (FoRC). Brazilian Food Composition Table (TBCA). Brazilian Food Composition Table (TBCA). University of São Paulo (USP). Food Research Center (FoRC). Version 7.2. São Paulo. 2022. Available online: http://www.fcf.usp.br/tbca (accessed on 1 May 2024).
- Ciconelli, R.M.; Ferraz, M.B.; Santos, W.; Meinão, I.; Quaresma, M.R. Brazilian-Portuguese Version of the SF-36. A Reliable and Valid Quality of Life Outcome Measure. Rev. Bras. Reumatol. 1999, 39, 143–150. [Google Scholar]
- Souza, G.S.; Sardá, F.A.H.; Giuntini, E.B.; Gumbrevicius, I.; de Morais, M.B.; Menezes, E.W.d. Translation and validation of the Brazilian Portuguese version of the gastrointestinal symptom rating scale (GSRS) questionnaire. Arq. Gastroenterol. 2016, 53, 146–151. [Google Scholar] [CrossRef]
- Martinez, A.P.; de Azevedo, G.R. The Bristol Stool Form Scale: Its Translation to Portuguese, Cultural Adaptation and Validation. Rev. Lat. Am. Enferm. 2012, 20, 583–589. [Google Scholar] [CrossRef]
- Hossain, M.S.; Das, S.; Gazi, M.A.; Alam, M.A.; Haque, N.M.; Mahfuz, M.; Ahmed, T.; Damman, C.J. Association of Faecal PH with Childhood Stunting: Results from a Cross-Sectional Study. BMJ Paediatr. Open 2019, 3, e000549. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cole, J.R. Updated RDP Taxonomy and RDP Classifier for More Accurate Taxonomic Classification. Microbiol. Resour. Announc. 2024, 13. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B Stat. Methodol. 1982, 44, 139–160. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82. [Google Scholar] [CrossRef]
- Mogna-Peláez, P.; Romo-Hualde, A.; Riezu-Boj, J.I.; Milagro, F.I.; Muñoz-Prieto, D.; Herrero, J.I.; Elorz, M.; Benito-Boillos, A.; Monreal, J.I.; Tur, J.A.; et al. Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. J. Physiol. Biochem. 2023, 80, 639–653. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Romo-Hualde, A.; Aranaz, P.; Goni, L.; Cuervo, M.; Martínez, J.A.; Milagro, F.I.; Riezu-Boj, J.I. Diet- and Sex-Related Changes of Gut Microbiota Composition and Functional Profiles after 4 Months of Weight Loss Intervention. Eur. J. Nutr. 2021. [CrossRef]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.R.; de Moreira, L.P.D.; de Campos Costa, M.A.; Toledo, R.C.L.; Grancieri, M.; Nascimento, T.P.d.; Ferreira, M.S.L.; da Matta, S.L.P.; Eller, M.R.; Duarte Martino, H.S.; et al. Kombuchas from Green and Black Teas Reduce Oxidative Stress, Liver Steatosis and Inflammation, and Improve Glucose Metabolism in Wistar Rats Fed a High-Fat High-Fructose Diet. Food Funct. 2021, 12, 10813–10827. [Google Scholar] [CrossRef] [PubMed]
- Fraiz, G.M.; Costa, M.A.C.; Cardoso, R.R.; Hébert, J.R.; Zhao, L.; Corich, V.; Giacomini, A.; Milagro, F.I.; Barros, F.A.R.; Bressan, J. Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity. Fermentation 2024, 10, 384. [Google Scholar] [CrossRef]
- Mendelson, C.; Sparkes, S.; Merenstein, D.J.; Christensen, C.; Sharma, V.; Desale, S.; Auchtung, J.M.; Kok, C.R.; Hallen-Adams, H.E.; Hutkins, R. Kombucha Tea as an Anti-Hyperglycemic Agent in Humans with Diabetes—A Randomized Controlled Pilot Investigation. Front. Nutr. 2023, 10, 1190248. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Cohen, M.; Lau, K.; Brand-Miller, J.C. Glycemic Index and Insulin Index after a Standard Carbohydrate Meal Consumed with Live Kombucha: A Randomised, Placebo-Controlled, Crossover Trial. Front. Nutr. 2023, 10, 1036717. [Google Scholar] [CrossRef]
- Isakov, V.A.; Pilipenko, V.I.; Vlasova, A.V.; Kochetkova, A.A. Evaluation of the Efficacy of Kombucha-Based Drink Enriched with Inulin and Vitamins for the Management of Constipation-Predominant Irritable Bowel Syndrome in Females: A Randomized Pilot Study. Curr. Dev. Nutr. 2023, 7, 102037. [Google Scholar] [CrossRef]
- Na, J.-R.; Kim, E.; Na, C.-S.; Kim, S. Citric Acid-Enriched Extract of Ripe Prunus Mume (Siebold) Siebold & Zucc. Induces Laxative Effects by Regulating the Expression of Aquaporin 3 and Prostaglandin E2 in Rats with Loperamide-Induced Constipation. J. Med. Food 2022, 25, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Xiang, N.; Xu, L.; Qian, H.; Zhang, D. Multiple Obesity Indices Suggest a Close Relationship between Obesity and Constipation: Evidence from NHANES. BMC Public. Health 2024, 24, 1273. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Wang, J.; Geng, W. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods 2022, 11, 754. [Google Scholar] [CrossRef]
- Khoshbin, K.; Camilleri, M. Effects of Dietary Components on Intestinal Permeability in Health and Disease. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 319, G589–G608. [Google Scholar] [CrossRef]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Esatbeyoglu, T.; Sarikaya Aydin, S.; Gültekin Subasi, B.; Erskine, E.; Gök, R.; Ibrahim, S.A.; Yilmaz, B.; Özogul, F.; Capanoglu, E. Additional Advances Related to the Health Benefits Associated with Kombucha Consumption. Crit. Rev. Food Sci. Nutr. 2022, 64, 6102–6119. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Gowd, V.; Karim, N.; Shishir, M.R.I.; Xie, L.; Chen, W. Dietary Polyphenols to Combat the Metabolic Diseases via Altering Gut Microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. [Google Scholar] [CrossRef]
- Wang, P.; Feng, Z.; Sang, X.; Chen, W.; Zhang, X.; Xiao, J.; Chen, Y.; Chen, Q.; Yang, M.; Su, J. Kombucha Ameliorates LPS-Induced Sepsis in a Mouse Model. Food Funct. 2021, 12, 10263–10280. [Google Scholar] [CrossRef] [PubMed]
- Squillario, M.; Bonaretti, C.; La Valle, A.; Di Marco, E.; Piccolo, G.; Minuto, N.; Patti, G.; Napoli, F.; Bassi, M.; Maghnie, M.; et al. Gut-Microbiota in Children and Adolescents with Obesity: Inferred Functional Analysis and Machine-Learning Algorithms to Classify Microorganisms. Sci. Rep. 2023, 13, 11294. [Google Scholar] [CrossRef]
- Cuadrat, R.R.C.; Goris, T.; Birukov, A.; Eichelmann, F.; Andrade, B.G.N.; Bang, C.; Franke, A.; Wittenbecher, C.; Schulze, M.B. Association of the Human Gut Microbiota with Vascular Stiffness. Sci. Rep. 2023, 13, 13348. [Google Scholar] [CrossRef]
- Nie, K.; Ma, K.; Luo, W.; Shen, Z.; Yang, Z.; Xiao, M.; Tong, T.; Yang, Y.; Wang, X. Roseburia Intestinalis: A Beneficial Gut Organism from the Discoveries in Genus and Species. Front. Cell Infect. Microbiol. 2021, 11, 757718. [Google Scholar] [CrossRef]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-omics-based Approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef]
- Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Blautia—A New Functional Genus with Potential Probiotic Properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef] [PubMed]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, D.; He, Y.; Li, Y.; Yang, Z.; Zhao, X.; Liu, Y.; Wang, Y.; Sun, J.; Feng, X.; et al. Discrepant Gut Microbiota Markers for the Classification of Obesity-Related Metabolic Abnormalities. Sci. Rep. 2019, 9, 13424. [Google Scholar] [CrossRef] [PubMed]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Liu, Y.; Yang, C.; Liu, L.; Zhang, X.; Yang, X. Heimao Tea Polysaccharides Ameliorate Obesity by Enhancing Gut Microbiota-Dependent Adipocytes Thermogenesis in Mice Fed with High Fat Diet. Food Funct. 2022, 13, 13014–13027. [Google Scholar] [CrossRef]
- Tzang, C.-C.; Chi, L.-Y.; Lin, L.-H.; Lin, T.-Y.; Chang, K.-V.; Wu, W.-T.; Özçakar, L. Taurine Reduces the Risk for Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Diabetes 2024, 14, 29. [Google Scholar] [CrossRef]
- Qian, W.; Li, M.; Yu, L.; Tian, F.; Zhao, J.; Zhai, Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023, 11, 1048. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef]
- Massoud, R.; Jafari, R.; Khosravi-Darani, K. Kombucha as a Health-Beneficial Drink for Human Health. Plant Foods Hum. Nutr. 2024, 79, 251–259. [Google Scholar] [CrossRef]
- Vīna, I.; Linde, R.; Patetko, A.; Semjonovs, P. Glucuronic acid from fermented beverages: Biochemical functions in humans and its role in health protection. Int. J. Recent Res. Appl. Stud. 2013, 14, 217–230. [Google Scholar]
- Zhang, L.; Wu, W.; Lee, Y.-K.; Xie, J.; Zhang, H. Spatial Heterogeneity and Co-Occurrence of Mucosal and Luminal Microbiome across Swine Intestinal Tract. Front. Microbiol. 2018, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, L.; Chu, Y.; Feng, F.; Tang, W.; Chen, C.; Qiu, Y.; Hu, Z.; Diao, H.; Tang, Z. Dietary Taurine Improves Growth Performance and Intestine Health via the GSH/GSSG Antioxidant System and Nrf2/ARE Signaling Pathway in Weaned Piglets. Antioxidants 2023, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- Manzione, M.G.; Martorell, M.; Sharopov, F.; Bhat, N.G.; Kumar, N.V.A.; Fokou, P.V.T.; Pezzani, R. Phytochemical and Pharmacological Properties of Asperuloside, a Systematic Review. Eur. J. Pharmacol. 2020, 883, 173344. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yang, W.; Chen, T.; Tan, Q.; Zou, G.; Zang, Z.; Li, J.; Wang, B.; She, Z. Cytosporones W and X: Two Mutually Converting Epimers from a Mangrove Endophytic Fungus Diaporthe Sp. ZJHJYZ-1. ACS Omega 2023, 8, 26628–26634. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, Y.; Li, Z.; Zhu, J.; She, Z.; Chen, Y. Cytosporones with Anti-Inflammatory Activities from the Mangrove Endophytic Fungus phomopsis Sp. QYM-13. Mar. Drugs 2023, 21, 631. [Google Scholar] [CrossRef]
CG (n = 29) | KG (n = 30) | |||||||
---|---|---|---|---|---|---|---|---|
Baseline | After 10 Weeks | Δ | * p-Value | Baseline | After 10 Weeks | Δ | * p-Value | |
Mannitol excretion (%) | 16.5 (6.6) | 12.0 (5.7) | −4.5 (7.62) | 0.005 | 15.1 (3.9) | 13.1 (3.9) | −2.0 (4.59) | 0.024 |
Lactulose excretion (%) | 0.24 (0.12) | 0.25 (0.13) | 0.01 (0.15) | 0.885 | 0.23 (0.11) | 0.38 (0.60) | 0.14 (0.64) | 0.202 |
L/M ratio | 0.015 (0.007) | 0.028 (0.025) | 0.012 (0.026) | 0.019 | 0.016 (0.006) | 0.028 (0.030) | 0.012 (0.032) | 0.060 |
Fecal pH | 7.3 (0.7) | 7.7 (0.6) | 0.4 (0.7) | 0.004 | 7.6 (0.7) | 7.5 (0.5) | −0.04 (0.7) | 0.711 |
Butyric acid (mmol/L) | 5.8 (3.4–6.9) | 2.8 (1.6–5.2) | −2.1 (−4.1–1.0) | 0.044 | 5.6 (3.5–6.8) | 3.2 (2.5–5.0) | −2.0 (−3.9–0.7) | 0.020 |
Acetic acid (mmol/L) | 16.3 (10.1–23.8) | 13.6 (7.1–27.9) | −2.9 (−10.3–8.7) | 0.633 | 16.4 (11.6–24.3) | 16.6 (10.2–21.2) | −1.5 (−9.8–7.8) | 0.581 |
Propionic acid (mmol/L) | 7.1 (4.5–10.4) | 5.8 (3.1–9.0) | −1.4 (−4.3–3.6) | 0.285 | 6.7 (5.1–10.5) | 6.1 (4.1–8.9) | −1.5 (−6.3–3.3) | 0.316 |
LBP a (ng/mL) | 14.3 (3.5) | 13.6 (3.7) | −0.6 (3.5) | 0.487 | 15.2 (5.6) | 14.5 (4.2) | −0.7 (3.6) | 0.398 |
Zonulin b (ng/mL) | 17.9 (14.5–24.7) | 20.5 (16.9–26.8) | 2.5 (−0.3–5.0) | 0.031 | 20.2 (14.2–26.9) | 20.5 (16.3–33.4) | 0.3 (−1.42–8.0) | 0.316 |
Effect | p-Values | FDR | ↓/↑Kombucha | ||
---|---|---|---|---|---|
Family | Odoribacteraceae | −1.2083 | 0.00781 | 0.39355 | ↓ |
Clostridiaceae | 1.5735 | 0.01543 | 0.39355 | ↑ | |
Sutterellaceae | −0.985 | 0.02669 | 0.45377 | ↓ | |
Rikenellaceae | −0.678 | 0.04756 | 0.48216 | ↓ | |
Porphyromonadaceae | −0.6163 | 0.05017 | 0.48216 | ↓ | |
Lactobacillaceae | 1.40983 | 0.07003 | 0.48216 | ↑ | |
Peptostreptococcaceae | 0.56863 | 0.07254 | 0.48216 | ↑ | |
Acidaminococcaceae | −0.7804 | 0.07563 | 0.48216 | ↓ | |
Genus | Clostridium sensu stricto | 1.5748 | 0.01455 | 0.96936 | ↑ |
Romboutsia | 1.09737 | 0.0167 | 0.96936 | ↑ | |
Brotonthovivens | 1.05662 | 0.02389 | 0.96936 | ↑ | |
Odoribacter | −0.8116 | 0.03586 | 0.96936 | ↓ | |
Alistipes | −0.6215 | 0.05056 | 0.96936 | ↓ | |
Papillibacter | −0.8804 | 0.05471 | 0.96936 | ↓ | |
Vescimonas | −0.4248 | 0.06337 | 0.96936 | ↓ | |
Butyricimonas | −1.0629 | 0.06871 | 0.96936 | ↓ | |
Parabacteroides | −0.5285 | 0.09511 | 0.96936 | ↓ | |
Lawsonibacter | −0.6426 | 0.0993 | 0.96936 | ↓ | |
Species | Romboutsia timonensis | 1.12236 | 0.01714 | 0.99383 | ↑ |
Lawsonibacter asaccharolyticus | −0.9777 | 0.01748 | 0.99383 | ↓ | |
Brotonthovivens ammoniilytica | 1.09341 | 0.01834 | 0.99383 | ↑ | |
Sutterella wadsworthensis | −0.8522 | 0.02095 | 0.99383 | ↓ | |
Phocaeicola massiliensis | −1.0229 | 0.02253 | 0.99383 | ↓ | |
Mogibacterium pumilum | 1.13711 | 0.02733 | 0.99383 | ↑ | |
Odoribacter splanchnicus | −0.7748 | 0.03857 | 0.99383 | ↓ | |
Actinomyces johnsonii | 0.98591 | 0.04154 | 0.99383 | ↑ | |
Ruminococcus champanellensis | −1.2986 | 0.05483 | 0.99383 | ↓ | |
Papillibacter cinnamivorans | −0.8436 | 0.06748 | 0.99383 | ↓ | |
Roseburia intestinalis | 1.23297 | 0.07291 | 0.99383 | ↑ | |
Streptococcus anginosus | 0.82715 | 0.07505 | 0.99383 | ↑ | |
Blautia obeum | 0.35682 | 0.07608 | 0.99383 | ↑ | |
Pararoseburia lenta | 0.35331 | 0.08584 | 0.99383 | ↑ | |
Monoglobus pectinilyticus | 0.83951 | 0.09807 | 0.99383 | ↑ |
ID | m/z (Da) | rt (min) | VIP | Δ (mDa) | Assignment | Putative Metabolite |
---|---|---|---|---|---|---|
1 | 278.1913 | 20.20 | 4.78 | 0.1 | [M−H−H2O]− | hexadeca-2E,4E,9Z-triene-12,14-diynoic acid iso… |
2 | 325.1657 | 9.00 | 4.42 | 1.2 | [M+H]+ | Cytosporone M |
3 | 311.1952 | 8.99 | 3.76 | 3.0 | [M+Na]+ | Flavodonfuran |
4 | 139.0085 | 16.27 | 3.37 | 4.8 | [M−H−H2O]− | Maleylacetic acid |
5 | 395.0973 | 24.76 | 3.10 | 1 | [M−H−H2O]− | Asperuloside |
6 | 416.1231 | 25.27 | 2.99 | 2 | [M−H−H2O]− | Terremide D |
7 | 443.1242 | 7.87 | 2.93 | 4.7 | [M−H]− | Beta-D-Glucopyranosyl 4-O-Beta-D-Glucopyranosyl-beta-D-glucopyranoside |
8 | 357.1204 | 16.91 | 2.83 | 0.1 | [M+Na]+ | tripeptide Ala-Asn-Met |
357.1204 | 16.91 | 2.83 | 0.1 | [M+Na]+ | tripeptide Asn-Cys-Val | |
357.1204 | 16.91 | 2.83 | 0.1 | [M+Na]+ | tripeptide Gln-Gly-Met | |
9 | 415.1263 | 17.10 | 2.74 | 0.4 | [M−H−H2O]− | tripeptide Asp-Asp-Trp |
10 | 627.4813 | 25.66 | 2.67 | 0.6 | [M+Na]+ | PE-Cer(d14:2(4E,6E)/19:0) |
11 | 307.2849 | 24.67 | 2.61 | 0.7 | [M+H−H2O]+ | Hexahydropolyandrocarpidine |
12 | 369.2062 | 24.73 | 2.60 | 0.1 | [M+H−H2O]+ | Ankaflavin |
13 | 367.2228 | 23.05 | 2.49 | 1.6 | [M+Na]+ | 3-Hydroxyneogrifolin |
367.2228 | 23.05 | 2.49 | 1.6 | [M+Na]+ | Abiesadine P | |
14 | 124.0089 | 9.10 | 2.38 | 1.5 | [M−H]− | Taurine |
15 | 431.2239 | 14.46 | 2.30 | 1.1 | [M−H]− | Gombapyrone F |
431.2239 | 14.46 | 2.30 | 1.1 | [M−H−H2O]− | Azadiradione | |
16 | 505.3841 | 23.70 | 2.20 | 4.6 | [M+H]+ | Ganoderiol G |
17 | 124.9531 | 13.14 | 2.00 | 1.7 | [M+H]+ | 1,2,4-Trithiolane |
18 | 246.0951 | 8.66 | 1.98 | 2.1 | [M+H]+ | Mycosporine glycine |
19 | 327.1312 | 14.69 | 1.92 | 0.2 | [M−H−H2O]− | tripeptide Ala-Glu-Gln |
327.1312 | 14.69 | 1.92 | 0.2 | [M−H−H2O]− | tripeptide Asn-Asp-Val | |
20 | 1143.808 | 19.28 | 1.89 | 4.5 | [M−H−H2O]− | Trichoderin A |
21 | 199.069 | 8.33 | 1.84 | 3.4 | [M−H−H2O]− | 5-L-Glutamyl-L-alanine |
22 | 183.0589 | 16.69 | 1.68 | 3.9 | [M+Na]+ | Diethyl malonate |
23 | 124.0166 | 17.09 | 1.63 | 0.3 | [M−H]− | L-(1-aminoethyl)phosphonic acid |
24 | 217.1188 | 10.40 | 1.58 | 0.6 | [M−H]− | Pantothenamide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraiz, G.M.; Bonifácio, D.B.; Lacerda, U.V.; Cardoso, R.R.; Corich, V.; Giacomini, A.; Martino, H.S.D.; Esteban-Echeverría, S.; Romo-Hualde, A.; Muñoz-Prieto, D.; et al. The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods 2024, 13, 3635. https://doi.org/10.3390/foods13223635
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Esteban-Echeverría S, Romo-Hualde A, Muñoz-Prieto D, et al. The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods. 2024; 13(22):3635. https://doi.org/10.3390/foods13223635
Chicago/Turabian StyleFraiz, Gabriela Macedo, Dandara Baia Bonifácio, Udielle Vermelho Lacerda, Rodrigo Rezende Cardoso, Viviana Corich, Alessio Giacomini, Hércia Stampini Duarte Martino, Sergio Esteban-Echeverría, Ana Romo-Hualde, David Muñoz-Prieto, and et al. 2024. "The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial" Foods 13, no. 22: 3635. https://doi.org/10.3390/foods13223635
APA StyleFraiz, G. M., Bonifácio, D. B., Lacerda, U. V., Cardoso, R. R., Corich, V., Giacomini, A., Martino, H. S. D., Esteban-Echeverría, S., Romo-Hualde, A., Muñoz-Prieto, D., Barros, F. A. R. d., Milagro, F. I., & Bressan, J. (2024). The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods, 13(22), 3635. https://doi.org/10.3390/foods13223635