Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Blueberry Peel Particles
2.3. Property Analysis of Blueberry Peel Particles
2.3.1. Size Distribution
2.3.2. Wettability
2.3.3. Micromorphology
2.3.4. Anthocyanin Composition
2.4. Preparation of Ice Cream
2.5. Rheological Behavior Analysis of Ice Cream Mix
2.6. Characteristic Assessment of Ice Cream
2.6.1. Overrun, First Dripping Time, Melting Rate, and Firmness
2.6.2. Macro- and Micro-Structure Observation
2.6.3. Physical Storage Stability
2.6.4. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of Ball Milling on Physical Properties of Blueberry Peel Particles
3.1.1. Particle Size Distribution
3.1.2. Surface Properties
3.1.3. Microstructure
3.2. Effects of Ball Milling on Anthocyanin Composition of Blueberry Peel Particles
3.3. Effects of BMP on Rheological Behavior of Ice Cream Mix
3.4. Effects of BMP on Physicochemical Properties of Ice Cream
3.4.1. Overrun and Firmness
3.4.2. Melting Behavior
3.4.3. Antioxidant Activities
3.5. Effects of BMP on Storage Stabilities of Ice Cream
3.5.1. Storage Physical Stability
3.5.2. Sensory Attributes
3.6. Effects of BMP on Macro- and Micro-Structure of Ice Cream
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ewert, J.; Schlierenkamp, F.; Fischer, L.; Stressler, T. Application of a technofunctional caseinate hydrolysate to replace surfactants in ice cream. Chem. Ing. Tech. 2019, 91, 1024–1031. [Google Scholar]
- Genovese, A.; Balivo, A.; Salvati, A.; Sacchi, R. Functional ice cream health benefits and sensory implications. Food Res. Int. 2022, 161, 111858. [Google Scholar] [CrossRef] [PubMed]
- Moriano, M.E.; Alamprese, C. Organogels as novel ingredients for low saturated fat ice creams. LWT-Food Sci. Technol. 2017, 86, 371–376. [Google Scholar] [CrossRef]
- Monié, A.; Habersetzer, T.; Sureau, L.; David, A.; Clemens, K.; Malet-Martino, M.; Perez, E.; Franceschi, S.; Balayssac, S.; Delample, M. Modulation of the crystallization of rapeseed oil using lipases and the impact on ice cream properties. Food Res. Int. 2023, 165, 112473. [Google Scholar]
- Zaaboul, F.; Tian, T.; Borah, P.K.; Bari, V.D. Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties. Food Chem. 2024, 436, 137630. [Google Scholar] [CrossRef]
- Utpott, M.; Ramos de Araujo, R.; Galarza Vargas, C.; Nunes Paiva, A.R.; Tischer, B.; de Oliveira Rios, A.; Hickmann Flôres, S. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J. Food Process. Preserv. 2020, 44, e14420. [Google Scholar] [CrossRef]
- Ismail, H.A.; Hameed, A.M.; Refaeym, M.M.; Sayqal, A.; Aly, A.A. Rheological, physio-chemical and organoleptic characteristics of ice cream enriched with Doum syrup and pomegranate peel. Arab. J. Chem. 2020, 13, 7346–7356. [Google Scholar]
- Yoseffyan, M.; Mahdian, E.; Kordjazi, A.; Hesarinejad, M.A. Freeze-dried persimmon peel: A potential ingredient for functional ice cream. Heliyon 2024, 10, e25488. [Google Scholar]
- Wang, S.Y.; Camp, M.J.; Ehlenfeldt, M.K. Antioxidant capacity and alpha-glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars. Food Chem. 2012, 132, 1759–1768. [Google Scholar] [CrossRef]
- Li, M.J.; Deng, Y.Y.; Pan, L.H.; Luo, S.Z.; Zheng, Z. Comparisons in phytochemical components and in vitro digestion properties of corresponding peels, flesh and seeds separated from two blueberry cultivars. Food Sci. Biotechnol. 2023, 31, 73–83. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technol. 2015, 286, 838–844. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Devahastin, S.; Liu, Y.P. Influence of low-temperature ball milling time on physicochemical properties, flavor, bioactive compounds contents and antioxidant activity of horseradish powder. Adv. Powder Technol. 2020, 31, 914–921. [Google Scholar] [CrossRef]
- Cao, Y.W.; Zhao, J.W.; Tian, Y.Q.; Jin, Z.Y.; Xu, X.M.; Zhou, X.; Wang, J.P. Physicochemical properties of rice bran after ball milling. J. Food Process. Preserv. 2021, 45, e15785. [Google Scholar] [CrossRef]
- Chiang, L.; Chen, S.; Yeh, A. Preparation of nano/submicrometer yam and its benefits on collagen secretion from skin fibroblast cells. J. Agric. Food Chem. 2012, 60, 12332–12340. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.H.; Ramachandraiah, K.; Wu, Z.G.; Li, S.J.; Eun, J.B. Impact of ball-milling time on the physical properties, bioactive compounds, and structural characteristics of onion peel powder. Food Biosci. 2020, 36, 100630. [Google Scholar] [CrossRef]
- Lu, X.; Huang, Q. Nano/submicrometer milled red rice particles-stabilized pickering emulsions and their antioxidative properties. J. Agric. Food Chem. 2019, 68, 292–300. [Google Scholar] [CrossRef]
- Luo, S.Z.; Hu, X.F.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Cao, L.L. Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chem. 2019, 276, 209–217. [Google Scholar] [CrossRef]
- Luo, S.Z.; Hu, X.F.; Jia, J.Y.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocoll. 2019, 95, 76–87. [Google Scholar] [CrossRef]
- Pan, L.H.; Wu, X.L.; Luo, S.Z.; He, Y.H.; Luo, J.P. Effects of tea polyphenol ester with different fatty acid chain length on camellia oil-based oleogels preparation and its effects on cookies properties. J. Food Sci. 2020, 85, 2461–2469. [Google Scholar] [CrossRef]
- Pan, L.; Wu, C.; Luo, S.; Luo, J.; Zheng, Z.; Jiang, S.; Zhao, Y.; Zhong, X. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity. Food Hydrocoll. 2022, 129, 107619. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Y.; Fan, C.; Han, L. A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chem. 2017, 214, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Samakradhamrongthai, R.S.; Jannu, T.; Supawan, T.; Khawsud, A.; Aumpa, P.; Renaldi, G. Inulin application on the optimization of reduced-fat ice cream using response surface methodology-sciencedirect. Food Hydrocoll. 2021, 119, 106873. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Liu, Y.; Wu, T.; Zhang, M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocoll. 2018, 81, 39–47. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, Y.; Li, X.; Yan, T.; Cui, J. Effects of milk protein-polysaccharide interactions on the stability of ice cream mix model systems. Food Hydrocoll. 2015, 45, 327–336. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Yang, X.Y.; Zhao, W.W.; Wang, Z.Z.; Ge, Q. Physicochemical properties of insoluble dietary fiber from pomelo (Citrus grandis) peel modified by ball milling. J. Food Process. Preserv. 2022, 46, e16242. [Google Scholar] [CrossRef]
- Huang, X.; Dou, J.Y.; Li, D.; Wang, L.J. Effects of superfine grinding on properties of sugar beet pulp powder. LWT-Food Science and Technology. 2018, 87, 203–209. [Google Scholar] [CrossRef]
- Yang, T.; Tang, C.H. Holocellulose nanofibers from insoluble polysaccharides of okara by mild alkali planetary ball milling: Structural characteristics and emulsifying properties. Food Hydrocoll. 2021, 115, 106625. [Google Scholar] [CrossRef]
- Chen, X.; Mcclements, D.J.; Wang, J.; Zou, L.; Deng, S.; Liu, W.; Yan, C.; Zhu, Y.Q.; Cheng, C.; Liu, C. Coencapsulation of (−)-epigallocatechin-3-gallate and quercetin in particle-stabilized w/o/w emulsion gels: Controlled release and bioaccessibility. J. Agric. Food Chem. 2018, 66, 3691–3699. [Google Scholar] [CrossRef]
- Dogan, M.; Kayacier, A.; Toker, Ö.S.; Yilmaz, M.T.; Karaman, S. Steady, dynamic, creep, and recovery analysis of ice cream mixes added with different concentrations of xanthan gum. Food Bioprocess Technol. 2013, 6, 1420–1433. [Google Scholar] [CrossRef]
- Soukoulis, C.; Lebesi, D.; Tzia, C. Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chem. 2009, 115, 665–671. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, X.; Wang, L.F.; Regenstein, J.M. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydr. Polym. 2021, 254, 117415. [Google Scholar] [CrossRef] [PubMed]
- Trigueros, L.; Wojdylo, A.; Sendra, E. Antioxidant activity and protein-polyphenol interactions in a pomegranate (Punka granatum l.) yogurt. J. Agric. Food Chem. 2014, 62, 6417–6425. [Google Scholar] [CrossRef]
- Sayar, E.; Şengül, M.; Ürkek, B. Antioxidant capacity and rheological, textural properties of ice cream produced from camel’s milk with blueberry. J. Food Process. Preserv. 2022, 64, e16346. [Google Scholar] [CrossRef]
- Şentürk, G.; Akın, N.; Göktepe, Ç.K.; Denktaş, B. The effects of blueberry (Vaccinium corymbosum L.) and jujube fruit (Ziziphus jujube) on physicochemical, functional, and sensorial properties, and probiotic (Lactobacillus acidophilus DSM 20079) viability of probiotic ice cream. Food Sci. Nutr. 2024, 12, 2747–2759. [Google Scholar] [CrossRef]
- Tsevdou, M.; Aprea, E.; Betta, E.; Khomenko, I.; Molitor, D.; Gaiani, C.; Hoffmann, L.; Taoukis, P.S.; Soukoulis, C. Rheological, textural, physicochemical and sensory profiling of a novel functional ice cream enriched with muscat de hamburg (Vitis vinifera L.) grape pulp and skins. Food Bioprocess Technol. 2019, 12, 665–680. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Javidi, F.; Razavi, S.M.A.; Behrouzian, F.; Alghooneh, A. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocoll. 2016, 52, 625–633. [Google Scholar] [CrossRef]
- Parvar, M.B.; Goff, H.D. Basil seed gum as a novel stabilizer for structure formation and reduction of ice recrystallization in ice cream. Dairy Sci. Technol. 2013, 93, 273–285. [Google Scholar]
- Velásquez-Cock, J.; Serpa, A.; Vélez, L.; Gañán, P.; Gómez Hoyos, C.; Castro, C.; Duizer, L.M.; Goff, H.D.; Zuluaga, R. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocoll. 2019, 87, 204–213. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Sinrod, A.J.G.; Chiou, B.S.; McHugh, T. Functionality of strawberry powder on frozen dairy desserts. J. Texture Stud. 2019, 50, 556–563. [Google Scholar] [CrossRef]
Ingredients (g/100 g) | IC-B0.0% | IC-B0.1% | IC-B0.3% | IC-B0.5% | IC-B1.0% |
---|---|---|---|---|---|
Skim milk | 64.75 | 64.65 | 64.45 | 64.25 | 63.75 |
Sucrose | 14 | 14 | 14 | 14 | 14 |
Skim milk powder | 11 | 11 | 11 | 11 | 11 |
Camellia oil | 10 | 10 | 10 | 10 | 10 |
Xanthan gum | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
BMP15Hz1.5h | 0 | 0.1 | 0.3 | 0.5 | 1.0 |
Samples | D10 (μm) | D50 (μm) | D90 (μm) | Span | Φ (%) | SSA (m2/g) |
---|---|---|---|---|---|---|
CMP | 29.83 ± 3.37 a | 210.28 ± 2.55 a | 547.68 ± 31.34 a | 2.46 ± 0.02 c | 13.60 ± 0.00 d | 0.11 ± 0.00 e |
BMP15Hz1.5h | 5.43 ± 0.06 b | 23.12 ± 0.31 b | 60.95 ± 1.44 c | 2.40 ± 0.01 bc | 81.73 ± 0.03 c | 0.52 ± 0.01 d |
BMP15Hz3.0h | 4.01 ± 0.01 c | 17.36 ± 0.05 c | 50.95 ± 0.26 d | 2.70 ± 0.02 c | 92.38 ± 0.02 ab | 0.67 ± 0.00 b |
BMP15Hz6.0h | 2.62 ± 0.16 e | 15.00 ± 0.14 e | 36.00 ± 0.88 f | 2.22 ± 0.03 | 96.38 ± 0.01 a | 1.01 ± 0.05 a |
BMP25Hz1.5h | 3.85 ± 0.25 c | 17.64 ± 3.44 c | 75.36 ± 6.12 b | 4.05 ± 0.01 a | 91.88 ± 0.02 b | 0.63 ± 0.03 bc |
BMP25Hz3.0h | 3.70 ± 0.12 cd | 16.18 ± 1.22 cd | 48.75 ± 8.31 d | 2.78 ± 0.02 bc | 94.43 ± 0.01 a | 0.68 ± 0.04 b |
BMP25Hz6.0h | 3.54 ± 0.01 d | 15.12 ± 0.11 de | 39.92 ± 0.31 e | 2.41 ± 0.02 c | 96.12 ± 0.01 a | 0.71 ± 0.00 b |
No. | Anthocyanins | Retention Time (min) | [M-H]−(m/z) | Fragment Masses | Percentage (%) | ||
---|---|---|---|---|---|---|---|
CMP | BMP15Hz1.5h | CMP | BMP15Hz1.5h | ||||
1 | Cy | 16.83 | 16.84 | 287.05 | 449.11, 287.06 | 0.002 b | 0.006 a |
2 | Cy-3,5-O-dig | 1.99 | 1.99 | 611.16 | 463.12, 625.18, 301.07 | 0.005 | 0.006 |
3 | Cy-3-O-gal/glu | 5.57 | 5.61 | 449.11 | 287.06 | 8.101 | 8.102 |
4 | Cy-3-O-ara | 6.57 | 6.59 | 419.10 | 287.06 | 2.245 | 2.245 |
5 | Cy-3-O-sop | 11.75 | 11.74 | 611.16 | 317.07 | 0.099 | 0.096 |
6 | Cy-3-O-rut | 13.05 | 13.07 | 595.17 | 287.06 | 0.015 | 0.014 |
Total percentage | 10.467 | 10.469 | |||||
7 | Dp | 13.22 | 13.22 | 303.05 | 317.07 | 0.752 | 0.764 |
8 | Dp-3-O-(6″-p-coumaryl)-glu | 16.42 | 16.42 | 611.14 | 303.05 | 0.070 | 0.065 |
9 | Dp-3-O-(6-O-acetyl)-glu | 14.51 | 14.53 | 507.11 | 303.05 | 0.373 | 0.366 |
10 | Dp-3-O-ara | 13.22 | 13.21 | 435.09 | 303.05 | 0.397 | 0.396 |
11 | Dp-3-O-gal/glu | 12.23 | 12.21 | 465.10 | 303.05 | 1.869 | 1.872 |
12 | Dp-3-O-rha | 5.57 | 5.58 | 449.11 | 317.07 | 8.064 | 8.061 |
13 | Dp-3-O-rut | 1.99 | 1.99 | 611.16 | 317.07 | 0.005 | 0.005 |
Total percentage | 11.530 | 11.529 | |||||
14 | Mv-3-O-(6″-acetyl)-gal/glu | 10.65 | 9.92 | 535.14 | 331.08, 493.13 | 1.883 | 1.885 |
15 | Mv-3-O-(6″-malonyl)-glu | 9.51 | 9.51 | 579.13 | 331.08, 493.13 | 0.138 | 0.135 |
16 | Mv-3-O-(6-O-p-coumaryl)-O-glu | 12.37 | 12.38 | 639.17 | 331.08 | 0.094 | 0.092 |
17 | Mv-3-O-ara | 8.15 | 8.16 | 463.12 | 331.08 | 15.248 | 15.248 |
18 | Mv-3-O-gal/glu | 7.42 | 7.43 | 493.13 | 331.08 | 24.630 | 24.633 |
19 | Mv-3,5-O-dig | 13.09 | 13.10 | 655.19 | 287.06 | 0.004 | 0.004 |
Total percentage | 41.997 | 41.997 | |||||
20 | Pg | 9.07 | 9.06 | 271.06 | 301.07 | 0.001 b | 0.003 a |
21 | Pg-3,5-O-dig | 13.05 | 13.05 | 595.17 | 303.05 | 0.015 | 0.013 |
22 | Pg-3-O-gal/glu | 7.84 | 7.85 | 433.11 | 493.13, 331.08 | 1.297 | 1.296 |
Total percentage | 1.313 | 1.312 | |||||
23 | Pn | 15.76 | 15.76 | 301.07 | 303.05 | 0.002 b | 0.005 a |
24 | Pn-3-O-(6″-acetyl)-gal/glu | 10.49 | 10.44 | 505.13 | 331.08 | 0.265 | 0.262 |
25 | Pn-3-O-ara | 7.84 | 7.85 | 433.11 | 301.07, 463.12 | 1.297 | 1.297 |
26 | Pn-3-O-gal/glu | 8.15 | 8.16 | 463.12 | 433.11, 271.06 | 15.248 | 15.249 |
27 | Pn-3-O-sop-5-O-glu | 8.89 | 8.88 | 787.23 | 271.06 | 0.002 | 0.001 |
Total percentage | 16.814 | 16.814 | |||||
28 | Pt | 16.84 | 16.85 | 317.06 | 303.05 | 0.018 b | 0.025 a |
29 | Pt-3-O-rut-5-O-glu | 8.89 | 8.88 | 787.23 | 317.07, 479.12, 625.18 | 0.002 | 0.001 |
30 | Pt-3-O-(6″-acetyl) gal/glu | 9.26 | 9.27 | 521.13 | 301.07 | 0.887 | 0.883 |
31 | Pt-3-O-(6″-malonyl)-glu | 14.86 | 14.88 | 565.12 | 317.07, 479.12 | 0.063 | 0.060 |
32 | Pt-3-O-gal/glu | 6.30 | 6.29 | 479.12 | 317.07, 479.12 | 8.581 | 8.585 |
33 | Pt-3-O-rut | 13.00 | 12.99 | 625.18 | 317.07, 479.12 | 0.212 | 0.212 |
34 | Pt-3-O-p-coumaroyl-O-glu | 16.65 | 16.66 | 625.15 | 317.07, 479.12 | 0.010 a | 0.005 b |
35 | Pt-3-O-ara | 5.57 | 5.59 | 449.11 | 301.07 | 8.101 | 8.101 |
Total percentage | 17.874 | 17.872 |
Samples | Overrun (%) | Firmness (N) | First Dripping Time (min) | Melting Rate (%/min) |
---|---|---|---|---|
IC-B0.0% | 32.99 ± 0.85 c | 33.15 ± 2.16 a | 14.16 ± 0.93 c | 3.13 ± 0.82 a |
IC-B0.1% | 36.51 ± 2.01 b | 25.97 ± 1.79 b | 17.43 ± 0.89 b | 2.84 ± 0.03 b |
IC-B0.3% | 38.75 ± 2.34 ab | 19.31 ± 1.44 c | 18.54 ± 1.01 ab | 2.83 ± 0.08 b |
IC-B0.5% | 45.13 ± 3.06 a | 19.03 ± 1.18 c | 20.18 ± 1.07 a | 2.71 ± 0.02 b |
IC-B1.0% | 38.22 ± 2.92 ab | 24.41 ± 1.42 b | 18.00 ± 1.10 ab | 2.77 ± 0.11 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.-H.; Lin, J.-H.; Li, M.-J.; Cao, L.; Liu, X.-Y.; Deng, Y.-Y.; Luo, S.-Z.; Zheng, Z. Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream. Foods 2024, 13, 3660. https://doi.org/10.3390/foods13223660
Pan L-H, Lin J-H, Li M-J, Cao L, Liu X-Y, Deng Y-Y, Luo S-Z, Zheng Z. Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream. Foods. 2024; 13(22):3660. https://doi.org/10.3390/foods13223660
Chicago/Turabian StylePan, Li-Hua, Jia-Hui Lin, Mei-Jia Li, Lei Cao, Xiao-Yu Liu, Yuan-Yuan Deng, Shui-Zhong Luo, and Zhi Zheng. 2024. "Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream" Foods 13, no. 22: 3660. https://doi.org/10.3390/foods13223660
APA StylePan, L. -H., Lin, J. -H., Li, M. -J., Cao, L., Liu, X. -Y., Deng, Y. -Y., Luo, S. -Z., & Zheng, Z. (2024). Preparation and Characteristics of Ball-Milled Blueberry Peel Particles and Their Application in Ice Cream. Foods, 13(22), 3660. https://doi.org/10.3390/foods13223660