Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Fermentation of Red Raspberry Nectar
2.3. Determination of Viable Cells
2.4. Scanning Electron Microscope of UFR and FR Residues
2.5. Determination of Physicochemical Parameters of UFR and FR
2.6. Determination of Total Phenolic and Total Flavonoid Content
2.7. Identification of Non-Volatile Compounds
2.8. Evaluation of In Vitro Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Effects of Lc. paracasei Fermentation on Red Raspberry Tissue Structure
3.2. The Viability of Lc. paracasei FBKL 1.0328 in Red Raspberry Nectar
3.3. The Basic Physicochemical Properties of UFR and FR
3.4. The Total Phenolic and Flavonoid Content of UFR and FR
3.5. Overview of the Non-Volatile Composition Profile of UFR and FR
3.6. The Differences in Primary Nutrients and Phytochemicals Between UFR and FR
3.6.1. Amino Acids and Their Derivatives
3.6.2. Organic Acids
3.6.3. Nucleotides and Their Derivatives
3.6.4. Lipids
3.6.5. Vitamins
3.6.6. Alkaloids
3.6.7. Phenolic Compounds
3.6.8. Terpenoids
3.7. KEGG Annotation and Enrichment Analysis of Differential Compounds
3.8. The In Vitro Antioxidant Activity of UFR and FR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadik, H.; Ouazzani, C.; Moustaghfir, A.; El Ghammarti, S.; Er-Ramly, A.; Essebbahi, I.; Dami, A.; Balouch, L. Comparison of the nutritional proprieties of commercial strawberries, red and black raspberry consumed in Morocco. Appl. Food Res. 2023, 3, 100362. [Google Scholar] [CrossRef]
- God, J.; Tate, P.L.; Larcom, L.L. Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells. Nutr. Res. 2010, 30, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Derrick, S.A.; Kristo, A.S.; Reaves, S.K.; Sikalidis, A.K. Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters. Int. J. Environ. Res. Public Health 2021, 18, 9364. [Google Scholar] [CrossRef] [PubMed]
- Uclés, R.M.; González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A.; Janes, M.; Cheng, H.; Finley, J.; Greenway, F.; Losso, J.N. Effects of red raspberry polyphenols and metabolites on the biomarkers of inflammation and insulin resistance in type 2 diabetes: A pilot study. Food Funct. 2022, 13, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Liu, Z.; Wang, J.; Zhu, S.; Huang, D. Nitric oxide modulates sugar metabolism and maintains the quality of red raspberry during storage. Sci. Hortic. 2019, 256, 108611. [Google Scholar] [CrossRef]
- Huynh, N.K.; Wilson, M.D.; Stanley, R.A. Extending the shelf life of raspberries in commercial settings by modified atmosphere/modified humidity packaging. Food Packag. Shelf Life 2023, 37, 101069. [Google Scholar] [CrossRef]
- Jahn, L.J.; Rekdal, V.M.; Sommer, M.O.A. Microbial foods for improving human and planetary health. Cell 2023, 186, 469–478. [Google Scholar] [CrossRef]
- Mukherjee, A.; Breselge, S.; Dimidi, E.; Marco, M.L.; Cotter, P.D. Fermented foods and gastrointestinal health: Underlying mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 248–266. [Google Scholar] [CrossRef]
- Wen, J.; Ma, L.; Xu, Y.; Wu, J.; Yu, Y.; Peng, J.; Tang, D.; Zou, B.; Li, L. Effects of probiotic litchi juice on immunomodulatory function and gut microbiota in mice. Food Res. Int. 2020, 137, 109433. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Isas, A.S.; Escobar, F.; Álvarez-Villamil, E.; Molina, V.; Mateos, R.; Lizarraga, E.; Mozzi, F.; Van Nieuwenhove, C. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet. Food Biosci. 2023, 53, 102516. [Google Scholar] [CrossRef]
- He, Y.; Hu, M.; He, W.; Li, Y.; Liu, S.; Hu, X.; Nie, S.; Yin, J.; Xie, M. Volatile compound dynamics during blueberry fermentation by lactic acid bacteria and its potential associations with bacterial metabolism. Food Biosci. 2024, 59, 103639. [Google Scholar] [CrossRef]
- Xu, H.; Feng, L.; Deng, Y.; Chen, L.; Li, Y.; Lin, L.; Liang, M.; Jia, X.; Wang, F.; Zhang, X.; et al. Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process. LWT 2023, 180, 114715. [Google Scholar] [CrossRef]
- González, E.A.; Agrasar, A.T.; Castro, L.M.P.; Fernández, I.O.; Guerra, N.P. Solid-state fermentation of red raspberry (Rubus ideaus L.) and arbutus berry (Arbutus unedo, L.) and characterization of their distillates. Food Res. Int. 2011, 44, 1419–1426. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, T.; Tang, Y.; Chen, S.; Ni, H.; Chen, Q.; Song, X.; Bao, Y.; Deng, Z.; Wang, J. Isolation of a novel characterized Issatchenkia terricola from red raspberry fruits on the degradation of citric acid and enrichment of flavonoid and volatile profiles in fermented red raspberry juice. Food Sci. Hum. Wellness 2022, 11, 1018–1027. [Google Scholar] [CrossRef]
- Liang, T.; Jiang, T.; Liang, Z.; Zhang, N.; Dong, B.; Wu, Q.; Gu, B. Carbohydrate-active enzyme profiles of Lactiplantibacillus plantarum strain 84-3 contribute to flavor formation in fermented dairy and vegetable products. Food Chem. X 2023, 20, 101036. [Google Scholar] [CrossRef]
- Yuan, Y.; Tian, Y.; Gao, S.; Zhang, X.; Gao, X.; He, J. Effects of environmental factors and fermentation on red raspberry anthocyanins stability. LWT 2023, 173, 114252. [Google Scholar] [CrossRef]
- Qin, Y.; Luo, Y.; Qiu, S.; Zhang, Q.; Yang, L. Secondary metabolite profiles and bioactivities of red raspberry juice during fermentation with Wickerhamomyces anomalus. LWT 2024, 191, 115706. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, R.; Qiu, H.; Song, A. Widely targeted metabolomics-based analysis of the impact of L. plantarum and L. paracasei fermentation on rosa roxburghii Tratt juice. Int. J. Food Microbiol. 2024, 417, 110686. [Google Scholar] [CrossRef]
- Sun, X.; Yan, Z.; Zhu, T.; Zhu, J.; Wang, Y.; Li, B.; Meng, X. Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein. Food Chem. 2019, 279, 63–69. [Google Scholar] [CrossRef]
- Wood, I.P.; Elliston, A.; Ryden, P.; Bancroft, I.; Roberts, I.N.; Waldron, K.W. Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 2012, 44, 117–121. [Google Scholar] [CrossRef]
- GB 12456-2021; National Food Safety Standard-Determination of Total Acidity in Food. National Health Commission of the People’s Republic of China: Beijing, China, 2021.
- Li, W.; Wen, L.; Chen, Z.; Zhang, Z.; Pang, X.; Deng, Z.; Liu, T.; Guo, Y. Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chem. 2021, 357, 129791. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Peng, B.; Liu, Y.; Wu, Y.; Wu, Z. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem. 2018, 73, 228–234. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G.; Chen, G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem. 2021, 361, 130089. [Google Scholar] [CrossRef]
- Canabady-Rochelle, L.L.S.; Harscoat-Schiavo, C.; Kessler, V.; Aymes, A.; Fournier, F.; Girardet, J.-M. Determination of reducing power and metal chelating ability of antioxidant peptides: Revisited methods. Food Chem. 2015, 183, 129–135. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Q.; Liu, R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem. 2022, 375, 131908. [Google Scholar] [CrossRef]
- Matthews, A.; Grimaldi, A.; Walker, M.; Bartowsky, E.; Grbin, P.; Jiranek, V. Lactic Acid Bacteria as a Potential Source of Enzymes for Use in Vinification. Appl. Environ. Microbiol. 2004, 70, 5715–5731. [Google Scholar] [CrossRef]
- Mahajan, P.M.; Desai, K.M.; Lele, S.S. Production of Cell Membrane-Bound α- and β-Glucosidase by Lactobacillus acidophilus. Food Bioprocess Technol. 2012, 5, 706–718. [Google Scholar] [CrossRef]
- Iliev, I.; Vasileva, T.; Bivolarski, V.; Momchilova, A.; Ivanova, I. Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers 2020, 12, 2387. [Google Scholar] [CrossRef]
- Wu, B.; Liu, J.; Yang, W.; Zhang, Q.; Yang, Z.; Liu, H.; Lv, Z.; Zhang, C.; Jiao, Z. Nutritional and flavor properties of grape juice as affected by fermentation with lactic acid bacteria. Int. J. Food Prop. 2021, 24, 906–922. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.; Fan, L.; Qin, Z.; Chen, Q.; Zhao, L. Antioxidant properties of a vegetable–fruit beverage fermented with two Lactobacillus plantarum strains. Food Sci.Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Cirlini, M.; Maoloni, A.; Del Rio, D.; Calani, L.; Bernini, V.; Galaverna, G.; Neviani, E.; Lazzi, C. Use of Dairy and Plant-Derived Lactobacilli as Starters for Cherry Juice Fermentation. Nutrients 2019, 11, 213. [Google Scholar] [CrossRef]
- Zheng, Z.; Wei, L.; Zhu, M.; Qian, Z.; Liu, J.; Zhang, L.; Xu, Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res. Int. 2023, 174, 113547. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Kayitesi, E. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. Food Biosci. 2018, 25, 118–127. [Google Scholar] [CrossRef]
- Laophongphit, A.; Wichiansri, S.; Siripornadulsil, S.; Siripornadulsil, W. Enhancing the nutritional value and functional properties of mango nectar via lactic acid bacteria fermentation. LWT 2024, 197, 115878. [Google Scholar] [CrossRef]
- Azi, F.; Tu, C.; Meng, L.; Zhiyu, L.; Cherinet, M.T.; Ahmadullah, Z.; Dong, M. Metabolite dynamics and phytochemistry of a soy whey-based beverage bio-transformed by water kefir consortium. Food Chem. 2021, 342, 128225. [Google Scholar] [CrossRef]
- Castaldi, S.; Cimmino, A.; Masi, M.; Evidente, A. Bacterial Lipodepsipeptides and Some of Their Derivatives and Cyclic Dipeptides as Potential Agents for Biocontrol of Pathogenic Bacteria and Fungi of Agrarian Plants. J. Agric. Food Chem. 2022, 70, 4591–4598. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, G.; Xu, Y.; Yu, Y.; Wu, J.; Zou, B. High Hydrostatic Pressure and Co-Fermentation by Lactobacillus rhamnosus and Gluconacetobacter xylinus Improve Flavor of Yacon-Litchi-Longan Juice. Foods 2019, 8, 308. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Meng, F.-B.; Gong, C.-X.; Deng, Y.; Li, Y.-C.; Jiang, L.-S.; Zhong, Y. Widely targeted metabolomics and flavoromics reveal the effect of Wickerhamomyces anomalus fermentation on the volatile and nonvolatile metabolites of black garlic juice. Food Chem. 2024, 460, 140534. [Google Scholar] [CrossRef]
- Ji, G.; Liu, G.; Li, B.; Tan, H.; Zheng, R.; Sun, X.; He, F. Influence on the aroma substances and functional ingredients of apple juice by lactic acid bacteria fermentation. Food Biosci. 2023, 51, 102337. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Du, G.; Qing, Y.; Wang, H.; Wang, N.; Yue, T.; Yuan, Y. Effects of Tibetan kefir grain fermentation on the physicochemical properties, phenolics, enzyme activity, and antioxidant activity of Lycium barbarum (Goji berry) juice. Food Biosci. 2023, 53, 102555. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, F.; Cai, W.; Peng, B.; Zhang, P.; Shan, C. Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice. LWT 2023, 184, 114884. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Zhu, Y.; Zhou, C.; Xiong, Z.; Eweys, A.S.; Zhou, H.; Dong, Y.; Xiao, X. Metabolomics strategy for revealing the components in fermented barley extracts with Lactobacillus plantarum dy-1. Food Res. Int. 2021, 139, 109808. [Google Scholar] [CrossRef]
- Xiao, Y.; He, C.; Chen, Y.; Ho, C.-T.; Wu, X.; Huang, Y.; Gao, Y.; Hou, A.; Li, Z.; Wang, Y.; et al. UPLC–QQQ–MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem. 2022, 378, 131999. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Boba, A.; Rój, E.; Gorczyca, D.; Prescha, A. Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. Oxidative Med. Cell. Longev. 2021, 2021, 5561672. [Google Scholar] [CrossRef]
- Filannino, P.; Tlais, A.Z.A.; Morozova, K.; Cavoski, I.; Scampicchio, M.; Gobbetti, M.; Di Cagno, R. Lactic acid fermentation enriches the profile of biogenic fatty acid derivatives of avocado fruit (Persea americana Mill.). Food Chem. 2020, 317, 126384. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Khan, M.R.; Saeed, M.; Pasha, I.; Khalil, A.A.; Siraj, N. Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids Health Dis. 2017, 16, 99. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Laiño, J.E.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; de Valdez, G.F.; de Giori, G.S.; Sesma, F. B-Group vitamin production by lactic acid bacteria—Current knowledge and potential applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Somboonpanyakul, P. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum. Process Biochem. 2018, 70, 9–19. [Google Scholar] [CrossRef]
- Shaala, L.; Youssef, D.; Badr, J.; Harakeh, S. Bioactive 2(1H)-Pyrazinones and Diketopiperazine Alkaloids from a Tunicate-Derived Actinomycete Streptomyces sp. Molecules 2016, 21, 1116. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Sommella, E.; Salviati, E.; Campiglia, P.; Ganguli, K.; Djebali, K.; Zhu, W.; Walker, W.A. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 2020, 88, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Li, Q.; Sun, X.; Peng, X.; Tang, Q.; Chu, H.; Zhou, L.; Wang, B.; Zhou, Z.; Deng, X.; et al. Bacterial indole-3-lactic acid affects epithelium–macrophage crosstalk to regulate intestinal homeostasis. Proc. Natl. Acad. Sci. USA 2023, 120, e2309032120. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, B.J.; Liu, K.H.; Owens, J.A.; Hunter-Chang, S.; Camacho, M.C.; Eboka, R.U.; Chandrasekharan, B.; Baker, N.F.; Darby, T.M.; Robinson, B.S.; et al. Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell Metab. 2020, 31, 956–968.e5. [Google Scholar] [CrossRef]
- Xie, H.; Gao, P.; Lu, Z.-M.; Wang, F.-Z.; Chai, L.-J.; Shi, J.-S.; Zhang, H.-L.; Geng, Y.; Zhang, X.-J.; Xu, Z.-H. Changes in physicochemical characteristics and metabolites in the fermentation of goji juice by Lactiplantibacillus plantarum. Food Biosci. 2023, 54, 102881. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Li, X.-L.; Li, T.-Y.; Li, M.-Y.; Huang, R.-M.; Li, W.; Yang, R.-L. 3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule. RSC Adv. 2018, 8, 6242–6250. [Google Scholar] [CrossRef]
- Dieuleveux, V.; Lemarinier, S.; Guéguen, M. Antimicrobial spectrum and target site of d-3-phenyllactic acid. Int. J. Food Microbiol. 1998, 40, 177–183. [Google Scholar] [CrossRef]
- Debonne, E.; Vermeulen, A.; Bouboutiefski, N.; Ruyssen, T.; Van Bockstaele, F.; Eeckhout, M.; Devlieghere, F. Modelling and validation of the antifungal activity of DL-3-phenyllactic acid and acetic acid on bread spoilage moulds. Food Microbiol. 2020, 88, 103407. [Google Scholar] [CrossRef]
- Ning, Y.; Fu, Y.; Hou, L.; Ma, M.; Wang, Z.; Li, X.; Jia, Y. iTRAQ-based quantitative proteomic analysis of synergistic antibacterial mechanism of phenyllactic acid and lactic acid against Bacillus cereus. Food Res. Int. 2021, 139, 109562. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Ying, J.-P.; Xin, W.-G.; Yang, L.-Y.; Li, X.-Z.; Zhang, Q.-L. Antibacterial activity and action target of phenyllactic acid against Staphylococcus aureus and its application in skim milk and cheese. J. Dairy Sci. 2022, 105, 9463–9475. [Google Scholar] [CrossRef] [PubMed]
- Dieuleveux, V.; Guéguen, M. Antimicrobial Effects of d-3-Phenyllactic Acid on Listeria monocytogenes in TSB-YE Medium, Milk, and Cheese. J. Food Prot. 1998, 61, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Shi, Y.; Shen, F.; Wang, H. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene. FEMS Microbiol. Lett. 2014, 356, 89–96. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef]
- Kourti, M.; Skaperda, Z.; Tekos, F.; Stathopoulos, P.; Koutra, C.; Skaltsounis, A.L.; Kouretas, D. The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules 2024, 29, 299. [Google Scholar] [CrossRef]
- Hormozi, M.; Marzijerani, A.S.; Baharvand, P. Effects of Hydroxytyrosol on Expression of Apoptotic Genes and Activity of Antioxidant Enzymes in LS180 Cells. Cancer Manag. Res. 2020, 12, 7913–7919. [Google Scholar] [CrossRef]
- Choińska, R.; Dąbrowska, K.; Świsłocka, R.; Lewandowski, W.; Świergiel, A.H. Antimicrobial Properties of Mandelic Acid, Gallic Acid and their Derivatives. Mini-Rev. Med. Chem. 2021, 21, 2544–2550. [Google Scholar] [CrossRef]
- De Montijo-Prieto, S.; Razola-Díaz, M.D.C.; Barbieri, F.; Tabanelli, G.; Gardini, F.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants 2023, 12, 298. [Google Scholar] [CrossRef]
- Michlmayr, H.; Kneifel, W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef]
- Landete, J.M.; Curiel, J.A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J. Funct. Foods 2014, 7, 322–329. [Google Scholar] [CrossRef]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.J.; Gellynck, X.; De Winne, A.; Matemu, A.O.; Raes, K. Effect of Lactic Acid Fermentation on Volatile Compounds and Sensory Characteristics of Mango (Mangifera indica) Juices. Foods 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, X.; Li, J.; Wu, J.; Jiang, S.; Xue, H.; Zhang, J.; Jha, R.; Wang, R. Lactic acid bacteria fermentation improves physicochemical properties, bioactivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chem. 2024, 453, 139646. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef] [PubMed]
UFR | FR | |
---|---|---|
Viable cells (Log CFU/mL) | - | 9.84 ± 0.03 ** |
L* | 25.74 ± 0.54 | 22.51 ± 0.43 * |
a* | 36.83 ± 1.17 | 38.27 ± 1.59 |
b* | 12.11 ± 1.78 | 11.67 ± 1.89 |
Total soluble solids (%) | 6.10 ± 0.00 | 5.83 ± 0.07 * |
Total sugar (μg/mL) | 463.38 ± 5.30 | 458.49 ± 8.62 |
Reducing sugar (μg/mL) | 278.62 ± 2.27 | 297.63 ± 9.18 |
pH | 3.25 ± 0.00 | 3.12 ± 0.00 ** |
Total acidity (g/L) | 9.92 ± 0.00 | 12.24 ± 0.09 ** |
Total polyphenols (μg/mL) | 346.39 ± 4.14 | 336.50 ± 7.24 |
Total flavonoids (μg/mL) | 482.28 ± 3.39 | 446.84 ± 3.33 ** |
DPPH radical scavenging rate (%) | 64.69 ± 0.60 | 69.37 ± 0.54 * |
ABTS radical scavenging rate (%) | 93.17 ± 0.39 | 93.09 ± 0.49 |
Hydroxyl radical scavenging rate (%) | 89.25 ± 1.06 | 95.38 ± 1.13 * |
Reducing power (%) | 86.34 ± 1.40 | 80.13 ± 1.37 ** |
Category | Compounds | Ionization Model | Precursor Ions (Da) | Product Ions (Da) | Formula | VIP | FC | Type |
---|---|---|---|---|---|---|---|---|
Amino acids and derivatives (20) | Asp-Phe-Arg | [M+H]+ | 437.21 | 156.08 | C19H28N6O6 | 1.51 | 108.26 | up |
Cyclo(L-Phe-trans-4-hydroxy-L-Pro) | [M+H]+ | 261.12 | 120.08 | C14H16N2O3 | 1.49 | 48.71 | up | |
N-(1-deoxy-1-fructosyl)phenylalanine | [M-H]- | 326.12 | 164.07 | C15H21NO7 | 1.54 | 36.89 | up | |
Gly-Gly-Gln | [M+H]+ | 261.12 | 136.07 | C9H16N4O5 | 1.52 | 36.62 | up | |
Cyclo(L-tyrosyl-D-proline) | [M+H]+ | 261.12 | 136.08 | C14H16N2O3 | 1.53 | 33.71 | up | |
Cyclo (L-prolyl-L-tyrosine) | [M+H]+ | 261.12 | 136.08 | C14H16N2O3 | 1.53 | 32.12 | up | |
Cyclo(D-Val-L-Pro) | [M+H]+ | 197.13 | 70.07 | C10H16N2O2 | 1.54 | 30.74 | up | |
Gly-Val-Val | [M+H]+ | 274.18 | 129.1 | C12H23N3O4 | 1.54 | 23.75 | up | |
Pro-Asn-Leu | [M+H]+ | 343.2 | 70.07 | C15H26N4O5 | 1.46 | 22.36 | up | |
Cyclo(Pro-Val) | [M+H]+ | 197.13 | 72.08 | C10H16N2O2 | 1.54 | 22.12 | up | |
Tyr-Pro-Lys | [M+H]+ | 407.23 | 323.2 | C20H30N4O5 | 1.48 | 21.70 | up | |
Pro-Gln-Val | [M+H]+ | 343.2 | 155.09 | C15H26N4O5 | 1.46 | 18.76 | up | |
N-(1-deoxy-1-fructosyl)leucine | [M-H]- | 292.14 | 130.09 | C12H23NO7 | 1.54 | 16.12 | up | |
Cyclo(L-Ala-L-Pro) | [M+H]+ | 169.1 | 70.07 | C8H12N2O2 | 1.54 | 15.34 | up | |
Gly-Leu-Val | [M+H]+ | 288.19 | 143.12 | C13H25N3O4 | 1.53 | 13.50 | up | |
L-alanyl-L-leucine | [M+H]+ | 203.14 | 86.1 | C9H18N2O3 | 1.54 | 13.26 | up | |
Ile-Glu-Val | [M+H]+ | 360.21 | 229.12 | C16H29N3O6 | 1.54 | 13.17 | up | |
L-seryl-L-isoleucine | [M+H]+ | 219.13 | 60.04 | C9H18N2O4 | 1.42 | 12.46 | up | |
Cyclo(Pro-Phe) | [M+H]+ | 245.13 | 120.08 | C14H16N2O2 | 1.52 | 12.14 | up | |
Ala-Ile-Asn | [M+H]+ | 317.18 | 120.08 | C13H24N4O5 | 1.54 | 11.89 | up | |
Phenolic acids (8) | 2-Hydroxy-3-phenylpropanoic acid | [M-H]- | 165.06 | 103.06 | C9H10O3 | 1.54 | 257.27 | up |
Tropic acid | [M-H]- | 165.06 | 103.06 | C9H10O3 | 1.54 | 228.82 | up | |
3-(4-Hydroxyphenyl)-propionic acid | [M-H]- | 165.06 | 119.05 | C9H10O3 | 1.54 | 103.59 | up | |
DL-3-phenyllactic acid | [M-H]- | 165.06 | 119.05 | C9H10O3 | 1.54 | 58.35 | up | |
Methyl 2,4-dihydroxyphenylacetate | [M-H]- | 181.05 | 135.04 | C9H10O4 | 1.54 | 53.85 | up | |
2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid | [M-H]- | 181.05 | 135.04 | C9H10O4 | 1.54 | 45.35 | up | |
4-Hydroxyphenyllactic acid | [M-H]- | 181.05 | 135.04 | C9H10O4 | 1.54 | 45.13 | up | |
10-Hydroxymajoroside | [M-H]- | 403.12 | 241.07 | C17H24O11 | 1.54 | 12.81 | up | |
Alkaloids (7) | Deoxymutaaspergillic acid | [M+H]+ | 211.14 | 70.06 | C11H18N2O2 | 1.54 | 59.64 | up |
N-benzoyl-2-aminoethyl-β-D-glucopyranoside | [M+H]+ | 328.13 | 310.12 | C15H21NO7 | 1.54 | 27.27 | up | |
Tryptamine | [M+H]+ | 161.11 | 144.08 | C10H12N2 | 1.53 | 16.75 | up | |
1,2-Dihydro-13-norgalanthamine | [M+H]+ | 276.16 | 120.08 | C16H21NO3 | 1.54 | 12.81 | up | |
(22R,25R)-16β-H-22a-N-spirosol-3β-ol-5-ene-3-O-rhamnosyl(1→2)[rhamnosyl(1→4)]glucoside | [M+H]+ | 868.5 | 868.5 | C45H73NO15 | 1.54 | 12.64 | up | |
N-feruloyltyramine 4′-glucoside | [M+H]+ | 476.2 | 177.05 | C24H29NO9 | 1.51 | 12.42 | up | |
2-(Acetylamino)-3-phenyl-2-propenoic acid | [M+H]+ | 206.08 | 118.07 | C11H11NO3 | 1.54 | 12.41 | up | |
Organic acids (6) | 2-Hydroxy-4-methylpentanoic acid | [M-H]- | 131.07 | 85.07 | C6H12O3 | 1.54 | 61.26 | up |
2-Hydroxyisocaproic acid | [M-H]- | 131.07 | 85.07 | C6H12O3 | 1.54 | 54.26 | up | |
Muconic acid | [M-H]- | 141.02 | 59.01 | C6H6O4 | 1.52 | 20.69 | up | |
L-Tartaric acid | [M-H]- | 149.01 | 87.01 | C4H6O6 | 1.54 | 15.80 | up | |
L-Lactic acid | [M-H]- | 89.02 | 71.02 | C3H6O3 | 1.53 | 13.29 | up | |
Oxalic acid | [M-H]- | 88.99 | 70.98 | C2H2O4 | 1.53 | 13.07 | up | |
Nucleotides and derivatives (3) | 2′-Deoxyadenosine | [M+H]+ | 252.11 | 136.06 | C10H13N5O3 | 1.51 | 173.83 | up |
Inosine | [M+H]+ | 269.09 | 137.05 | C10H12N4O5 | 1.54 | 12.33 | up | |
9-(Arabinosyl)hypoxanthine | [M-H]- | 267.07 | 135.03 | C10H12N4O5 | 1.53 | 12.18 | up | |
Lignans and Coumarins (1) | Dihydrosesamin | [M+H]+ | 357.13 | 307.09 | C20H20O6 | 1.44 | 0.07 | down |
Lipids (1) | Punicic acid | [M+H]+ | 279.23 | 95.09 | C18H30O2 | 1.45 | 19.10 | up |
Others (4) | 2,6-Dimethoxybenzaldehyde | [M-H]- | 165.06 | 119.05 | C9H10O3 | 1.54 | 57.99 | up |
3-Ethyl-7-hydroxyphthalide | [M+H]+ | 179.07 | 119.05 | C10H10O3 | 1.41 | 22.87 | up | |
2,3-Dihydroxypropanal | [M-H]- | 89.02 | 71.02 | C3H6O3 | 1.53 | 12.48 | up | |
Nicotinamide | [M+H]+ | 123.06 | 80.05 | C6H6N2O | 1.54 | 0.01 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Qin, Y.; Qiu, S.; Luo, Y. Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei. Foods 2024, 13, 3666. https://doi.org/10.3390/foods13223666
Shi F, Qin Y, Qiu S, Luo Y. Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei. Foods. 2024; 13(22):3666. https://doi.org/10.3390/foods13223666
Chicago/Turabian StyleShi, Feng, Yin Qin, Shuyi Qiu, and You Luo. 2024. "Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei" Foods 13, no. 22: 3666. https://doi.org/10.3390/foods13223666
APA StyleShi, F., Qin, Y., Qiu, S., & Luo, Y. (2024). Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei. Foods, 13(22), 3666. https://doi.org/10.3390/foods13223666