Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chocolate Samples
2.2. Extraction of Butterfly Pea Flower, Sappan Wood, Milk and White Compounds
2.3. Antioxidant Properties Analysis
2.3.1. Analysis of the Total Phenolic Content
2.3.2. Analysis of the Total Flavonoid Content
2.3.3. Analysis of DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
2.3.4. Analysis of Ferric Reducing Antioxidant Power (FRAP) Activity
2.4. Physicochemical Analysis
2.4.1. Analysis of the Moisture Content
2.4.2. Analysis of Colour
2.5. Rheological Properties Analysis
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Moisture Content and Antioxidant Properties of Sappan Wood and Butterfly Pea Flower
3.2. Antioxidant Properties of Chocolates Formulated with Sappan Wood and Butterfly Pea Flower
3.3. Colours of Chocolates Formulated with Sappan Wood and Butterfly Pea Flower
3.4. Moisture Content of Chocolates Formulated with Sappan Wood and Butterfly Pea Flower
3.5. Flow Properties of Chocolates Formulated with Sappan Wood and Butterfly Pea Flower
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuenter, E.; Foubert, K.; Pieters, L. Mood components in cocoa and chocolate: The mood pyramid. Planta Med. 2018, 84, 839–844. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Y. Applications of Life Cycle Assessment in the Chocolate Industry: A State-of-the-Art Analysis Based on Systematic Review. Foods 2024, 13, 915. [Google Scholar] [CrossRef] [PubMed]
- Cadby, J.; Araki, T. Towards ethical chocolate: Multicriterial identifiers, pricing structures, and the role of the specialty cacao industry in sustainable development. SN Bus. Econ. 2021, 1, 44. [Google Scholar] [CrossRef]
- Ewens, H.; Metilli, L.; Simone, E. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. J. Curr. Res. Food Sci. 2021, 4, 105–114. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Fibri, D.L.N.; Saputro, A.D.; Sunarharum, W.B. Investigating the elicited emotion of single–origin chocolate towards sustainable chocolate production in Indonesia. Open Agric. 2022, 7, 382–391. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Marettama, N.M.; Fauza, G.; Affandi, D.R. Can ingredients and information interventions affect the hedonic level and (emo–sensory) perceptions of the milk chocolate and cocoa drink’s consumers? Open Agric. 2022, 7, 847–856. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Developing functional white chocolate by incorporating different forms of EPA and DHA-Effects on product quality. LWT 2018, 87, 177–185. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Rahayu, E.S.; Fibri, D.L.N. Revisiting the development of probiotic–based functional chocolates. Rev. Agric. Sci. 2021, 9, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Barišić, V.; Icyer, N.C.; Akyil, S.; Toker, O.S.; Flanjak, I.; Ačkar, Đ. Cocoa based beverages–Composition, nutritional value, processing, quality problems and new perspectives. Trends Food Sci. TechnoL. 2023, 132, 65–75. [Google Scholar] [CrossRef]
- Praseptiangga, D.; Invicta, S.E.; Khasanah, L.U. Sensory and physicochemical characteristics of dark chocolate bar with addition of cinnamon (Cinnamomum burmannii) bark oleoresin microcapsule. J. Food Sci. Technol. 2019, 56, 4323–4332. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Saputro, A.D.; Rottiers, H.; Van de Walle, D.; Dewettinck, K. Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles. Eur. Food Res. Technol. 2018, 244, 1185–1202. [Google Scholar] [CrossRef]
- Meng, C.C.; Jalil, A.M.M.; Ismail, A. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 2009, 14, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.; Ahmad, M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med. 2015, 8, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Vij, T.; Anil, P.P.; Shams, R.; Dash, K.K.; Kalsi, R.; Pandey, V.K.; Harsányi, E.; Kovács, B.; Shaikh, A.M. A Comprehensive review on bioactive compounds found in Caesalpinia sappan. Molecules 2023, 28, 6247. [Google Scholar] [CrossRef]
- Rajput, M.S.; Nirmal, N.P.; Nirmal, S.J.; Santivarangkna, C. Bio-actives from Sappan: Recent advancements in phytochemistry and pharmacology. S. Afr. J. Bot. 2022, 151, 60–74. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Extraction methods of butterfly pea (Clitoria ternatea L.) flower and biological activities of its phytochemicals. J. Food Sci. Technol. 2021, 58, 2054–2067. [Google Scholar] [CrossRef]
- Multisona, R.R.; Shirodkar, S.; Arnold, M.; Gramza-Michalowska, A. Butterfly pea flower and its bioactive compounds: Potential use as microencapsulated ingredient for functional foods. Appl. Sci. 2023, 13, 2134. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic Medicine Clitoria ternatea-From Traditional Use to Scientific Assessment. J. Ethnopharmacol. 2008, 120, 291–301. [Google Scholar] [CrossRef]
- Kazuma, K.; Noda, N.; Suzuki, M. Flavonoid Composition Related to Petal Color in Different Lines of Clitoria ternatea. Phytochemistry 2003, 64, 1133–1139. [Google Scholar] [CrossRef]
- Shen, Y.; Du, L.; Zeng, H.; Zhang, X.; Prinyawiwatkul, W.; Alonso-Marenco, J.R.; Xu, Z. Butterfly Pea (Clitoria ternatea) Seed and Petal Extracts Decreased HEp-2 Carcinoma Cell Viability. Int. J. Food Sci. Technol. 2016, 51, 1860–1868. [Google Scholar] [CrossRef]
- Srichaikul, B. Ultrasonication Extraction, Bioactivity, Antioxidant Activity, Total Flavonoid, Total Phenolic and Antioxidant of Clitoria ternatea Linn Flower Extract for Anti-Aging Drinks. Pharmacogn. Mag. 2018, 14, 322–327. [Google Scholar] [CrossRef]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Santacruz, A.; Jacobo-Velázquez, D.A. Chocolate as carrier to deliver bioactive ingredients: Current advances and future perspectives. Foods 2021, 10, 2065. [Google Scholar] [CrossRef] [PubMed]
- Lestari, P.D.; Kawiji, K.; Yulviatun, A.; Martien, R.; Muhammad, D.R.A. Physical and sensory characteristics of milk and white compound chocolate added with Asian pigeonwings flower (Clitoria ternatea). In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 332, p. 01001. [Google Scholar]
- Okstaviyani, E.; Kawiji, K.; Anandhito, R.B.K.; Nursiwi, A.; Muhamnmad, D.R.A. The impact of Caesalpinia sappan L. powder addition on the quality attributes of white and milk chocolates. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 332, p. 01002. [Google Scholar]
- Hwang, M.-H.; Jeon, H.-L.; Kim, H.-D.; Lee, S.-W.; Kim, M.-R. Quality characteristics and antioxidant activities of chocolateadded with mulberry pomace. Korean J. Food Cook. Sci. 2012, 28, 479–487. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Comprehensive evaluation of phenolic profile in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. Food Res. Int. 2018, 112, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lončarević, I.; Pajin, B.; Tumbas Šaponjac, V.; Petrović, J.; Vulić, J.; Fišteš, A.; Jovanović, P. Physical, sensorial and bioactive characteristics of white chocolate with encapsulated green tea extract. J. Sci. Food Agric. 2019, 99, 5834–5841. [Google Scholar] [CrossRef]
- Albak, F.; Tekin, A.R. Development of Functional Chocolate with Spices and Lemon Peel Powder by using Response Surface Method: Development of Functional Chocolate. Akad. Gıda 2014, 12, 19–25. [Google Scholar]
- Belščak, A.; Komes, D.; Horžić, D.; Ganić, K.K.; Karlović, D. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res. Int. 2009, 42, 707–716. [Google Scholar] [CrossRef]
- Udayaprakash, N.K.; Ranjithkumar, M.; Deepa, S.; Sripriya, N.; Al-Arfaj, A.A.; Bhuvaneswari, S. Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume. Ind. Crops Prod. 2015, 69, 175–179. [Google Scholar] [CrossRef]
- AOAC. Method No. 925.10. In Official Methods of Analysis Official Method for Moisture; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Vidana Gamage, G.C.; Lim, Y.Y.; Choo, W.S. Anthocyanins from Clitoria ternatea L. flower: Biosynthesis, extraction, stability, antioxidant activity, and applications. Front. Plant Sci. 2021, 12, 792303. [Google Scholar] [CrossRef]
- Raja, K.; Gokula Narayanan, S.N.; Thiruvengadam, S.; Romauld, I. The influence of chocolate fortification with Centella asiatica, Abelmoschus esculentus, and Psidium guajava on the content of biologically active substances. J. Food Process. Preserv. 2021, 45, e15271. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of freeze-dried phenolic-rich plant powders on the bioactive compounds profile, antioxidant activity and aroma of different types of chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef]
- Popov-Raljić, J.V.; Laličić-Petronijević, J.G. Sensory properties and color measurements of dietary chocolates with different compositions during storage for up to 360 days. Sensors 2009, 9, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Żyżelewicz, D.; Krysiak, W.; Nebesny, E.; Budryn, G. Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. Eur. Food Res. Technol. 2014, 238, 549–563. [Google Scholar] [CrossRef]
- Zohreh, D. Properties of dark chocolate enriched with free and encapsulated chlorogenic acids extracted from green coffee. Braz. J. Food Technol. 2020, 23, e2019118. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Palabiyik, I.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Poyrazoglu, E.S.; Sagdic, O. Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality. Food Chem. 2018, 254, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Konar, N.; Toker, O.S.; Rasouli Pirouzian, H.; Oba, S.; Genc Polat, D.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Enrichment of milk chocolate by using EPA and DHA originated from various origins: Effects on product quality. Sugar Tech. 2018, 20, 745–755. [Google Scholar] [CrossRef]
- SNI Cokelat dan Produk Cokelat 7934:2014; Badan Standardisasi Nasional: Jakarta, Indonesia, 2014.
- Saputro, A.D.; Van de Walle, D.; Kadivar, S.; Bin Sintang, M.D.; Van der Meeren, P.; Dewettinck, K. Investigating the rheological, microstructural and textural properties of chocolates sweetened with palm sap-based sugar by partial replacement. Eur. Food Res. Technol. 2017, 243, 1729–1738. [Google Scholar] [CrossRef]
- Goktas, H.; Baycar, A.; Konar, N.; Yaman, M.; Sagdic, O. Using paprika extract in chocolate spread and white compound chocolate: Effects on color stability and bioavailability. J. Food Meas. Charact. 2023, 17, 3403–3412. [Google Scholar] [CrossRef]
- Lončarević, I.; Pajin, B.; Fišteš, A.; Šaponjac, V.T.; Petrović, J.; Jovanović, P.; Vulić, J.; Zarić, D. Enrichment of white chocolate with blackberry juice encapsulate: Impact on physical properties, sensory characteristics and polyphenol content. LWT 2018, 92, 458–464. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Benković, M.; Karlović, S.; Hečimović, I.; Ježek, D.; Bauman, I. Innovative formulations of chocolates enriched with plant polyphenols from Rubus idaeus L. leaves and characterization of their physical, bioactive and sensory properties. Food Res. Int. 2012, 48, 820–830. [Google Scholar] [CrossRef]
- Codex Alimentarius CODEX STAN 87-1981. Standard for Chocolate and Chocolate Products. Amended in 2016. 2022. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B87-1981%252FCXS_087e.pdf (accessed on 1 September 2024).
- European Parliament and the Council. Directive 2000/36/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32000L0036 (accessed on 1 September 2024).
- Food and Drug Administration. Code of Federal Regulations Title 21 Part 163. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-163 (accessed on 1 September 2024).
- Hinneh, M.; Van de Walle, D.; Haeck, J.; Abotsi, E.E.; De Winne, A.; Saputro, A.D.; Messens, K.; Van Durme, J.; Afoakwa, E.O.; De Cooman, L.; et al. Applicability of the melanger for chocolate refining and Stephan mixer for conching as small-scale alternative chocolate production techniques. J. Food Eng. 2019, 253, 59–71. [Google Scholar] [CrossRef]
Parameter | Sappan Wood | Butterfly Pea Flower |
---|---|---|
Moisture content (%) | 8.8 ± 0.2 | 14.9 ± 0.2 |
Total phenolic content (mg GAE/g) | 82.4 ± 4.6 | 19.6 ± 0.5 |
Total flavonoid content (mg QE/g) | 12.6 ± 0.3 | 9.3 ± 0.2 |
DPPH (% inhibition) | 83.6 ± 0.5 | 87.7 ± 0.0 |
FRAP (mg AAE/g) | 23.1 ± 1.1 | 8.3 ± 0.4 |
Type | Chroma | Hue | Whiteness Index | ∆E |
---|---|---|---|---|
Milk chocolate compounds | ||||
Choc control | 15.7 ± 0.1 g | 57.9 ± 0.2 c | 34.1 ± 0.2 e | - |
Choc SW 5% | 13.7 ± 0.1 f | 55.5 ± 0.2 b | 30.8 ± 0.3 d | 4.4 ± 0.5 a |
Choc SW 10% | 12.3 ± 0.2 e | 54.3 ± 0.7 ab | 29.9 ± 0.3 c | 6.1 ± 0.5 b |
Choc SW 15% | 11.2 ± 0.3 d | 55,0 ± 0.4 a | 28.6 ± 0.1 b | 8.0 ± 0.2 c |
Choc BF 5% | 8.0 ± 0.1 c | 58.6 ± 0.4 c | 30.0 ± 0.3 c | 9.6 ± 0.5 d |
Choc BF 10% | 5.7 ± 0.1 b | 59.8 ± 0.5 d | 28.3 ± 0.1 b | 12.5 ± 0.2 e |
Choc BF 15% | 4.0 ± 0.1 a | 57.9 ± 1.5 c | 27.1 ± 0.1 a | 14.7 ± 0.3f |
White chocolate compounds | ||||
Choc control | 20.4 ± 0.3 f | −73.3 ± 0.2 b | 75.6 ± 0.2 f | - |
Choc SW 5% | 21.9 ± 0.3 g | 61.5 ± 0.2 g | 40.4 ± 0.3 e | 45.1 ± 0.3 a |
Choc SW 10% | 19.3 ± 0.4 e | 58.2 ± 0.5 f | 33.9 ± 0.6 c | 52.5 ± 0.4 b |
Choc SW 15% | 16.3 ± 0.1 d | 55.7 ± 0.3 e | 31.0 ± 0.2 b | 56.0 ± 0.3 c |
Choc BF 5% | 6.3 ± 0.1 c | −75.9 ± 0.6 a | 38.7 ± 0.6 d | 54.6 ± 0.6 d |
Choc BF 10% | 5.6 ± 0.2 b | −67.9 ± 1.2 c | 31.5 ± 0.7 b | 60.8 ± 0.5 e |
Choc BF 15% | 3.6 ± 0.1 a | −64.0 ± 1.5 d | 29.7 ± 0.4 a | 61.7 ± 0.1 f |
Type | Shear Stress (Pa) | Apparent Viscosity (mPa·s) | Torque (µN·m) |
---|---|---|---|
Milk Compound Chocolate | |||
Choc control | 490 ± 20 a | 9850 ± 360 a | 26,180 ± 970 a |
Choc SW 5% | 890 ± 80 c | 17,760 ± 1670 c | 47,200 ± 4440 c |
Choc SW 10% | 1050 ± 25 d | 21,000 ± 500 d | 55,820 ± 1340 d |
Choc SW 15% | 1350 ± 10 f | 27,500 ± 170 f | 73,026 ± 462.4 f |
Choc BF 5% | 650 ± 40 b | 13,370 ± 240 b | 35,520 ± 640 b |
Choc BF 10% | 850 ± 50 c | 16,960 ± 1070 c | 45,060 ± 2840 c |
Choc BF 15% | 1230 ± 20 e | 24,640 ± 430 e | 65,480 ± 1140 e |
White Compound Chocolate | |||
Choc control | 150 ± 10 a | 3000 ± 190 a | 7970 ± 520 a |
Choc SW 5% | 360 ± 40 ab | 7230 ± 780 ab | 19,220 ± 2070 ab |
Choc SW 10% | 400 ± 50 bc | 8170 ± 3090 bc | 21,720 ± 8220 bc |
Choc SW 15% | 580 ± 150 c | 11,670 ± 3040 c | 30,980 ± 8090 c |
Choc BF 5% | 170 ± 30 a | 3420 ± 580 a | 9080 ± 1540 a |
Choc BF 10% | 240 ± 5 ab | 4860 ± 110 ab | 12,920 ± 280 ab |
Choc BF 15% | 340 ± 7 ab | 6770 ± 140 ab | 17,990 ± 370 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okstaviyani, E.; Lestari, P.D.; Kawiji, K.; Anandito, R.B.K.; Yulviatun, A.; Sefrienda, A.R.; Muhammad, D.R.A. Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients. Foods 2024, 13, 3694. https://doi.org/10.3390/foods13223694
Okstaviyani E, Lestari PD, Kawiji K, Anandito RBK, Yulviatun A, Sefrienda AR, Muhammad DRA. Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients. Foods. 2024; 13(22):3694. https://doi.org/10.3390/foods13223694
Chicago/Turabian StyleOkstaviyani, Elinda, Puput Dwi Lestari, Kawiji Kawiji, Raden Baskara Katri Anandito, Anastriyani Yulviatun, Ardiba Rakhmi Sefrienda, and Dimas Rahadian Aji Muhammad. 2024. "Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients" Foods 13, no. 22: 3694. https://doi.org/10.3390/foods13223694
APA StyleOkstaviyani, E., Lestari, P. D., Kawiji, K., Anandito, R. B. K., Yulviatun, A., Sefrienda, A. R., & Muhammad, D. R. A. (2024). Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients. Foods, 13(22), 3694. https://doi.org/10.3390/foods13223694