Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Determination of Polysaccharide Content
2.3. Monosaccharide Composition Analysis
2.4. Deproteinization
2.5. ABTS Radical Scavenging Ability
2.6. DPPH Radical Scavenging Ability
2.7. Hydroxyl Radical Scavenging Activity
2.8. Complex Combination of LBP and CA
2.9. Cell Culture
2.10. Cell Viability Assay
2.11. Measurement of Nitric Oxide (NO)
2.12. Reactive Oxygen Species Assay
2.13. ELISA Assessment
2.14. Data Analysis
3. Results
3.1. Component Analysis
3.2. In Vitro Antioxidant Activity of CA and LBP
3.3. In Vitro Antioxidant Activity of CA-LBP
3.3.1. ABTS Scavenging Capacity of CA-LBP
3.3.2. DPPH Scavenging Capacity of CA-LBP
3.3.3. Hydroxyl Radical Scavenging Ability of CA-LBP
3.4. Effects of Cell Activity
3.5. Effect of CA-LBP on LPS-Induced Inflammatory Factor Release from NR8383 Cells Detected by ELISA
3.6. Inhibitory Effect of CA-LBP on LPS-Induced NO Release
3.7. Effect of CA-LBP on LPS-Induced ROS Release in NR8383 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, R.; Xia, T.; Wang, Y.; Ding, Z.H.; Li, W.; Chen, Y.; Peng, M.M.; Li, C.Q.; Zhang, H.; Shu, Z.P. Physalin B ameliorates inflammatory responses in lipopolysaccharide-induced acute lung injury mice by inhibiting NF-κB and NLRP3 via the activation of the PI3K/Akt pathway. J. Ethnopharmacol. 2022, 284, 114777. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lei, Y.; Lei, J.; Li, H. All-trans retinoic acid promotes macrophage phagocytosis and decreases inflammation via inhibiting CD14/TLR4 in acute lung injury. Mol. Med. Rep. 2021, 24, 868. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Cai, X.; Wang, M.; Chen, L.; Zhong, R.Q.; Liu, L.; Yi, B.; Hou, F.J.; Zhang, H.F. Chlorogenic acid supplementation alleviates dextran sulfate sodium (DSS)-induced colitis via inhibiting inflammatory responses and oxidative stress, improving gut barrier integrity and Nrf-2/HO-1 pathway. J. Funct. Foods 2021, 87, 104808. [Google Scholar] [CrossRef]
- Ma, R.H.; Zhang, X.X.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Research progress of Lycium barbarum L. as functional food: Phytochemical composition and health benefits. Curr. Opin. Food Sci. 2022, 47, 100871. [Google Scholar] [CrossRef]
- Zhou, W.; Kan, X.; Chen, G.; Sun, Y.; Ran, L.W.; Yan, Y.M.; Mi, J.; Lu, L.; Zeng, X.X.; Cao, Y.L. The polysaccharides from the fruits of Lycium barbarum L. modify the gut community profile and alleviate dextran sulfate sodium-induced colitis in mice. Int. J. Biol. Macromol. 2022, 222, 2244–2257. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, G.; He, L.; Wang, Z.; Zibrila, A.I.; Niu, B.C.; Gong, H.Y.; Xu, J.N.; Soong, L.; Li, C.F.; et al. Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway. Toxicol. Rep. 2021, 8, 657–667. [Google Scholar] [CrossRef]
- Kou, R.; Zuo, G.; Liu, J.; Di, D.L.; Guo, M. Structural properties and hypoglycaemic activity of polysaccharides extracted from the fruits of Lycium barbarum L. using various extraction media. Ind. Crops Prod. 2022, 188, 115725. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, Y.; Lou, W.; Wang, B.; Li, B.; Liu, X.F.; Yang, J.J.; Yang, B.; Liu, J.F.; Di, D.L. Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum. Food Biosci. 2022, 47, 101664. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, X.; Hu, X.; Liu, R.; Zhao, Z.G.; Wang, S.H.; Zhang, R.; Guo, K.; Luo, L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int. J. Biol. Macromol. 2023, 232, 123500. [Google Scholar] [CrossRef]
- Zheng, G.; Ren, H.; Li, H.; Li, X.H.; Dong, T.C.; Xu, S.M.; Yan, Y.L.; Sun, B.K.; Bai, J.W.; Li, Y.S. Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed. Pharmacother. 2019, 111, 733–739. [Google Scholar] [CrossRef]
- Ren, T.; Ren, Z.; Wang, S.; Jing, X.X. Lycium barbarum polysaccharides improve gut microbiota composition and alleviate pulmonary inflammatory damage in allergic asthma mice by inhibiting the IL-15RA/FUT2 pathway. J. Funct. Foods 2023, 108, 105729. [Google Scholar] [CrossRef]
- Li, J.; Ge, H.; Xu, Y.; Xie, J.H.; Karim, N.; Yan, F.J.; Mo, J.L.; Chen, W. Chlorogenic acid alleviates oxidative damage in hepatocytes by regulating miR-199a-5p/GRP78 axis. Food Biosci. 2023, 53, 102595. [Google Scholar] [CrossRef]
- Jelena, T.; Svetlana, M.; Jasmina, M.D.M.; Miloš, M.; Dejan, M. Antioxidative mechanisms in chlorogenic acid. Food Chem. 2017, 237, 390–398. [Google Scholar]
- Shin, H.S.; Satsu, H.; Bae, M.J.; Zhao, Z.H.; Ogiwara, H.; Totsuka, M.; Shimizu, M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem. 2015, 168, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lan, W.; Xie, J. Antimicrobial and anti-biofilm activities of chlorogenic acid grafted chitosan against Staphylococcus aureus. Microb. Pathog. 2022, 173, 105748. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, B.; Zheng, Y.; Liu, X.C.; Rostyslav, P.; Finiuk, N.; Sik, A.; Stoika, R.; Liu, K.C.; Jin, M. Neuroprotective effect of chlorogenic acid on Parkinson’s disease like symptoms through boosting the autophagy in zebrafish. Eur. J. Pharmacol. 2023, 956, 175950. [Google Scholar] [CrossRef]
- Gupta, A.; Atanasov, A.G.; Li, Y.; Kumar, N.; Bishayee, A. Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action. Pharmacol. Res. 2022, 186, 106505. [Google Scholar] [CrossRef]
- Xue, H.; Wei, M.; Ji, L. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects. Phytomedicine 2023, 118, 154961. [Google Scholar] [CrossRef]
- He, F.; Gao, F.; Cai, N.; Jiang, M.; Wu, C. Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). Phytomedicine 2022, 107, 154474. [Google Scholar] [CrossRef]
- Wang, L.; Du, H.; Chen, P. Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed. Pharmacother. 2020, 131, 110673. [Google Scholar] [CrossRef]
- Siemińska-Kuczer, A.; Szymańska-Chargot, M.; Zdunek, A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef] [PubMed]
- Renard, C.M.G.C.; Watrelot, A.A.; Le Bourvellec, C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci. Technol. 2017, 60, 43–51. [Google Scholar] [CrossRef]
- Nagar, E.E.; Berenshtein, L.; Okun, Z.; Shigelman, A. The structure-dependent influence of high pressure processing on polyphenol-cell wall material (CWM) interactions and polyphenol-polyphenol association in model systems: Possible implication to accessibility. Innov. Food Sci. Emerg. Technol. 2020, 66, 102538. [Google Scholar] [CrossRef]
- Dobson, C.C.; Mottawea, W.; Rodrigue, A.; Buzati, P.B.L.; Hammami, R.; Power, K.A.; Bordenave, N. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. Adv. Food Nutr. Res. 2019, 90, 135–181. [Google Scholar]
- Liu, Q.L.; Zou, X.Q.; Yi, Y.; Wang, H.X.; Sun, Y. Non-covalent interaction of lotus root polysaccharide and ferulic acid and their complex properties. Chin. J. Food Sci. 2023, 23, 26–36. [Google Scholar]
- Zhang, N.; He, Z.; He, S.; Jing, P. Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res. Int. 2019, 116, 810–818. [Google Scholar] [CrossRef]
- Lu, H.; Liu, P.; Zhang, X.; Bao, T.; Wang, T.; Guo, L.; Li, Y.W.; Dong, X.Y.; Li, X.R.; Dong, Y.P.; et al. Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats. J. Funct. Foods 2021, 79, 104407. [Google Scholar] [CrossRef]
- Rui, L.; Xie, M.; Hu, B.; Zhou, L.; Saeeduddin, M.; Zeng, X.X. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr. Polym. 2017, 170, 206–216. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Tang, C.; Xiao, J.; Xie, B.J.; Sun, Z.D. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods 2018, 48, 134–143. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Ma, L.; Liu, Y.X.; Zou, C.; Kuang, H.Y.; Han, B.; Xiao, Y.L.; Wang, Y.B. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. Food Sci. Hum. Wellness 2023, 12, 2276–2285. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Zhao, D.; Fang, C.S.; He, D.; Yang, Q.; Yang, L.; Chen, R.; Tan, Q.Y.; Zhang, J.Q. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. Nanomed. Nanotechnol. Biol. Med. 2020, 29, 102261. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Ren, A.; Lu, Y.; Zhang, Y.Y.; Zhu, H.Y.; Tu, P.; Li, H.; Chen, D.F. The synergistic effect and mechanisms of flavonoids and polysaccharides from Houttuynia cordata on H1N1-induced pneumonia in mice. J. Ethnopharmacol. 2023, 302, 115761. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Chen, Z.; Chen, H.X. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma. Biomed. Pharmacother. 2017, 90, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Ye, G.; Li, G.; Cao, H.; Wang, Z.H.; Ji, S.G. RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification. Carbohydr. Polym. 2022, 278, 118928. [Google Scholar] [CrossRef]
- Tang, H.; Chen, C.; Wang, S.; Sun, G.J. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Int. J. Biol. Macromol. 2015, 77, 235–242. [Google Scholar] [CrossRef]
- Sevag, M.G.; Lackman, D.B.; Smolens, J. The isolation of the components of streptococcal nucleoproteins in serologically active form. J. Biol. Chem. 1938, 124, 42–49. [Google Scholar] [CrossRef]
- Zheng, X.; Chi, H.; Ma, S.; Zhao, L.; Cai, S.B. Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. LWT 2023, 178, 114629. [Google Scholar] [CrossRef]
- Muruthi, C.W.; Ngugi, M.P.; Runo, S.M.; Mwitari, P.G. In vitro antioxidant activities of Carissa edulis ((Forssk) Vahl) and Pappea capensis (Eckyl. & Zeyh) extracts. Heliyon 2023, 9, e12965. [Google Scholar]
- Wang, R.; Liu, W.; Liu, L.; Ma, F.Y.; Li, Q.; Zhao, P.; Ma, W.J.; Cen, J.; Liu, X.H. Characterization, in vitro digestibility, antioxidant activity and intestinal peristalsis in zebrafish of Dioscorea opposita polysaccharides. Int. J. Biol. Macromol. 2023, 250, 126155. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, C.; Ma, S.; Guo, S.Y.; Hu, X.D.; Zhou, Z.S.; Liu, Y.J.; Zhang, X.Q.; Jiang, R.X.; Zhang, Z.H.; et al. Shiwei Qingwen decoction regulates TLR4/NF-κB signaling pathway and NLRP3 inflammasome to reduce inflammatory response in lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol. 2023, 313, 116615. [Google Scholar] [CrossRef]
- Jose, S.P.; Ratheesh, M.; Sheethal, S.; Rajan, S.; Saji, S.; Narayanan, V.; Sandya, S. Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 drug)-A Siddha poly-herbal formulation against lipopolysaccharide induced inflammatory response in RAW-264.7 macrophages cells. J. Ethnopharmacol. 2022, 283, 114738. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cai, Z.N.; Mehmood, S.; Liang, L.L.; Liu, Y.; Zhang, H.Y.; Chen, Y.; Lu, Y.M. Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. Int. J. Biol. Macromol. 2019, 129, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chang, Y.; Wu, Y.; Liu, H.R.; Liu, Q.S.; Kang, Z.Z.; Wu, M.; Yin, H.; Duan, J.Y. A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. Int. J. Biol. Macromol. 2021, 183, 2074–2087. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, L.; Wang, Q.; Govindasamy, C.; Sivakumar, A.S.; Chen, X.J. Betanin ameliorates Lipopolysaccharide-induced acute lung injury in mice via inhibition of inflammatory response and oxidative stress. Arab. J. Chem. 2023, 16, 104763. [Google Scholar] [CrossRef]
- Jia, L.; Chen, Y.; Tian, Y.H.; Zhang, G. MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo. Exp. Ther. Med. 2018, 15, 1640–1646. [Google Scholar] [CrossRef]
- Ding, H.; Ci, X.; Cheng, H.; Yu, Q.L.; Li, D. Chicoric acid alleviates lipopolysaccharide-induced acute lung injury in mice through anti-inflammatory and anti-oxidant activities. Int. Immunopharmacol. 2019, 66, 169–176. [Google Scholar] [CrossRef]
- Qi, Y.; Duan, G.; Fan, G.; Peng, N. Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomed. Pharmacother. 2022, 147, 112620. [Google Scholar] [CrossRef]
- Zha, X.; Lu, C.; Cui, S.; Pan, L.H.; Zhang, H.L.; Wang, J.H.; Luo, J.P. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. Int. J. Biol. Macromol. 2015, 78, 429–438. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, Z.; Wen, Y.; Su, C.; Jiang, L.; He, S.; Shao, W. Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers 2019, 11, 57. [Google Scholar] [CrossRef]
Mannose | Rhamnose | Galacturonic Acid | Glucose | Galactose | Arabinose | |
---|---|---|---|---|---|---|
Content (mg/g) | 1.97 ± 0.05 | 17.92 ± 0.67 | 2.91 ± 0.14 | 38.78 ± 1.61 | 383.57 ± 5.21 | 3.93 ± 0.15 |
Concentration of CA (μg/mL) | ABTS (%) | DPPH (%) | Hydroxide Radical (%) |
---|---|---|---|
20 | 16.79 ± 3.73 g | 17.18 ± 0.35 g | 10.24 ± 1.26 g |
40 | 28.96 ± 1.23 f | 31.55 ± 0.41 f | 16.85 ± 0.51 f |
60 | 41.89 ± 1.59 e | 44.78 ± 0.83 e | 22.38 ± 0.40 e |
80 | 55.06 ± 2.28 d | 55.48 ± 1.85 d | 30.21 ± 0.50 d |
100 | 67.78 ± 1.60 c | 65.87 ± 2.47 c | 35.49 ± 0.43 c |
120 | 81.44 ± 1.87 b | 74.69 ± 2.39 b | 40.48 ± 0.72 b |
140 | 88.08 ± 2.57 a | 84.81 ± 1.37 a | 46.25 ± 0.37 a |
Concentration of LBP (mg/mL) | ABTS (%) | DPPH (%) | Hydroxide Radical (%) |
---|---|---|---|
1 | 19.26 ± 0.62 g | 21.82 ± 1.90 g | 44.68 ± 0.34 f |
2 | 36.31 ± 0.95 f | 32.55 ± 1.69 f | 51.41 ± 1.53 e |
3 | 53.95 ± 1.19 e | 40.28 ± 0.71 e | 57.65 ± 0.16 d |
4 | 69.01 ± 0.68 d | 48.10 ± 1.05 d | 60.30 ± 0.11 c |
5 | 79.65 ± 0.57 c | 54.75 ± 1.47 c | 62.28 ± 1.27 cd |
6 | 87.29 ± 0.21 b | 62.08 ± 0.07 b | 64.92 ± 0.51 b |
7 | 90.28 ± 0.05 a | 66.39 ± 0.74 a | 67.21 ± 0.46 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Zhao, D.; Song, J.; Gao, R.; Wang, X.; Rao, H.; Gao, X.; Hao, J. Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells. Foods 2024, 13, 3696. https://doi.org/10.3390/foods13223696
Yin J, Zhao D, Song J, Gao R, Wang X, Rao H, Gao X, Hao J. Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells. Foods. 2024; 13(22):3696. https://doi.org/10.3390/foods13223696
Chicago/Turabian StyleYin, Junye, Dandan Zhao, Jian Song, Ran Gao, Xuan Wang, Huan Rao, Xiaoguang Gao, and Jianxiong Hao. 2024. "Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells" Foods 13, no. 22: 3696. https://doi.org/10.3390/foods13223696
APA StyleYin, J., Zhao, D., Song, J., Gao, R., Wang, X., Rao, H., Gao, X., & Hao, J. (2024). Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells. Foods, 13(22), 3696. https://doi.org/10.3390/foods13223696