Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Color
2.2.3. Particle Size Distribution
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.6. X-Ray Diffraction (XRD)
2.2.7. Polarized Light Microscope
2.2.8. Scanning Electron Microscopy (SEM)
2.2.9. Oil-Binding Ability
2.2.10. Statistical Analysis
3. Results and Discussions
3.1. Color Properties
3.2. Thermal Properties
3.3. Particle Size
3.4. Fourier Transform Infrared Spectroscopy
3.5. X-Ray Diffraction
3.6. Polarized Light Microscopy
3.7. Morphological Properties
3.8. Oil-Binding Ability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, D.; Whistler, R. History and Future of Starch. In Starch: Chemistry and Technology, 2nd ed.; BeMiller, J., Whistler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–10. [Google Scholar]
- Mhaske, P.; Wang, Z.; Farahnaky, A.; Kasapis, S.; Majzoobi, M. Green and Clean Modification of Cassava Starch—Effects on Composition, Structure, Properties and Digestibility. Crit. Rev. Food Sci. Nutr. 2022, 62, 7801–7826. [Google Scholar] [CrossRef]
- Eliasson, A.C. Starch: Physicochemical and Functional Aspects. In Carbohydrates in Food; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hashish, R. Starch Modification. In Knowledge of Starch; Hashish, R., Ed.; Eagan Press: Tokyo, Japan, 2000; pp. 105–106. (In Japanese) [Google Scholar]
- Zhu, P.; Wang, M.; Du, X.; Chen, Z.; Liu, C.; Zhao, H. Morphological and Physicochemical Properties of Rice Starch Dry Heated with Whey Protein Isolate. Food Hydrocoll. 2020, 109, 106091. [Google Scholar] [CrossRef]
- Chiu, C.; Solarek, D. Modification of Starches. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 629–655. [Google Scholar]
- Qiu, C.; Li, X.; Ji, N.; Qin, Y.; Sun, Q.; Xiong, L. Rheological Properties and Microstructure Characterization of Normal and Waxy Corn Starch Dry Heated with Soy Protein Isolate. Food Hydrocoll. 2015, 48, 1–7. [Google Scholar] [CrossRef]
- Awaluddin, R.; Prasetya, A.W.; Nugraha, Y.; Suweleh, M.F.; Kusuma, A.P.; Indrati, O. Physical Modification and Characterization of Starch Using Pregelatinization and Co-Process of Various Tubers from Yogyakarta as an Excipient. AIP Conf. Proc. 2017, 1823, 20111. [Google Scholar]
- Olatunde, G.O.; Arogundade, L.K.; Orija, O.I. Chemical, Functional and Pasting Properties of Banana and Plantain Starches Modified by Pre-Gelatinization, Oxidation and Acetylation. Cogent Food Agric. 2017, 3, 1283079. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Zhou, Y.; Chen, Y.; Li, P.; Shan, Q.; Wu, K. Synthesis and Characterization of Pregelatinized Starch Modified CSH: Inspired by the Historic Binders. Constr. Build. Mater. 2022, 354, 129114. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual Modification of Taro Starch by Microwave and Other Heat Moisture Treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Physical Modification of Starch by Heat-Moisture Treatment and Annealing and Their Applications: A Review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef]
- Lorenz, K.; Kulp, K. Cereal-and Root Starch Modification by Heat-Moisture Treatment. I. Physico-Chemical Properties. Starch-Stärke 1982, 34, 50–54. [Google Scholar] [CrossRef]
- Butt, N.A.; Ali, T.M.; Hasnain, A. Rice Starch Citrates and Lactates: A Comparative Study on Hot Water and Cold Water Swelling Starches. Int. J. Biol. Macromol. 2019, 127, 107–117. [Google Scholar] [CrossRef]
- Sarifudin, A.; Sholichah, E.; Setiaboma, W.; Tongta, S. Cold Water Swelling Starch: Methods to Prepare and Recent Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1011, 12025. [Google Scholar] [CrossRef]
- Kang, X.; Gao, W.; Wang, B.; Yu, B.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Effect of Moist and Dry-Heat Treatment Processes on the Structure, Physicochemical Properties, and in Vitro Digestibility of Wheat Starch-Lauric Acid Complexes. Food Chem. 2021, 351, 129303. [Google Scholar] [CrossRef]
- Stute, R. Hydrothermal Modification of Starches: The Difference between Annealing and Heat/Moisture-treatment. Starch-Stärke 1992, 44, 205–214. [Google Scholar] [CrossRef]
- Siljeström, M.; Björck, I.; Westerlund, E. Transglycosidation Reactions Following Heat Treatment of Starch–Effects on Enzymic Digestibility. Starch-Stärke 1989, 41, 95–100. [Google Scholar] [CrossRef]
- Theander, O.; Westerlund, E. Studies on Chemical Modifications in Heat-processed Starch and Wheat Flour. Starch-Stärke 1987, 39, 88–93. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Gao, S.; Guo, S.; Zhang, C. Dry Heating Affects the Multi-Structures, Physicochemical Properties, and in Vitro Digestibility of Blue Highland Barley Starch. Front. Nutr. 2023, 10, 1191391. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.-R.; Fan, J.-L.; Yang, Q.; Chen, H.-Q. Effect of Glutenin and Gliadin Modified by Protein-Glutaminase on Retrogradation Properties and Digestibility of Potato Starch. Food Chem. 2019, 301, 125226. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Rosell, C.M. Effects of Enzymatic Modification of Soybean Protein on the Pasting and Rheological Profile of Starch–Protein Systems. Starch-Stärke 2010, 62, 373–383. [Google Scholar] [CrossRef]
- Villanueva, M.; De Lamo, B.; Harasym, J.; Ronda, F. Microwave Radiation and Protein Addition Modulate Hydration, Pasting and Gel Rheological Characteristics of Rice and Potato Starches. Carbohydr. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef]
- Hayes, A.; Cribb, P.J. Effect of Whey Protein Isolate on Strength, Body Composition and Muscle Hypertrophy during Resistance Training. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 40–44. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S.; Salem, A. Factors Affecting the Functional Properties of Whey Protein Products: A Review. Food Rev. Int. 2009, 25, 251–270. [Google Scholar] [CrossRef]
- Kumar, L.; Brennan, M.A.; Mason, S.L.; Zheng, H.; Brennan, C.S. Rheological, Pasting and Microstructural Studies of Dairy Protein–Starch Interactions and Their Application in Extrusion-Based Products: A Review. Starch-Stärke 2017, 69, 1600273. [Google Scholar] [CrossRef]
- Horstmann, S.W.; Belz, M.C.E.; Heitmann, M.; Zannini, E.; Arendt, E.K. Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads. Foods 2016, 5, 30. [Google Scholar] [CrossRef]
- Yu, J.-K.; Moon, Y.-S. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants 2022, 11, 92. [Google Scholar] [CrossRef]
- Maningat, C.C.; Seib, P.A.; Bassi, S.D.; Woo, K.S.; Lasater, G.D. Chapter 10—Wheat Starch: Production, Properties, Modification and Uses. In Food Science and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 441–510. ISBN 978-0-12-746275-2. [Google Scholar]
- Mukprasirt, A.; Sajjaanantakul, K. Physico-Chemical Properties of Flour and Starch from Jackfruit Seeds (Artocarpus Heterophyllus Lam.) Compared with Modified Starches. Int. J. Food Sci. Technol. 2004, 39, 271–276. [Google Scholar] [CrossRef]
- Pramodrao, K.S.; Riar, C.S. Comparative Study of Effect of Modification with Ionic Gums and Dry Heating on the Physicochemical Characteristic of Potato, Sweet Potato and Taro Starches. Food Hydrocoll. 2014, 35, 613–619. [Google Scholar] [CrossRef]
- Raeker, M.Ö.; Gaines, C.S.; Finney, P.L.; Donelson, T. Granule Size Distribution and Chemical Composition of Starches from 12 Soft Wheat Cultivars. Cereal Chem. 1998, 75, 721–728. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, J.; Xu, Y.; Zhang, Y. Impact of Dry Heating on Physicochemical Properties of Corn Starch and Lysine Mixture. Int. J. Biol. Macromol. 2016, 91, 872–876. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Donner, E.; Yada, R.Y.; Liu, Q. Physicochemical Properties and in Vitro Starch Digestibility of Potato Starch/Protein Blends. Carbohydr. Polym. 2016, 154, 214–222. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Fu, X.; Huang, Q. In Vitro Digestion and Physicochemical Properties of Wheat Starch/Flour Modified by Heat-Moisture Treatment. J. Cereal Sci. 2015, 63, 109–115. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, M.; Bhandari, B.; Devahastin, S. Investigation on Simultaneous Change of Deformation, Color and Aroma of 4D Printed Starch-Based Pastes from Fruit and Vegetable as Induced by Microwave. Food Res. Int. 2022, 157, 111214. [Google Scholar] [CrossRef]
- Bresciani, A.; Emide, D.; Saitta, F.; Fessas, D.; Iametti, S.; Barbiroli, A.; Marti, A. Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties. Molecules 2022, 27, 1266. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors Influencing the Physico-Chemical, Morphological, Thermal and Rheological Properties of Some Chemically Modified Starches for Food Applications—A Review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Paniwnyk, L.; Herceg, Z. Effect of Ultrasound Treatment on Particle Size and Molecular Weight of Whey Proteins. J. Food Eng. 2014, 121, 15–23. [Google Scholar] [CrossRef]
- Petruccelli, S.; Anon, M.C. Soy Protein Isolate Components and Their Interactions. J. Agric. Food Chem. 1995, 43, 1762–1767. [Google Scholar] [CrossRef]
- Román, L.; Martínez, M.M.; Rosell, C.M.; Gómez, M. Effect of Microwave Treatment on Physicochemical Properties of Maize Flour. Food Bioprocess Technol. 2015, 8, 1330–1335. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Wang, F.; Wu, M.; Wang, R.; Strappe, P.; Blanchard, C.; Zhou, Z. Insights into the Multi-Scale Structure of Wheat Starch Following Acylation: Physicochemical Properties and Digestion Characteristics. Food Hydrocoll. 2022, 124, 107347. [Google Scholar] [CrossRef]
- Sun, Q.; Li, G.; Dai, L.; Ji, N.; Xiong, L. Green Preparation and Characterisation of Waxy Maize Starch Nanoparticles through Enzymolysis and Recrystallisation. Food Chem. 2014, 162, 223–228. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of Dry Heat Treatment on the Physicochemical Properties and Structure of Proso Millet Flour and Starch. Carbohydr. Polym. 2014, 110, 128–134. [Google Scholar] [CrossRef]
- Hj Latip, D.N.; Samsudin, H.; Utra, U.; Alias, A.K. Modification Methods toward the Production of Porous Starch: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2841–2862. [Google Scholar] [CrossRef]
- González, M.; Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Carrera-Tarela, Y. Effects of Dry Heat Treatment Temperature on the Structure of Wheat Flour and Starch in Vitro Digestibility of Bread. Int. J. Biol. Macromol. 2021, 166, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Banthia, A.K.; Majumdar, D.K. Effect of Heat Treatment of Starch on the Properties of the Starch Hydrogels. Mater. Lett. 2008, 62, 215–218. [Google Scholar] [CrossRef]
- Shi, A.-M.; Wang, L.-J.; Li, D.; Adhikari, B. The Effect of Annealing and Cryoprotectants on the Properties of Vacuum-Freeze Dried Starch Nanoparticles. Carbohydr. Polym. 2012, 88, 1334–1341. [Google Scholar] [CrossRef]
- Zheng, M.; Xiao, Y.; Yang, S.; Liu, M.; Feng, L.; Ren, Y.; Yang, X.; Lin, N.; Liu, J. Effect of Adding Zein, Soy Protein Isolate and Whey Protein Isolate on the Physicochemical and in Vitro Digestion of Proso Millet Starch. Int. J. Food Sci. Technol. 2020, 55, 776–784. [Google Scholar] [CrossRef]
- Wang, X.; Wen, F.; Zhang, S.; Shen, R.; Jiang, W.; Liu, J. Effect of Acid Hydrolysis on Morphology, Structure and Digestion Property of Starch from Cynanchum Auriculatum Royle Ex Wight. Int. J. Biol. Macromol. 2017, 96, 807–816. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yang, Y.; Zhao, S.; Jin, Z.; Zhu, K.; Xu, L.; Jiao, A. Effects of Whey Protein on the in Vitro Digestibility and Physicochemical Properties of Potato Starch. Int. J. Biol. Macromol. 2021, 193, 1744–1751. [Google Scholar] [CrossRef]
- Haque, M.A.; Aldred, P.; Chen, J.; Barrow, C.J.; Adhikari, B. Comparative Study of Denaturation of Whey Protein Isolate (WPI) in Convective Air Drying and Isothermal Heat Treatment Processes. Food Chem. 2013, 141, 702–711. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pallen, S.; Shetty, Y.; Roy, N.; Mazumder, N. Advanced Microscopy Techniques for Revealing Molecular Structure of Starch Granules. Biophys. Rev. 2020, 12, 105–122. [Google Scholar] [CrossRef]
- Singh, K.K.; Yadav, Y.; Kumar, D.; Singh, A.; Goswami, D. Study of Starch Using Bright Field and Polarized Light Microscopy. In Proceedings of the 2019 Workshop on Recent Advances in Photonics (WRAP), Guwahati, India, 13–14 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–2. [Google Scholar]
- Kuakpetoon, D.; Wang, Y.-J. Locations of Hypochlorite Oxidation in Corn Starches Varying in Amylose Content. Carbohydr. Res. 2008, 343, 90–100. [Google Scholar] [CrossRef]
- Considine, T.; Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J.; Kasapis, S. Rheological Investigations of the Interactions between Starch and Milk Proteins in Model Dairy Systems: A Review. Food Hydrocoll. 2011, 25, 2008–2017. [Google Scholar] [CrossRef]
- Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J.E. Adsorption of Milk Proteins onto Rice Starch Granules. Carbohydr. Polym. 2011, 84, 247–254. [Google Scholar] [CrossRef]
- Achayuthakan, P.; Suphantharika, M.; BeMiller, J.N. Confocal Laser Scanning Microscopy of Dextran–Rice Starch Mixtures. Carbohydr. Polym. 2012, 87, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Schong, E.; Famelart, M.-H. Dry Heating of Whey Proteins. Food Res. Int. 2017, 100, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Schong, E.; Famelart, M.-H. Dry Heating of Whey Proteins Leads to Formation of Microspheres with Useful Functional Properties. Food Res. Int. 2018, 113, 210–220. [Google Scholar] [CrossRef]
- Famelart, M.-H.; Schong, E.; Croguennec, T. Dry Heating a Freeze-Dried Whey Protein Powder: Formation of Microparticles at PH 9.5. J. Food Eng. 2018, 224, 112–120. [Google Scholar] [CrossRef]
- Gul, K.; Riar, C.S.; Bala, A.; Sibian, M.S. Effect of Ionic Gums and Dry Heating on Physicochemical, Morphological, Thermal and Pasting Properties of Water Chestnut Starch. LWT-Food Sci. Technol. 2014, 59, 348–355. [Google Scholar] [CrossRef]
- Zhou, W.; Song, J.; Zhang, B.; Zhao, L.; Hu, Z.; Wang, K. The Impacts of Particle Size on Starch Structural Characteristics and Oil-Binding Ability of Rice Flour Subjected to Dry Heating Treatment. Carbohydr. Polym. 2019, 223, 115053. [Google Scholar] [CrossRef]
Sample Code | Dry Heating Duration (h) | Dry Heating Temperature (°C) | Corn Starch Concentration (%) | Wheat Starch Concentration (%) | Whey Protein Isolate |
---|---|---|---|---|---|
CS | - | - | 100 | - | |
CS-4h | 4 | 130 | 100 | - | |
CS/WPI-0h | - | - | 100 | + | |
CS/WPI-2h | 2 | 130 | 100 | + | |
CS/WPI-4h | 4 | 130 | 100 | + | |
WS | - | - | 100 | - | |
WS-4h | 4 | 130 | 100 | - | |
WS/WPI-0h | - | - | 100 | + | |
WS/WPI-2h | 2 | 130 | 100 | + | |
WS/WPI-4h | 4 | 130 | 100 | + |
Samples | Color Values | |||
---|---|---|---|---|
L* | a* | b* | ΔE | |
CS | 95.37 ± 0.00 a | −0.51 ± 0.02 a | 5.98 ± 0.08 a | 0 |
CS-4h | 95.27 ± 0.28 ab | −0.62 ± 0.02 b | 5.66 ± 0.16 b | 0.49 ± 0.04 a |
CS/WPI-0h | 95.13 ± 0.15 b | −0.69 ± 0.01 c | 5.44 ± 0.06 c | 0.65 ± 0.00 b |
CS/WPI-2h | 94.43 ± 0.08 c | −0.22 ± 0.02 d | 6.51 ± 0.06 d | 1.18 ± 0.01 c |
CS/WPI-4h | 93.88 ± 0.11 d | 0.10 ± 0.01 e | 6.75 ± 0.03 e | 1.87 ± 0.00 d |
WS | 95.74 ± 0.05 e | −0.12 ± 0.01 f | 2.27 ± 0.03 f | 0 |
WS-4h | 94.16 ± 0.10 f | 0.55 ± 0.02 g | 2.62 ± 0.02 g | 2.47 ± 0.02 e |
WS/WPI-0h | 94.74 ± 0.02 g | −0.14 ± 0.02 f | 2.62 ± 0.02 h | 1.07 ± 0.04 f |
WS/WPI-2h | 93.47 ± 0.05 h | 0.21 ± 0.02 h | 5.8 ± 0.02 i | 4.22 ± 0.01 g |
WS/WPI-4h | 92.19 ± 0.02 i | 0.71 ± 0.04 i | 7.25 ± 0.03 j | 6.18 ± 0.03 h |
Samples | Thermal Properties | |||
---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | |
CS | 65.45 ± 0.05 a | 75.06 ± 0.06 a | 84.48 ± 0.02 a | 1.62 ± 0.01 a |
CS-4h | 64.05 ± 0.05 b | 72.72 ± 0.02 b | 83.15 ± 0.01 b | 1.72 ± 0.02 b |
CS/WPI-0h | 66.23 ± 0.10 c | 74.66 ± 0.02 c | 83.03 ± 0.03 b | 1.14 ± 0.01 c |
CS/WPI-2h | 62.16 ± 0.01 d | 72.32 ± 0.03 d | 83.57 ± 0.10 c | 1.41 ± 0.01 d |
CS/WPI-4h | 63.01 ± 0.01 e | 72.82 ± 0.01 e | 82.05 ± 0.05 d | 1.56 ± 0.01 a |
WS | 58.40 ± 0.10 f | 66.65 ± 0.02 f | 75.04 ± 0.04 e | 1.16 ± 0.01 c |
WS-4h | 60.01 ± 0.00 g | 70.03 ± 0.03 g | 78.83 ± 0.00 f | 1.17 ± 0.01 c |
WS/WPI-0h | 61.16 ± 0.01 d | 67.03 ± 0.05 h | 74.50 ± 0.02 g | 0.97 ± 0.01 e |
WS/WPI-2h | 57.02 ± 0.02 h | 65.55 ± 0.01 i | 73.03 ± 0.05 h | 1.06 ± 0.06 f |
WS/WPI-4h | 56.02 ± 0.02 i | 63.34 ± 0.02 j | 69.12 ± 0.01 i | 0.78 ± 0.03 g |
Samples | Particle Sizes | ||||
---|---|---|---|---|---|
D (v, 0.1) (μm) | D (v, 0.5) (μm) | D (v, 0.9) (μm) | Span Value | D (4,3) (μm) | |
CS | 13.06 ± 0.1 a | 19.68 ± 0.1 a | 28.95 ± 0.5 a | 0.81 ± 0.1 a | 20.52 ± 1.2 a |
CS-4h | 13.14 ± 0.1 a | 19.83 ± 0.1 a | 29.29 ± 0.5 a | 0.81 ± 0.1 a | 20.71 ± 1.1 a |
CS/WPI-0h | 11.79 ± 0.2 b | 17.61 ± 0.2 b | 25.41 ± 0.3 b | 0.77 ± 0.1 b | 18.24 ± 0.9 b |
CS/WPI-2h | 13.16 ± 0.1 a | 20.14 ± 0.3 c | 32.86 ± 1.1 c | 0.98 ± 0.1 c | 34.51 ± 2.1 c |
CS/WPI-4h | 13.58 ± 0.0 a | 21.70 ± 0.3 d | 258.16 ± 5.8 d | 11.27 ± 0.2 d | 68.10 ± 0.8 d |
WS | 11.31 ± 0.1 b | 20.23 ± 0.2 c | 34.10 ± 0.3 e | 1.13 ± 0.1 e | 21.91 ± 0.1 a |
WS-4h | 14.06 ± 0.0 c | 27.76 ± 0.1 e | 54.29 ± 2.6 f | 1.45 ± 0.1 f | 32.35 ± 0.3 e |
WS/WPI-0h | 10.72 ± 0.1 d | 19.13 ± 0.1 a | 33.40 ± 0.4 e | 1.19 ± 0.1 e | 21.06 ± 0.3 a |
WS/WPI-2h | 15.09 ± 0.2 e | 31.19 ± 0.2 f | 178.06 ± 6.3 g | 5.23 ± 0.3 g | 97.10 ± 2.4 f |
WS/WPI-4h | 15.92 ± 0.1 e | 34.74 ± 0.2 g | 285.17 ± 6.8 h | 7.75 ± 0.3 h | 91.40 ± 1.8 g |
Samples | 1047/1022 Ratio | 995/1022 Ratio |
---|---|---|
CS | 0.398 ± 0.001 a | 1.393 ± 0.001 a |
CS-4h | 0.369 ± 0.001 b | 1.325 ± 0.001 b |
CS/WPI-0h | 0.402 ± 0.002 a | 1.339 ± 0.004 b |
CS/WPI-2h | 0.376 ± 0.004 bc | 1.281 ± 0.004 c |
CS/WPI-4h | 0.381 ± 0.000 c | 1.415 ± 0.001 d |
WS | 0.452 ± 0.005 d | 1.530 ± 0.009 e |
WS-4h | 0.400 ± 0.003 b | 1.399 ± 0.003 ad |
WS/WPI-0h | 0.433 ± 0.002 e | 1.457 ± 0.001 f |
WS/WPI-2h | 0.374 ± 0.004 bc | 1.338 ± 0.001 b |
WS/WPI-4h | 0.400 ± 0.001 a | 1.385 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adal, E.; Aktar, T.; Keskin Çavdar, H. Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates. Foods 2024, 13, 3701. https://doi.org/10.3390/foods13223701
Adal E, Aktar T, Keskin Çavdar H. Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates. Foods. 2024; 13(22):3701. https://doi.org/10.3390/foods13223701
Chicago/Turabian StyleAdal, Eda, Tugba Aktar, and Hasene Keskin Çavdar. 2024. "Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates" Foods 13, no. 22: 3701. https://doi.org/10.3390/foods13223701
APA StyleAdal, E., Aktar, T., & Keskin Çavdar, H. (2024). Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates. Foods, 13(22), 3701. https://doi.org/10.3390/foods13223701