Enhancing Antimicrobial Activity of Thyme Essential Oil Through Cellulose Nano Crystals-Stabilized Pickering Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganisms and Grwoth Media Preparation
2.3. GC-MS Analysis
2.4. Preparation of Sodium Alginate-Pickering Emulsion Thyme Essential Oil
2.5. Antimicrobial Activity Evaluation
2.6. Stability Test
2.7. Particle Size Analysis and Zeta Potential Analysis
2.8. Raman Spectroscopy Analysis
2.9. Fourier-Transfor Infra Red (FTIR) Analysis
3. Results and Discussion
3.1. GC-MS Analysis of Thyme Essential Oil (TEO)
3.2. Stability of Pickering Emulsion Thyme Essential Oil (PE–TEO)
3.3. Raman Spectroscopy and FTIR Results
3.4. Antimicrobial Activity of Pickering Emulsion Thyme Essential Oil (PE–TEO) Against Several Microorganisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability. In Innovative Technologies for Food Preservation; Academic Press: Cambridge, MA, USA, 2018; pp. 53–107. [Google Scholar] [CrossRef]
- WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Diseases Burden Epidemiology Reference Group 2007–2015. Available online: https://www.who.int/publications/i/item/9789241565165 (accessed on 12 October 2024).
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A Review on Mechanisms and Commercial Aspects of Food Preservation and Processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Y.; Zhang, Q.; Li, H.; Chen, L. Activity and Safety Evaluation of Natural Preservatives. Food Res. Int. 2024, 190, 114548. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential Oils and Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. J. Food Sci. 2011, 76, R164–R177. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Djebali, K.; Abid, S.; Saada, M.; Ksouri, R. Application of the Mixture Design for Optimum Antimicrobial Activity: Combined Treatment of Syzygium Aromaticum, Cinnamomum Zeylanicum, Myrtus Communis, and Lavandula Stoechas Essential Oils against Escherichia Coli. J. Food Process. Preserv. 2019, 43, e14257. [Google Scholar] [CrossRef]
- Ismail, I.E.; Farag, M.R.; Alagawany, M.; Mahmoud, H.K.; Reda, F.M. Efficacy of Some Feed Additives to Attenuate the Hepato-Renal Damage Induced by Aflatoxin B1 in Rabbits. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1343–1350. [Google Scholar] [CrossRef]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant Nutraceuticals as Antimicrobial Agents in Food Preservation: Terpenoids, Polyphenols and Thiols. Int. J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef]
- Di Matteo, A.; Lavorgna, M.; Russo, C.; Orlo, E.; Isidori, M. Natural Plant-Derived Terpenes: Antioxidant Activity and Antibacterial Properties against Foodborne Pathogens, Food Spoilage and Lactic Acid Bacteria. Appl. Food Res. 2024, 4, 100528. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Breitmaier, E. Terpenes: Importance, General Structure, and Biosynthesis. In Terpenes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–9. ISBN 978-3-527-60994-9. [Google Scholar]
- Singh, B.K.; Tiwari, S.; Dubey, N.K. Essential Oils and Their Nanoformulations as Green Preservatives to Boost Food Safety against Mycotoxin Contamination of Food Commodities: A Review. J. Sci. Food Agriculture 2021, 101, 4879–4890. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-Target Effects of Essential Oil-Based Biopesticides for Crop Protection: Impact on Natural Enemies, Pollinators, and Soil Invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020, 25, 1833. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Kujur, A.; Kiran, S.; Dubey, N.K.; Prakash, B. Microencapsulation of Gaultheria Procumbens Essential Oil Using Chitosan-Cinnamic Acid Microgel: Improvement of Antimicrobial Activity, Stability and Mode of Action. LWT 2017, 86, 132–138. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An Efficient Technology to Boost the Antimicrobial Potential of Plant Essential Oils in Food System. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Krishnan, R.; Mohan, K.; Ragavan, K.V.; Nisha, P. Insights into Headway in Essential Oil-Based Pickering Emulsions for Food Applications. Sustain. Food Technol. 2023, 1, 363–376. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Rojas, O.J.; McClements, D.J. Recent Innovations in Emulsion Science and Technology for Food Applications. J. Agric. Food Chem. 2021, 69, 8944–8963. [Google Scholar] [CrossRef]
- Dai, H.; Wu, J.; Zhang, H.; Chen, Y.; Ma, L.; Huang, H.; Huang, Y.; Zhang, Y. Recent Advances on Cellulose Nanocrystals for Pickering Emulsions: Development and Challenge. Trends Food Sci. Technol. 2020, 102, 16–29. [Google Scholar] [CrossRef]
- Yu, H.; Yan, C.; Yao, J. Fully Biodegradable Food Packaging Materials Based on Functionalized Cellulose Nanocrystals/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Nanocomposites. RSC Adv. 2014, 4, 59792–59802. [Google Scholar] [CrossRef]
- Li, M.; Dia, V.P.; Wu, T. Ice Recrystallization Inhibition Effect of Cellulose Nanocrystals: Influence of Sucrose Concentration. Food Hydrocoll. 2021, 121, 107011. [Google Scholar] [CrossRef]
- Samsalee, N.; Meerasri, J.; Sothornvit, R. Enhancing Ice Cream Qualities with Novel Rice Husk Cellulose Nanocrystal Applications. Int. J. Food Sci. Technol. 2024, 59, 2495–2504. [Google Scholar] [CrossRef]
- Rabia, E.; Tuga, B.; Ondarza, J.d.; Ramos, S.M.; Lam, E.; Hrapovic, S.; Liu, Y.; Sunasee, R. Carboxylated Cellulose Nanocrystals Decorated with Varying Molecular Weights of Poly(Diallyldimethylammonium Chloride) as Sustainable Antibacterial Agents. Polymers 2023, 15, 865. [Google Scholar] [CrossRef]
- Deng, Z.; Jung, J.; Simonsen, J.; Zhao, Y. Cellulose Nanocrystals Pickering Emulsion Incorporated Chitosan Coatings for Improving Storability of Postharvest Bartlett Pears (Pyrus Communis) during Long-Term Cold Storage. Food Hydrocoll. 2018, 84, 229–237. [Google Scholar] [CrossRef]
- Kupnik, K.; Primožič, M.; Kokol, V.; Leitgeb, M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers 2020, 12, 2825. [Google Scholar] [CrossRef]
- Nkede, F.N.; Wardak, M.H.; Wardana, A.A.; Fanze, M.; Yan, X.; Jothi, J.S.; Thi Hang Phuong, N.; Tanaka, F.; Tanaka, F. Preparation and Characterization of Edible Coating and Film Composed of Sodium Alginate/Ylang-Ylang Oil/Cellulose Nanocrystals Pickering Emulsion and Its Application to Post-Harvest Control of Mandarin (Citrus Reticulata). Colloids Surf. A Physicochem. Eng. Asp. 2024, 691, 133859. [Google Scholar] [CrossRef]
- Shin, J.; Na, K.; Shin, S.; Seo, S.-M.; Youn, H.J.; Park, I.-K.; Hyun, J. Biological Activity of Thyme White Essential Oil Stabilized by Cellulose Nanocrystals. Biomolecules 2019, 9, 799. [Google Scholar] [CrossRef]
- Wen, C.; Yuan, Q.; Liang, H.; Vriesekoop, F. Preparation and Stabilization of D-Limonene Pickering Emulsions by Cellulose Nanocrystals. Carbohydr. Polym. 2014, 112, 695–700. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, S.; Bei, W.; Zahi, M.R.; Yuan, Q.; Liang, H. Preparation and Antimicrobial Activity of Oregano Essential Oil Pickering Emulsion Stabilized by Cellulose Nanocrystals. Int. J. Biol. Macromol. 2018, 112, 7–13. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2015, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Urbanova, K.; Romulo, A.; Houdkova, M.; Novy, P.; Kokoska, L. Chemical Composition and Antistaphylococcal Activity of Essential Oil of Curcuma Mangga Rhizome from Indonesia. Separations 2024, 11, 49. [Google Scholar] [CrossRef]
- El-Kased, R.F.; El-Kersh, D.M. GC–MS Profiling of Naturally Extracted Essential Oils: Antimicrobial and Beverage Preservative Actions. Life 2022, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus Vulgaris Essential Oil: Chemical Composition and Antimicrobial Activity. J. Med. Life 2014, 7, 56. [Google Scholar] [PubMed]
- Khan, A.A.; Amjad, M.S. Saboon GC-MS Analysis and Biological Activities of Thymus Vulgaris and Mentha Arvensis Essential Oil. Turk. J. Biochem. 2019, 44, 388–396. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A.; Trindade, H. Sequencing and Variation of Terpene Synthase Gene (TPS2) as the Major Gene in Biosynthesis of Thymol in Different Thymus Species. Phytochemistry 2020, 169, 112126. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.L.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of p-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Abbasi, S.; Gharaghani, S.; Benvidi, A.; Rezaeinasab, M. New Insights into the Efficiency of Thymol Synergistic Effect with P-Cymene in Inhibiting Advanced Glycation End Products: A Multi-Way Analysis Based on Spectroscopic and Electrochemical Methods in Combination with Molecular Docking Study. J. Pharm. Biomed. Anal. 2018, 150, 436–451. [Google Scholar] [CrossRef]
- de Santana, M.F.; Guimarães, A.G.; Chaves, D.O.; Silva, J.C.; Bonjardim, L.R.; Lucca Júnior, W.D.; Ferro, J.N.D.S.; Barreto, E.D.O.; Santos, F.E.D.; Soares, M.B.P.; et al. The Anti-Hyperalgesic and Anti-Inflammatory Profiles of p-Cymene: Evidence for the Involvement of Opioid System and Cytokines. Pharm. Biol. 2015, 53, 1583–1590. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, P.; Lu, R.; Qian, Q.; Lei, X.; Xiao, Q.; Huang, S.; Liu, L.; Huang, C.; Su, W. Synthesis, X-ray Diffraction Study, and Cytotoxicity of a Cationic p-Cymene Ruthenium Chloro Complex Containing a Chelating Semicarbazone Ligand. Z. Anorg. Allg. Chem. 2013, 639, 943–946. [Google Scholar] [CrossRef]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Chun, H.S. P-Cymene and Its Derivatives Exhibit Antiaflatoxigenic Activities against Aspergillus Flavus through Multiple Modes of Action. Appl. Biol. Chem. 2018, 61, 489–497. [Google Scholar] [CrossRef]
- Peter, S.; Sotondoshe, N.; Aderibigbe, B.A. Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules 2024, 29, 2277. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Mehdizadeh, L. Chapter 13—Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2017; pp. 379–419. ISBN 978-0-12-811412-4. [Google Scholar]
- Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Torras, J.; Grau, M.D.; López, J.F.; de las Heras, F.X.C. Analysis of Essential Oils from Chemotypes of Thymus Vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Nezhadali, A.; Nabavi, M.; Rajabian, M.; Akbarpour, M.; Pourali, P.; Amini, F. Chemical Variation of Leaf Essential Oil at Different Stages of Plant Growth and in Vitro Antibacterial Activity of Thymus Vulgaris Lamiaceae, from Iran. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 87–92. [Google Scholar] [CrossRef]
- Park, M.K.; Cha, J.Y.; Kang, M.-C.; Jang, H.W.; Choi, Y.-S. The Effects of Different Extraction Methods on Essential Oils from Orange and Tangor: From the Peel to the Essential Oil. Food Sci. Nutr. 2024, 12, 804–814. [Google Scholar] [CrossRef]
- Liu, T.; Gao, Z.; Zhong, W.; Fu, F.; Li, G.; Guo, J.; Shan, Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants 2022, 11, 650. [Google Scholar] [CrossRef]
- Liu, L.; Fisher, K.D.; Bussey, W.D. Comparison of Emulsion Stabilizers: Application for the Enhancement of the Bioactivity of Lemongrass Essential Oil. Polymers 2024, 16, 415. [Google Scholar] [CrossRef]
- Liu, L.; Abiol, K.A.E.; Friest, M.A.; Fisher, K.D. Synergistic Stabilization of Nanoemulsion Using Nonionic Surfactants and Salt-Sensitive Cellulose Nanocrystals. Polymers 2023, 15, 4682. [Google Scholar] [CrossRef]
- Mann, B.; Singh, R.; Athira, S.; Kumar, R.; Sharma, R. Chapter 7—Chemistry and Functionality of Clove Oil Nanoemulsions. In Clove (Syzygium aromaticum); Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 81–101. ISBN 978-0-323-85177-0. [Google Scholar]
- Montes, C.; Villaseñor, M.J.; Ríos, Á. Analytical Control of Nanodelivery Lipid-Based Systems for Encapsulation of Nutraceuticals: Achievements and Challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Walia, N.; Zhang, S.; Wismer, W.; Chen, L. A Low Energy Approach to Develop Nanoemulsion by Combining Pea Protein and Tween 80 and Its Application for Vitamin D Delivery. Food Hydrocoll. Health 2022, 2, 100078. [Google Scholar] [CrossRef]
- Varanasi, S.; Henzel, L.; Mendoza, L.; Prathapan, R.; Batchelor, W.; Tabor, R.; Garnier, G. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals. Front. Chem. 2018, 6, 409. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.K.; Srivastava, S.; Singh, R.; Dar, A.H.; Dash, K.K. Effects of Clove Essential Oil (Caryophyllus Aromaticus L.) Nanoemulsion Incorporated Edible Coating on Shelf-Life of Fresh Cut Apple Pieces. J. Agric. Food Res. 2023, 14, 100791. [Google Scholar] [CrossRef]
- Campelo, P.H.; Junqueira, L.A.; de Resende, J.V.; Zacarias, R.D.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Stability of Lime Essential Oil Emulsion Prepared Using Biopolymers and Ultrasound Treatment. Int. J. Food Prop. 2017, 20, S564–S579. [Google Scholar] [CrossRef]
- Phosanam, A.; Moreira, J.; Adhikari, B.; Adhikari, A.; Losso, J.N. Stabilization of Ginger Essential Oil Pickering Emulsions by Pineapple Cellulose Nanocrystals. Curr. Res. Food Sci. 2023, 7, 100575. [Google Scholar] [CrossRef]
- Horváth, B.; Pál, S.; Széchenyi, A. Preparation and in Vitro Diffusion Study of Essential Oil Pickering Emulsions Stabilized by Silica Nanoparticles. Flavour Fragr. J. 2018, 33, 385–396. [Google Scholar] [CrossRef]
- Hu, J.; Xu, R.; Hu, J.; Deng, W. Dual Stabilization of Pickering Emulsion with Epigallocatechin Gallate Loaded Mesoporous Silica Nanoparticles. Food Chem. 2022, 396, 133675. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, Y.; Jiang, H.; Chen, L.; Shen, C.; Zhang, W.; Cao, J.; Jiang, W. Improved Sustained-Release Properties of Ginger Essential Oil in a Pickering Emulsion System Incorporated in Sodium Alginate Film and Delayed Postharvest Senescence of Mango Fruits. Food Chem. 2024, 435, 137534. [Google Scholar] [CrossRef]
- Siatis, N.G.; Kimbaris, A.C.; Pappas, C.S.; Tarantilis, P.A.; Daferera, D.J.; Polissiou, M.G. Rapid Method for Simultaneous Quantitative Determination of Four Major Essential Oil Components from Oregano (Oreganum sp.) and Thyme (Thymus sp.) Using FT-Raman Spectroscopy. J. Agric. Food Chem. 2005, 53, 202–206. [Google Scholar] [CrossRef]
- Saraiva, A.G.Q.; Saraiva, G.D.; Albuquerque, R.L.; Nogueira, C.E.S.; Teixeira, A.M.R.; Lima, L.B.; Cruz, B.G.; de Sousa, F.F. Chemical Analysis and Vibrational Spectroscopy Study of Essential Oils from Lippia Sidoides and of Its Major Constituent. Vib. Spectrosc. 2020, 110, 103111. [Google Scholar] [CrossRef]
- Wardana, A.A.; Wigati, L.P.; Van, T.T.; Tanaka, F.; Tanaka, F. Antifungal Features and Properties of Pickering Emulsion Coating from Alginate/Lemongrass Oil/Cellulose Nanofibers. Int. J. Food Sci. Technol. 2023, 58, 966–978. [Google Scholar] [CrossRef]
- Saini, S.; Quinot, D.; Lavoine, N.; Belgacem, M.N.; Bras, J. β-Cyclodextrin-Grafted TEMPO-Oxidized Cellulose Nanofibers for Sustained Release of Essential Oil. J. Mater. Sci. 2017, 52, 3849–3861. [Google Scholar] [CrossRef]
- Mohammadi, L.; Wardana, A.A.; Tanaka, F.; Tanaka, F. The Physicochemical, Mechanical, and Antifungal Properties of Sodium Alginate Film Containing Japanese Rice Vinegar and Peppermint (Mentha Piperita) Oil as Bio-Composite Packaging. Int. J. Biol. Macromol. 2024, 281, 136511. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, N.D.; Pena, F.d.L.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated Thyme (Thymus Vulgaris) Essential Oil Used as a Natural Preservative in Bakery Product. Food Res. Int. 2017, 96, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus Vulgaris Essential Oil and Its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef]
- Doghish, A.S.; Shehabeldine, A.M.; El-Mahdy, H.A.; Hassanin, M.M.H.; Al-Askar, A.A.; Marey, S.A.; AbdElgawad, H.; Hashem, A.H. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023, 28, 6910. [Google Scholar] [CrossRef]
- Cahyana, Y.; Putri, Y.S.E.; Solihah, D.S.; Lutfi, F.S.; Alqurashi, R.M.; Marta, H. Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. Molecules 2022, 27, 7872. [Google Scholar] [CrossRef]
- Wang, X.; Han, M.; Zou, L.; Huang, Z.; Dong, W.; Fan, J.; Huang, A. Preparation and Characterization of Pickering Emulsion with Directionally Embedded Antimicrobial Peptide MOp2 and Its Preservation Effect on Grass Carp. Curr. Res. Food Sci. 2023, 7, 100569. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Miao, Q.; Chen, L.; Yuan, Z.; Liu, G. Rheological Properties of Oil–Water Pickering Emulsion Stabilized by Fe3O4 Solid Nanoparticles. Open Phys. 2020, 18, 1188–1200. [Google Scholar] [CrossRef]
- Kupikowska-Stobba, B.; Domagała, J.; Kasprzak, M.M. Critical Review of Techniques for Food Emulsion Characterization. Appl. Sci. 2024, 14, 1069. [Google Scholar] [CrossRef]
- Jayari, A.; Donsì, F.; Ferrari, G.; Maaroufi, A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022, 11, 1858. [Google Scholar] [CrossRef] [PubMed]
Peak | RT (Min) | RI | Relative Content (%) | Components | CAS Number |
---|---|---|---|---|---|
1 | 5.07 | 832 | 0.19 | 2-Hexenal | 000505-57-7 |
2 | 5.75 | - | 0.06 | Furan, 2,5-diethyltetrahydro- | 041239-48-9 |
3 | 6.27 | 0.79 | Bicyclo[3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl)- | 028634-89-1 | |
4 | 6.41 | 939 | 1.42 | .alpha.-Pinene | 000080-56-8 |
5 | 6.57 | - | 0.06 | Bicyclo[3.1.0]hex-2-ene, 4-methylene-1-(1-methylethyl)- | 036262-09-6 |
6 | 6.70 | - | 0.73 | Bicyclo[2.2.1]heptane, 2,2-dimethyl-3-methylene-, (1S)- | 005794-04-7 |
7 | 7.16 | - | 0.78 | Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S)- | 018172-67-3 |
8 | 7.29 | - | 1.30 | .beta.-Myrcene | 000123-35-3 |
9 | 7.35 | - | 0.08 | 2,3-Dehydro-1,8-cineole | 092760-25-3 |
10 | 7.41 | 994 | 0.27 | 3-Octanol | 000589-98-0 |
11 | 7.62 | 1007 | 0.26 | .alpha.-Phellandrene | 000099-83-2 |
12 | 7.65 | - | 0.12 | (+)-3-Carene | 000498-15-7 |
13 | 7.79 | 1017 | 2.24 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | 000099-86-5 |
14 | 7.94 | 1021 | 14.80 | p-Cymene | 000099-87-6 |
15 | 8.06 | 1033 | 3.74 | Eucalyptol | 000080-56-8 |
16 | 8.23 | 1050 | 0.18 | 1,3,6-Octatriene, 3,7-dimethyl-, (Z)- | 003338-55-4 |
17 | 8.47 | 1064 | 6.07 | γ.-Terpinene | 000099-85-4 |
18 | 8.67 | - | 0.20 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, trans- | 007299-40-3 |
19 | 8.90 | 1097 | 0.26 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | 000586-62-9 |
20 | 8.99 | 1095 | 0.22 | Benzene, 1-methyl-4-(1-methylethenyl)- | 001195-32-0 |
21 | 9.09 | 1098 | 1.69 | Linalool | 000078-70-6 |
22 | 9.54 | 1122 | 0.19 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, trans- | 029803-81-4 |
23 | 9.71 | - | 0.09 | p-Mentha-1,5,8-triene | 021195-59-5 |
24 | 9.83 | 1140 | 0.25 | Bicyclo[3.1.1]heptan-3-ol, 6,6-dimethyl-2-methylene-, [1S-(1.alpha.,3.alpha.,5.alpha.)]- | 000547-61-5 |
25 | 9.95 | - | 0.32 | Ethanone, 1-(1,4-dimethyl-3-cyclohexen-1-yl)- | 043219-68-7 |
26 | 10.05 | 1166 | 0.18 | L-Menthone | 014073-97-3 |
27 | 10.33 | 1169 | 4.13 | endo-Borneol | 000507-70-0 |
28 | 10.43 | 1177 | 2.82 | Terpinen-4-ol | 000562-74-3 |
29 | 10.58 | 1183 | 0.39 | Benzenemethanol, .alpha.,.alpha.,4-trimethyl- | 001197-01-9 |
30 | 10.67 | 1196 | 2.91 | Estragole | 000140-67-0 |
31 | 10.73 | 0.88 | 3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, (R)- | 007785-53-7 | |
32 | 11.13 | - | 0.36 | cis-Chrysanthenyl formate | 241123-18-2 |
33 | 11.22 | 1245 | 0.64 | Benzene, 2-methoxy-1-methyl-4-(1-methylethyl)- | 006379-73-3 |
34 | 11.42 | 1240 | 0.11 | Benzaldehyde, 4-(1-methylethyl)- | 000122-03-2 |
35 | 11.55 | 2.78 | D-Carvone | 002244-16-8 | |
36 | 11.96 | 1289 | 7.46 | Carvacrol | 000499-75-2 |
37 | 12.14 | 1290 | 29.10 | Thymol | 000875-85-4 |
38 | 12.54 | - | 0.43 | o-Isopropylphenetole | 056631-59-5 |
39 | 12.87 | - | 0.13 | Phenol, 2-methoxy-3-(2-propenyl)- | 001941-12-4 |
40 | 13.24 | 1372 | 0.10 | Copaene | 003856-25-5 |
41 | 13.36 | 1384 | 0.16 | (-)-.beta.-Bourbonene | 005208-59-3 |
42 | 13.45 | 1401 | 0.15 | Methyleugenol | 000093-15-2 |
43 | 13.85 | 1418 | 0.50 | Caryophyllene | 000087-44-5 |
44 | 13.94 | - | 0.16 | 1,3,6,10-Dodecatetraene, 3,7,11-trimethyl-, (Z,E)- | 026560-14-5 |
45 | 14.07 | 1455 | 0.43 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 003796-70-1 |
46 | 14.32 | - | 0.07 | 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | 1000062-61-9 |
47 | 14.51 | 1477 | 0.34 | .gamma.-Muurolene | 030021-74-0 |
48 | 14.75 | 1495 | 0.22 | Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-, [1R-(1.alpha.,7.beta.,8a.alpha.)]- | 004630-07-3 |
49 | 14.88 | 1506 | 3.04 | .beta.-Bisabolene | 000495-61-4 |
50 | 15.04 | - | 0.59 | 1-Isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene | 016729-01-4 |
51 | 15.10 | - | 0.14 | 4-isopropyl-1,6-dimethyl-1,2,3,4-tetrahydronaphthalene | 1000378-99-6 |
52 | 15.27 | 1540 | 0.12 | Cyclohexene, 4-[(1E)-1,5-dimethyl-1,4-hexadien-1-yl]-1-methyl- | 025532-79-0 |
53 | 15.35 | 1546 | 0.07 | .alpha.-Calacorene | 021391-99-1 |
54 | 15.82 | 1571 | 0.45 | 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)]- | 006750-60-3 |
55 | 15.91 | 1578 | 0.61 | Caryophyllene oxide | 001139-30-6 |
56 | 16.05 | - | 0.10 | 1H-Cyclopropa[a]naphthalene, 1a,2,3,5,6,7,7a,7b-octahydro-1,1,7,7a-tetramethyl-, [1aR-(1a.alpha.,7.alpha.,7a.alpha.,7b.alpha.)]- | 017334-55-3 |
57 | 16.55 | - | 0.26 | Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9-methylene- | 150320-52-8 |
58 | 16.72 | 1653 | 0.16 | ɑ-Cadinol | 000481-34-5 |
Total compound identified (%) | 96.32 |
Samples | Particle Size (nm) | Zeta Potential (mV) | Polydispersity Index |
---|---|---|---|
A | 8917 | −40.29 | 0.3522 |
B | 4994 | −38.91 | 0.2562 |
C | 1682 | −19.17 | 0.5548 |
D | 619 | −13.34 | 1.0000 |
Microorganisms | TEO | PE–TEO 5% | PE–TEO 10% | Tetracycline | Tioconazole | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC80 | MIC50 | MIC80 | MIC50 | MIC80 | MIC50 | MIC80 | MIC50 | MIC80 | MIC50 | |
Staphylococcus aureus ATCC 29213 | >8192 | 2048 | >8192 | >8192 | >8192 | 8192 | >8 | 1 | - | - |
Staphylococcus aureus ATCC 25923 | >8192 | 4096 | >8192 | >8192 | >8192 | 8192 | >8 | 0.5 | - | - |
Staphylococcus aureus NBRC 13276 | >8192 | 1024 | >8192 | >8192 | >8192 | 4096 | >32 | 1 | - | - |
Bacillus subtilis NBRC 3009 | >8192 | 2048 | >8192 | >8192 | >8192 | >8192 | >32 | 0.25 | - | - |
Bacillus cereus IFO 3001 | >8192 | 4096 | >8192 | >8192 | 8192 | 8192 | >32 | 0.5 | - | - |
Escherichia coli NBRC 13500 | >8192 | 4096 | >8192 | >8192 | 8192 | 4096 | >32 | 1 | - | - |
Candida albicans ATCC 14053 | >8192 | 2048 | >8192 | >8192 | >8192 | 8192 | >32 | 1 | - | - |
Penicillium digitatum NBRC 7758 | >8192 | 4096 | >8192 | >8192 | 8192 | 4096 | - | - | >32 | >32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romulo, A.; Anjani, V.S.; Wardana, A.A. Enhancing Antimicrobial Activity of Thyme Essential Oil Through Cellulose Nano Crystals-Stabilized Pickering Emulsions. Foods 2024, 13, 3706. https://doi.org/10.3390/foods13223706
Romulo A, Anjani VS, Wardana AA. Enhancing Antimicrobial Activity of Thyme Essential Oil Through Cellulose Nano Crystals-Stabilized Pickering Emulsions. Foods. 2024; 13(22):3706. https://doi.org/10.3390/foods13223706
Chicago/Turabian StyleRomulo, Andreas, Vania Salsabila Anjani, and Ata Aditya Wardana. 2024. "Enhancing Antimicrobial Activity of Thyme Essential Oil Through Cellulose Nano Crystals-Stabilized Pickering Emulsions" Foods 13, no. 22: 3706. https://doi.org/10.3390/foods13223706
APA StyleRomulo, A., Anjani, V. S., & Wardana, A. A. (2024). Enhancing Antimicrobial Activity of Thyme Essential Oil Through Cellulose Nano Crystals-Stabilized Pickering Emulsions. Foods, 13(22), 3706. https://doi.org/10.3390/foods13223706