Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Experimental Animals and Milk Composition Analysis
2.3. DNA Sample Extraction
2.4. Genotyping
2.5. Data Statistics and Analysis
3. Results
3.1. IQGAP2 and CRTAC1 Genotyping Results and Genetic Parameter Analysis
3.2. Association Analysis of IQGAP2 and CRTAC1 Gene Polymorphisms with Milk Quality Traits in Gannan Yaks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, G.; Zhang, J.; Dai, R.; Ma, X.; Huang, C.; Ren, W.; Ma, X.; Lu, J.; Zhao, X.; Renqing, J.; et al. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023, 12, 2172. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Bano, I.; Qazi, I.H.; Matra, M.; Wanapat, M. “The Yak”—A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front. Vet. Sci. 2023, 10, 1086985. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef]
- Cui, G.X.; Yuan, F.; Degen, A.A.; Liu, S.M.; Zhou, J.W.; Shang, Z.H.; Ding, L.M.; Mi, J.D.; Wei, X.H.; Long, R.J. Composition of the milk of yaks raised at different altitudes on the Qinghai–Tibetan Plateau. Int. Dairy J. 2016, 59, 29–35. [Google Scholar] [CrossRef]
- Singh, T.P.; Arora, S.; Sarkar, M. Yak milk and milk products: Functional, bioactive constituents and therapeutic potential. Int. Dairy J. 2023, 142, 105637. [Google Scholar] [CrossRef]
- Barsila, S.R. Effect of parity in different grazing seasons on milk yield and composition of cattle× yak hybrids in the Himalayan alpines. J. Appl. Anim. Res. 2019, 47, 591–596. [Google Scholar] [CrossRef]
- Ye, W.; Xu, L.; Li, Y.; Liu, L.; Ma, Z.; Sun, D.; Han, B. Single Nucleotide Polymorphisms of ALDH18A1 and MAT2A Genes and Their Genetic Associations with Milk Production Traits of Chinese Holstein Cows. Genes 2022, 13, 1437. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Q.; Ma, H.; Wang, L.; Yang, Y.; Luo, W.; Qiu, Q. Genome-wide variation within and between wild and domestic yak. Mol. Ecol. Resour. 2014, 14, 794–801. [Google Scholar] [CrossRef]
- Li, A.; Liu, C.; Han, X.; Zheng, J.; Zhang, G.; Qi, X.; Du, P.; Liu, L. Tibetan Plateau yak milk: A comprehensive review of nutritional values, health benefits, and processing technology. Food Chem. X 2023, 20, 100919. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J.; Ma, X.; Ma, R.; Shen, J.; Liu, M.; Yu, D.; Feng, F.; Huang, C.; Ma, X.; et al. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens). Foods 2023, 12, 4318. [Google Scholar] [CrossRef]
- Zhang, Q.; Cidan, Y.; Luosang, D.; Pingcuo, Z.; Dawa, Y.; Chen, X.; Basang, W. Dominant-genotype frequency analysis of economic traits related to SNP candidate markers in three yak populations. Indian J. Anim. Res. 2022, 56, 400–406. [Google Scholar] [CrossRef]
- Buitenhuis, B.; Janss, L.L.; Poulsen, N.A.; Larsen, L.B.; Larsen, M.K.; Sørensen, P. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genom. 2014, 15, 1112. [Google Scholar] [CrossRef]
- Le, A.; Barton, L.D.; Sanders, J.T.; Zhang, Q. Exploration of Bovine Milk Proteome in Colostral and Mature Whey Using an Ion-Exchange Approach. J. Proteome Res. 2011, 10, 692–704. [Google Scholar] [CrossRef]
- Mol, P.; Kannegundla, U.; Dey, G.; Gopalakrishnan, L.; Dammalli, M.; Kumar, M.; Patil, A.H.; Basavaraju, M.; Rao, A.; Ramesha, K.P.; et al. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus). OMICS J. Integr. Biol. 2018, 22, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Villa, R.; Villa, C.; Gonzalez, V.; Montano, M.; Medina, G.; Mahadevan, P. Inspection of real and imputed genotypes reveled 76 SNPs associated to rear udder height in Holstein cattle. J. Adv. Vet. Anim. Res. 2020, 7, 234–241. [Google Scholar] [CrossRef]
- Lee, Y.S.; Shin, D. Estimation of the Genetic Substitution Rate of Hanwoo and Holstein Cattle Using Whole Genome Sequencing Data. Genom. Inform. 2018, 16, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Dado-Senn, B.; Skibiel, A.L.; Fabris, T.F.; Zhang, Y.; Dahl, G.E.; Peñagaricano, F.; Laporta, J. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci. Rep. 2018, 8, 11096. [Google Scholar] [CrossRef]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef]
- Brunes, L.C.; Baldi, F.; Lopes, F.B.; Lôbo, R.B.; Espigolan, R.; Costa, M.F.O.; Stafuzza, N.B.; Magnabosco, C.U. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J. Anim. Breed. Genet. 2021, 138, 23–44. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, M.; Guo, J.; Guo, Y.-Y.; Ding, K.; Wang, P.; Wang, Z.-P. Analysis of selection signatures on the Z chromosome of bidirectional selection broiler lines for the assessment of abdominal fat content. BMC Genom. Data 2021, 22, 18. [Google Scholar] [CrossRef]
- Deng, C.; Li, M.; Wang, T.; Duan, W.; Guo, A.; Ma, G.; Yang, F.; Dai, F.; Li, Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br. Poult. Sci. 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, L.; Hou, H.; Zhou, J.; Li, X. Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/β-catenin signaling. Int. J. Oncol. 2016, 48, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Patel, S.A.; Hassan, M.K.; Mohapatra, N.; Pattanaik, N.; Dixit, M. Reduced IQGAP2 expression promotes EMT and inhibits apoptosis by modulating the MEK-ERK and p38 signaling in breast cancer irrespective of ER status. Cell Death Dis. 2021, 12, 389. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zhang, L.; Sun, S. LncRNA PDCD4-AS1 alleviates triple negative breast cancer by increasing expression of IQGAP2 via miR-10b-5p. Transl. Oncol. 2021, 14, 100958. [Google Scholar] [CrossRef]
- Li, M.; Lin, C.; Cai, Z. Downregulation of the long noncoding RNA DSCR9 (Down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum. Cell 2023, 36, 1516–1534. [Google Scholar] [CrossRef]
- Sayedyahossein, S.; Smith, J.; Barnaeva, E.; Li, Z.; Choe, J.; Ronzetti, M.; Dextras, C.; Hu, X.; Marugan, J.; Southall, N.; et al. Discovery of small molecule inhibitors that effectively disrupt IQGAP1-Cdc42 interaction in breast cancer cells. Sci. Rep. 2022, 12, 17372. [Google Scholar] [CrossRef] [PubMed]
- Soufleri, A.; Banos, G.; Panousis, N.; Fletouris, D.; Arsenos, G.; Valergakis, G.E. Genetic parameters of colostrum traits in Holstein dairy cows. J. Dairy Sci. 2019, 102, 11225–11232. [Google Scholar] [CrossRef]
- Kasiviswanathan, D.; Devendran, P.; Venkataramanan, R.; Meenakshisundaram, S.; Senthilkumar, G.; Peters, S.O. Genetic Evaluation of Monthly Test-Day Milk Yields of Jersey Crossbred Cattle Under Farmers’ Production System in Tamil Nadu, India. Animals 2024, 14, 3152. [Google Scholar] [CrossRef]
- Ma, X.; Yang, G.; Zhang, J.; Ma, R.; Shen, J.; Feng, F.; Yu, D.; Huang, C.; Ma, X.; La, Y.; et al. Association between Single Nucleotide Polymorphisms of PRKD1 and KCNQ3 Gene and Milk Quality Traits in Gannan Yak (Bos grunniens). Foods 2024, 13, 781. [Google Scholar] [CrossRef]
- Feng, F.; Yang, G.; Ma, X.; Zhang, J.; Huang, C.; Ma, X.; La, Y.; Yan, P.; Zhandui, P.; Liang, C. Polymorphisms within the PRKG1 Gene of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods 2024, 13, 1913. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y.; Zheng, X.; Guo, J.; Duan, H.; Zhou, S.; Yan, W. Yak Milk: Nutritional Value, Functional Activity, and Current Applications. Foods 2023, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ginther, C.; Kim, J.; Mosher, N.; Chung, S.; Slamon, D.; Vadgama, J.V. Expression of Wnt3 Activates Wnt/β-Catenin Pathway and Promotes EMT-like Phenotype in Trastuzumab-Resistant HER2-Overexpressing Breast Cancer Cells. Mol. Cancer Res. 2012, 10, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Grenov, B.; Briend, A.; Sangild, P.T.; Thymann, T.; Rytter, M.H.; Hother, A.-L.; Mølgaard, C.; Michaelsen, K.F. Undernourished Children and Milk Lactose. Food Nutr. Bull. 2016, 37, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortì, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral Composition in Delactosed Dairy Products: Quality and Safety Status. Foods 2022, 11, 139. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Y.; Dingkao, R.; Huang, C.; Ma, X.; Wu, X.; La, Y.; Chu, M.; Bao, P.; Guo, X.; et al. Comparative Study of the Expression Profiles of miRNAs of Milk-Derived Exosomes of Yak and Jeryak. Animals 2022, 12, 3189. [Google Scholar] [CrossRef]
- Mohan, M.S.; O’Callaghan, T.F.; Kelly, P.; Hogan, S.A. Milk fat: Opportunities, challenges and innovation. Crit. Rev. Food Sci. Nutr. 2021, 61, 2411–2443. [Google Scholar] [CrossRef]
- Luo, J.; Huang, Z.; Liu, H.; Zhang, Y.; Ren, F. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties. Food Chem. 2018, 245, 731–737. [Google Scholar] [CrossRef]
- Zou, X.; Guo, Z.; Jin, Q.; Huang, J.; Cheong, L.; Xu, X.; Wang, X. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem. 2015, 185, 362–370. [Google Scholar] [CrossRef]
- Pariza, M.W.; Park, Y.; Cook, M.E. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 2001, 40, 283–298. [Google Scholar] [CrossRef]
- Wang, T.; Ma, X.; Feng, F.; Zheng, F.; Zheng, Q.; Zhang, J.; Zhang, M.; Ma, C.; Deng, J.; Guo, X.; et al. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024, 13, 2953. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef]
- Deng, T.X.; Pang, C.Y.; Lu, X.R.; Zhu, P.; Duan, A.Q.; Liang, X.W. Associations between polymorphisms of the STAT1 gene and milk production traits in water buffaloes1. J. Anim. Sci. 2016, 94, 927–935. [Google Scholar] [CrossRef]
- Jiang, H.; Chai, Z.-X.; Cao, H.-W.; Zhang, C.-F.; Zhu, Y.; Zhang, Q.; Xin, J.-W. Genome-wide identification of SNPs associated with body weight in yak. BMC Genom. 2022, 23, 833. [Google Scholar] [CrossRef]
- Shi, B.; Jiang, Y.; Chen, Y.; Zhao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Hickford, J.G.H. Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks. Animals 2019, 9, 613. [Google Scholar] [CrossRef]
- Zwierzchowski, L.; Ostrowska, M.; Żelazowska, B.; Bagnicka, E. Single nucleotide polymorphisms in the bovine SLC2A12 and SLC5A1 glucose transporter genes – the effect on gene expression and milk traits of Holstein Friesian cows. Anim. Biotechnol. 2023, 34, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; La, Y.; Bao, Q.; Wu, X.; Ma, X.; Huang, C.; Chu, M.; Liang, C.; Yan, P. Early Growth and Development and Nonlinear Model Fitting Analysis of Ashidan Yak. Animals 2023, 13, 1545. [Google Scholar] [CrossRef]
SNPs | Genotypic Frequencies | Allelic Frequencies | He | Ne | PIC | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
g.232,769C>G | CC (79) | CG (64) | GG (19) | C | G | 0.395 | 0.605 | 0.431 | 1.15 |
0.487 | 0.395 | 0.118 | 0.685 | 0.315 | |||||
g.232,922G>C | GG (81) | GC (62) | CC (19) | G | C | 0.383 | 0.617 | 0.426 | 1.726 |
0.501 | 0.382 | 0.117 | 0.691 | 0.309 | |||||
g.4,203T>C | TT (18) | TC (69) | CC (75) | T | C | 0.426 | 0.574 | 0.438 | 0.125 |
0.111 | 0.426 | 0.463 | 0.324 | 0.676 | |||||
g.5,348T>G | TT (95) | TG (57) | GG (10) | T | G | 0.352 | 0.648 | 0.362 | 0.136 |
0.586 | 0.352 | 0.062 | 0.762 | 0.238 | |||||
g.122,451T>C | TT (24) | TC (79) | CC (59) | T | C | 0.488 | 0.512 | 0.477 | 0.769 |
0.148 | 0.488 | 0.365 | 0.392 | 0.608 |
SNPs g. 232,769C>G | ||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | TS/% |
CC 79 | 4.14 ± 0.29 | 4.96 ± 0.39 | 5.70 ± 3.06 | 11.32 ± 0.5 | 4.97 ± 0.16 ab | 16.9 ± 2.99 |
GC 64 | 4.05 ± 0.28 | 4.86 ± 0.39 | 5.14 ± 2.20 | 11.27 ± 0.44 | 5.02 ± 0.16 a | 16.28 ± 2.15 |
GG 19 | 4.01 ± 0.31 | 4.79 ± 0.44 | 6.39 ± 1.89 | 11.02 ± 0.45 | 4.91 ± 0.13 b | 17.35 ± 1.92 |
p Value | p = 0.076 | p = 0.135 | p = 0.157 | p = 0.053 | p = 0.017 | p = 0.184 |
SNPs g. 232,922G>C | ||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | TS/% |
GG 81 | 4.15 ± 0.03 a | 4.97 ± 0.04 a | 5.69 ± 0.29 ab | 11.33 ± 0.05 a | 4.97 ± 0.02 ab | 16.89 ± 0.29 ab |
GC 62 | 4.04 ± 0.04 ab | 4.84 ± 0.05 ab | 5.15 ± 0.33 b | 11.26 ± 0.06 a | 5.02 ± 0.02 a | 16.28 ± 0.33 b |
CC 19 | 3.96 ± 0.072 b | 4.69 ± 0.1 b | 6.78 ± 0.66 a | 10.91 ± 0.12 b | 4.93 ± 0.04 b | 17.66 ± 0.65 a |
p Value | p = 0.017 | p = 0.018 | p = 0.019 | p = 0.005 | p = 0.023 | p = 0.014 |
SNPs g.4,203T>C | ||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | TS/% |
TT 18 | 4.19 ± 0.24 | 5.08 ± 0.33 a | 4.6 ± 2.02 b | 11.56 ± 0.35 a | 5.02 ± 0.16 | 15.99 ± 1.97 |
TC 69 | 4.03 ± 0.3 | 4.82 ± 0.41 b | 5.58 ± 2.6 ab | 11.19 ± 0.48 b | 4.99 ± 0.16 | 16.46 ± 2.53 |
CC 75 | 4.12 ± 0.29 | 4.93 ± 0.38 ab | 6.00 ± 2.73 a | 11.27 ± 0.47 b | 4.97 ± 0.15 | 17.1 ± 2.73 |
p Value | p = 0.056 | p = 0.029 | p = 0.043 | p = 0.011 | p = 0.425 | p = 0.155 |
SNPs g. 5,348T>G | ||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | TS/% |
TT 95 | 4.28 ± 0.09 a | 5.23 ± 0.33 a | 4.69 ± 1.89 | 11.64 ± 0.36 a | 4.92 ± 0.12 b | 16.14 ± 1.9 |
TG 57 | 4.01 ± 0.04 ab | 4.77 ± 0.41 b | 5.66 ± 2.64 | 11.18 ± 0.52 b | 5.02 ± 0.15 a | 16.5 ± 2.56 |
GG 10 | 4.12 ± 0.03 b | 4.94 ± 0.37 b | 5.77 ± 2.68 | 11.27 ± 0.44 b | 4.97 ± 0.16 ab | 16.89 ± 2.67 |
p Value | p = 0.009 | p = 0.001 | p = 0.465 | p = 0.019 | p = 0.041 | p = 0.518 |
SNPs g.122,451T>C | ||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | TS/% |
TT 24 | 4.16 ± 0.24 | 5.07 ± 0.34 a | 4.84 ± 2.01 b | 11.46 ± 0.38 a | 4.94 ± 0.14 | 16.13 ± 1.96 |
TC 79 | 4.08 ± 0.3 | 4.91 ± 0.41 ab | 5.35 ± 2.35 b | 11.3 ± 0.47 ab | 4.99 ± 0.16 | 16.52 ± 2.36 |
CC 59 | 4.07 ± 0.3 | 4.82 ± 0.38 b | 6.48 ± 3.04 a | 11.15 ± 0.5 b | 5 ± 0.16 | 17.19 ± 3.02 |
p Value | p = 0.451 | p = 0.029 | p = 0.019 | p = 0.012 | p = 0.329 | p = 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, G.; Zha, X.; Ma, X.; La, Y.; Wu, X.; Guo, X.; Chu, M.; Bao, P.; Yan, P.; et al. Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods 2024, 13, 3720. https://doi.org/10.3390/foods13233720
Zhang J, Yang G, Zha X, Ma X, La Y, Wu X, Guo X, Chu M, Bao P, Yan P, et al. Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods. 2024; 13(23):3720. https://doi.org/10.3390/foods13233720
Chicago/Turabian StyleZhang, Juanxiang, Guowu Yang, Xita Zha, Xiaoming Ma, Yongfu La, Xiaoyun Wu, Xian Guo, Min Chu, Pengjia Bao, Ping Yan, and et al. 2024. "Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics" Foods 13, no. 23: 3720. https://doi.org/10.3390/foods13233720
APA StyleZhang, J., Yang, G., Zha, X., Ma, X., La, Y., Wu, X., Guo, X., Chu, M., Bao, P., Yan, P., & Liang, C. (2024). Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods, 13(23), 3720. https://doi.org/10.3390/foods13233720