Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Determination of Fatty Acid Composition
2.3. Oil Quality and Stability Investigation
2.3.1. Acid Value
2.3.2. Peroxide Value
2.3.3. Anisidine Value
2.3.4. Total Oxidation Index
2.3.5. Conjugated Dienes and Conjugated Trienes
2.4. Accelerated Stability Tests
2.4.1. Rancimat Test
2.4.2. RapidOxy Test
2.5. Color Measurement
2.6. Sensory Analysis
2.7. Statistical Analysis
2.7.1. Artificial Neural Network Modeling
2.7.2. Training, Testing, and System Implementation
2.7.3. Global Sensitivity Analysis
2.7.4. The Accuracy of the ANN Model
3. Results and Discussion
3.1. Fatty Acid Composition
3.2. Quality and Stability Parameters of Oil
3.2.1. AV
3.2.2. PV, AnV, and TOTOX
3.2.3. CD and CT Content
3.3. Accelerated Stability Tests
3.4. Color Measurement
3.5. Sensory Analysis
3.6. Principal Component Analysis
3.7. ANN Model
3.8. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Zhu, L.; Dong, J.; Wei, Q.; Lei, M. Composition of Catalpa ovata Seed Oil and Flavonoids in Seed Meal as Well as Their Antioxidant Activities. J. Am. Oil Chem. Soc. 2015, 92, 361–369. [Google Scholar] [CrossRef]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils—A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef] [PubMed]
- Gunstone, F.D. Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Vegetable oil blending: A review of physicochemical, nutritional and health effects. Trends Food Sci. Tech. 2016, 57, 52–58. [Google Scholar] [CrossRef]
- O’Brien, R.D. Fats and Oils: Formulating and Processing for Applications, 3rd ed.; CRC Press: New York, NY, USA, 2009; pp. 1–574. [Google Scholar]
- Hamed, S.F.; Abo-Elwafa, G.A. Enhancement of oxidation stability of flax seed oil by blending with stable vegetable oils. Res. J. Appl. Sci. 2012, 8, 5039–5048. [Google Scholar]
- Umesha, S.S.; Naidu, K.A. Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats. Food Chem. 2012, 135, 2845–2851. [Google Scholar] [CrossRef]
- Choudhary, M.; Grover, K.; Kaur, G. Fatty acid composition, oxidative stability, and radical scavenging activity of rice bran oil blends. Int. J. Food Sci. Nutr. 2013, 2, 33–43. [Google Scholar]
- Reddy, K.J.; Jayathilakan, K.; Pandey, M.C.; Radhakrishna, K. Evaluation of the physico-chemical stability of rice bran oil and its blends for the development of functional meat products. Int. J. Food Nutr. Sci. 2013, 2, 46–53. [Google Scholar]
- Sharma, M.; Lokesh, B.R. Modification of serum and tissue lipids in rats fed with blended and interesterified oils containing groundnut oil with linseed oil. J. Food Biochem. 2013, 37, 220–230. [Google Scholar] [CrossRef]
- Adeyemi, K.D.; Sazili, A.Q.; Ebrahimi, M.; Samsudin, A.A.; Alimon, A.R.; Karim, R.; Karsani, S.A.; Sabow, A.B. Effects of blend of canola oil and palm oil on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids in goats. Anim. Sci. J. 2016, 87, 1137–1147. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Hadj-Kali, M.K.; Sbihi, H.M.; Tan, C.P.; Al-Resayes, S.I. Characterization of ternary blends of vegetable oils with optimal ω-6/ω-3 fatty acid ratios. J. Oleo Sci. 2019, 68, 1041–1049. [Google Scholar] [CrossRef]
- Bian, X.; Zhang, R.; Liu, P.; Xiang, Y.; Wang, S.; Tan, X. Near infrared spectroscopic variable selection by a novel swarm intelligence algorithm for rapid quantification of high order edible blend oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 284, 121788. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, E.; Lee, K.G. Quality evaluation of noble mixed oil blended with palm and canola oil. J. Oleo Sci. 2014, 63, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Grover, K.; Kaur, G. Development of rice bran oil blends for quality improvement. Food Chem. 2015, 173, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ng, T.T.; Yao, Z.P. Quantitative analysis of blended oils by matrix-assisted laser desorption/ionization mass spectrometry and partial least squares regression. Food Chem. 2021, 334, 127601. [Google Scholar] [CrossRef]
- Lehnert, S.; Khomenko, O.; Dubinina, A.; Vinnikova, V.; Tatar, L. Quality and safety of new blended oils. Food Sci. Technol. 2019, 13, 112–117. [Google Scholar] [CrossRef]
- Kotliar, Y.; Topchiy, O.; Kyshenia, A.; Polumbryk, M.; Garbazhiy, K.; Lanzhenko, L.; Bogdan, M.; Yasko, V.; Honcharenko, T. Development of a technology of vitaminized blended vegetable oils and their identification by the fatty acid and vitamin contents. East.-Eur. J. Enterp. Technol. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Bakhtiary, D.; Asadollahi, S.; Ali, S.; Ardakani, Y. Sensory Qualities of sesame oil, palm olein and the blend of them during frying of potato chips. Int. J. Farming Allied Sci. 2014, 3, 786–790. [Google Scholar]
- Roiaini, M.; Ardiannie, T.; Norhayati, H. Physicochemical properties of canola oil, olive oil and palm olein blends. Int. Food Res. J. 2015, 22, 1227–1233. [Google Scholar]
- Amin, M.A.; Ali, M.A.; Alam, M.S.; Nahar, A.; Chew, S.C. Oxidative degradation of sunflower oil blended with roasted sesame oil during heating at frying temperature. Grain Oil Sci. Technol. 2023, 6, 34–42. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio in-creases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapen-taenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Beinhorn, P.; Hu, X.F.; Chan, H.M.; Roke, K.; Bernasconi, A.; Hahn, A.; Sala-Vila, A.; Stark, K.D.; Harris, W.S. Omega-3 world map: 2024 update. Prog. Lipid Res. 2024, 95, 101286. [Google Scholar] [CrossRef] [PubMed]
- FAO. Summary of conclusions and dietary recommendations on total fat and fatty acids. In Fats and Fatty Acids in Human Nutritions: Report of An Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 9–19. [Google Scholar]
- Romanić, R.S.; Lužaić, T.Z.; Radić, B. Enriched sunflower oil with omega 3 fatty acids from flaxseed oil: Prediction of the nutritive characteristics. LWT 2021, 150, 112064. [Google Scholar] [CrossRef]
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methylesters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Ubricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value-Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization: Geneva, Switzerland, 2016.
- Oomah, B.D.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- Wai, W.T.; Saad, B.; Lim, B.P. Determination of totox value in palm oleins using a FI-potentiometric analyzer. Food Chem. 2009, 113, 285–290. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.Y.; Liu, Z.Y.; Yin, F.W.; Liu, Z.Q.; Li, D.Y.; Shahidi, F. Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage. Food Chem. 2019, 272, 109–116. [Google Scholar] [CrossRef]
- ISO 3656/Amd 1, 2013/2017; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction-Amendment 1. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6886:2016; Animal and Vegetable Fats and Oils—Determination of Oxidative Stability (Accelerated Oxidation Test). International Organization for Standardization: Geneva, Switzerland, 2016.
- Lužaić, T.Z.; Grahovac, N.L.; Hladni, N.T.; Romanić, R.S. Evaluation of oxidative stability of new cold-pressed sunflower oils during accelerate thermal stabil-ity tests. Food Sci. Technol. 2022, 42, e67320. [Google Scholar] [CrossRef]
- Anton, P. Determination of Oxidation Stability—A User Guideline. Relevant for: Food Industry; Anton Paar: Graz, Austria, 2022. [Google Scholar]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Dimić, E.; Turkulov, J. Kontrola Kvaliteta u Tehnologiji Jestivih Ulja; University of Novi Sad, Faculty of Technology: Novi Sad, Serbia, 2000. [Google Scholar]
- Taylor, B.J. Methods and Procedures for the Verification and Validation of Artificial Neural Networks; Springer: New York, NY, USA, 2006; pp. 1–277. [Google Scholar]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Pezo, L.; Ćurčić, B.; Filipović, V.; Nićetin, M.; Koprivica, G.; Mišljenović, N.; Lević, L. Artificial neural network model of pork meat cubes osmotic dehydratation. Hem. Ind. 2013, 67, 465–475. [Google Scholar] [CrossRef]
- StatSoft, Inc. Statistica (Data Analysis Software System), Version 10.0. 2010. Available online: http://www.statsoft.com/ (accessed on 10 December 2022).
- Kollo, T.; von Rosen, D. Advanced Multivariate Statistics with Matrices; Springer: Amsterdam, The Netherlands, 2005; pp. 355–472. [Google Scholar]
- Yoon, Y.; Swales, G.; Silvia, E.M. A comparison of discriminant analysis versus artificial neural networks. J. Oper. Res. Soc. 1993, 44, 51–60. [Google Scholar] [CrossRef]
- Arsenović, M.; Pezo, L.; Stanković, S.; Radojević, Z. Factor space differentiation of brick clays according to mineral content: Prediction of final brick product quality. Appl. Clay Sci. 2015, 115, 108–114. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Adv. Pharm. Bull. 2018, 8, 107–113. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetable Oils Codex Stan 210-1999; Codex Alimentarius: Rome, Italy, 1999. [Google Scholar]
- Lupette, J.; Benning, C. Human health benefits of very-long-chain polyun-saturated fatty acids from microalgae. Biochimie 2020, 178, 15–25. [Google Scholar] [CrossRef] [PubMed]
- AFFSA. Opinion of the French Food Safety Agency (AFSSA) on the Up-Date of French Population Reference Intakes (ANCs) for Fatty Acids; AFFSA: Washington, DC, USA, 2010; Available online: https://www.anses.fr/fr/system/files/NUT2006sa0359.pdf (accessed on 10 October 2022).
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oilseeds Fats Crops Lipids 2010, 17, 267–275. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef]
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2014, 52, 4613–4618. [Google Scholar] [CrossRef]
- Javidipour, I.; Erinç, H.; Baştürk, A.; Tekin, A. Oxidative changes in hazelnut, olive, soybean, and sunflower oils during microwave heating. Int. J. Food Prop. 2017, 20, 1582–1592. [Google Scholar] [CrossRef]
- Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets. Eur. J. Lipid Sci. Technol. 2016, 118, 834–839. [Google Scholar] [CrossRef]
- Grover, S.; Kumari, P.; Kumar, A.; Soni, A.; Sehgal, S.; Sharma, V. Preparation and Quality Evaluation of Different Oil Blends. Lett. Appl. NanoBioScience 2021, 10, 2126–2137. [Google Scholar]
- Anwar, F.; Zreen, Z.; Sultana, B.; Jamil, A. Enzyme-aided cold pressing of flaxseed (Linum usitatissimum L.): Enhancement in yield, quality and phenolics of the oil. Grasas Aceites 2013, 64, 463–471. [Google Scholar] [CrossRef]
- Kiralan, M.; Bayrak, A.; Çalikoglu, E. Effect of nigella seed extract on oxidative stability of refined sunflower oil. Asian J. Chem. 2008, 20, 3313–3318. [Google Scholar]
- Velasco, J.; Andersen, M.; Skibsted, L. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem. 2004, 85, 623–632. [Google Scholar] [CrossRef]
- Tańska, M.; Roszkowska, B.; Skrajda, M.; Dąbrowski, G. Commercial cold pressed flaxseed oils quality and oxidative stability at the beginning and the end of their shelf life. J. Oleo Sci. 2016, 65, 111–121. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Tańska, M. Effect of initial quality and bioactive compounds content in cold-pressed flaxseed oils on oxidative stability and oxidation products formation during one-month storage with light exposure. Nutr. Food Sci. J. 2022, 26, 10–21. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Sabolová, M.; Zeman, V.; Lebedová, G.; Doležal, M.; Soukup, J.; Réblová, Z. Relationship between the fat and oil composition and their initial oxidation rate during storage. Czech J. Food Sci. 2020, 38, 404–409. [Google Scholar] [CrossRef]
- Gupta, M. Practical Guide to Vegetable Oil Processing, 2nd ed.; AOCS Press: Champaign, IL, USA, 2017; pp. 41–78. [Google Scholar]
- Brühl, L.; Matthäus, B.; Scheipers, A.; Hofmann, T. Bitter off-taste in stored cold-pressed linseed oil obtained from different varieties. Eur. J. Lipid Sci. Technol. 2008, 110, 625–631. [Google Scholar] [CrossRef]
- Stamenkovic, A.; Ganguly, R.; Aliani, M.; Ravandi, A.; Pierce, G.N. Overcoming the bitter taste of oils enriched in fatty acids to obtain their effects on the heart in health and disease. Nutrients 2019, 11, 1179. [Google Scholar] [CrossRef]
- Bialasová, K.; Němečková, I.; Kyselka, J.; Štětina, J.; Solichová, K.; Horáčková, Š. Influence of flaxseed components on fermented dairy product properties. Czech J. Food Sci. 2018, 36, 51–56. [Google Scholar] [CrossRef]
- Madamba, P.S. The response surface methodology: An application to optimize dehydration operations of selected agricultural crops. LWT 2002, 35, 584–592. [Google Scholar] [CrossRef]
- Turányi, T.; Tomlin, A.S. Analysis of Kinetics Reaction Mechanisms; Springer: Berlin/Heidelberg, Germany, 2014; pp. 313–335. [Google Scholar]
- Montgomery, D.C. Design and analysis of experiments, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; pp. 449–475. [Google Scholar]
- Valous, N.A.; Mendoza, F.; Sun, D.W. Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: A review. Trends Food Sci. Technol. 2010, 21, 26–43. [Google Scholar] [CrossRef]
Oil Blend | Fatty Acid Composition (%) | Nutrient Indices | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C18:0 | C18:1 | C18:2n6 | C18:3n6 | C18:3n3 | C20:0 | C20:1 | C22:0 | C24:0 | ω6/ω3 | AI | TI | HH | |
100S/0F | 5.97 ± 0.00 h | 0.08 ± 0.01 d | 2.76 ± 0.00 b | 30.25 ± 0.05 j | 59.71 ± 0.02 l | nd | 0.07 ± 0.01 a | 0.19 ± 0.00 f | 0.11 ± 0.00 bc | 0.60 ± 0.03 g | 0.21 ± 0.01 fgh | 892.91 | 0.07 | 0.19 | 14.96 |
90S/10F | 5.84 ± 0.01 g | 0.07 ± 0.00 d | 2.93 ± 0.01 c | 28.57 ± 0.04 i | 57.18 ± 0.06 k | nd | 4.33 ± 0.02 b | 0.18 ± 0.01 ef | 0.11 ± 0.01 ab | 0.56 ± 0.01 g | 0.22 ± 0.01 gh | 13.19 | 0.06 | 0.16 | 15.43 |
80S/20F | 5.84 ± 0.01 g | 0.07 ± 0.00 d | 3.20 ± 0.00 d | 27.36 ± 0.02 h | 52.99 ± 0.04 j | nd | 9.51 ± 0.02 c | 0.18 ± 0.00 ef | 0.10 ± 0.00 ab | 0.51 ± 0.01 f | 0.23 ± 0.01 h | 5.57 | 0.06 | 0.13 | 15.39 |
70S/30F | 6.08 ± 0.01 i | 0.11 ± 0.01 e | 3.40 ± 0.01 e | 26.62 ± 0.06 g | 48.34 ± 0.01 i | nd | 14.48 ± 0.02 d | 0.17 ± 0.01 de | 0.13 ± 0.01 c | 0.47 ± 0.02 ef | 0.19 ± 0.00 ef | 3.34 | 0.07 | 0.12 | 14.70 |
60S/40F | 6.00 ± 0.02 h | 0.08 ± 0.01 d | 3.62 ± 0.01 f | 26.13 ± 0.03 g | 42.16 ± 0.02 h | nd | 21.11 ± 0.01 e | 0.18 ± 0.00 de | 0.11 ± 0.00 ab | 0.44 ± 0.02 e | 0.17 ± 0.00 de | 2.00 | 0.07 | 0.10 | 14.90 |
50S/50F | 5.56 ± 0.01 f | 0.06 ± 0.01 bc | 3.61 ± 0.00 f | 23.82 ± 0.02 f | 40.13 ± 0.01 g | nd | 26.02 ± 0.01 f | 0.17 ± 0.00 d | 0.10 ± 0.00 ab | 0.37 ± 0.01 d | 0.16 ± 0.01 de | 1.54 | 0.06 | 0.08 | 16.17 |
40S/60F | 5.46 ± 0.01 e | 0.06 ± 0.01 c | 3.64 ± 0.00 f | 22.37 ± 0.02 e | 36.02 ± 0.01 f | 0.08 ± 0.00 a | 31.69 ± 0.01 g | 0.15 ± 0.01 c | 0.10 ± 0.00 ab | 0.30 ± 0.01 c | 0.13 ± 0.01 ab | 1.14 | 0.06 | 0.07 | 16.51 |
30S/70F | 5.28 ± 0.01 d | 0.05 ± 0.01 b | 3.83 ± 0.01 g | 21.17 ± 0.03 d | 32.04 ± 0.02 e | 0.09 ± 0.00 a | 36.93 ± 0.05 h | 0.14 ± 0.01 bc | 0.09 ± 0.01 a | 0.27 ± 0.01 c | 0.11 ± 0.01 a | 0.87 | 0.06 | 0.07 | 17.09 |
20S/80F | 5.27 ± 0.01 d | 0.06 ± 0.01 bc | 4.00 ± 0.02 h | 19.38 ± 0.58 c | 26.54 ± 0.13 d | 0.11 ± 0.01 b | 44.09 ± 0.78 i | 0.13 ± 0.01 ab | 0.09 ± 0.01 a | 0.21 ± 0.01 b | 0.13 ± 0.00 abc | 0.60 | 0.06 | 0.06 | 17.07 |
10S/90F | 5.18 ± 0.03 c | 0.06 ± 0.01 c | 4.11 ± 0.01 i | 18.55 ± 5.78 b | 23.56 ± 0.01 b | 0.12 ± 0.01 c | 47.88 ± 0.05 j | 0.12 ± 0.01 a | 0.09 ± 0.01 a | 0.18 ± 0.01 ab | 0.14 ± 0.01 bc | 0.49 | 0.06 | 0.06 | 17.37 |
0S/100F | 5.00 ± 0.01 b | 0.04 ± 0.01 a | 4.28 ± 0.03 j | 17.02 ± 0.02 a | 18.17 ± 0.02 a | 0.14 ± 0.00 d | 54.84 ± 0.08 k | 0.12 ± 0.01 a | 0.09 ± 0.00 a | 0.15 ± 0.00 a | 0.16 ± 0.01 cd | 0.33 | 0.06 | 0.05 | 18.03 |
Control | 3.99 ± 0.00 a | 0.11 ± 0.00 e | 1.53 ± 0.00 a | 64.21 ± 0.01 k | 23.70 ± 0.01 c | nd | 4.78 ± 0.70 b | 0.40 ± 0.01 g | 0.79 ± 0.01 d | 0.31 ± 0.02 c | 0.20 ± 0.01 fg | 4.96 | 0.04 | 0.09 | 23.26 |
Oil Blend | AV (mgKOH/g) | PV (mmol/kg) | AnV | TOTOX | CD | CT | CD/CT |
---|---|---|---|---|---|---|---|
100S/0F | 0.18 ± 0.00 d | 1.60 ± 0.01 g | 15.12 ± 0.18 k | 18.32 ± 0.19 j | 2.39 ± 0.06 e | 0.25 ± 0.01 f | 9.44 ± 0.32 b |
90S/10F | 0.34 ± 0.00 b | 1.51 ± 0.05 d | 13.22 ± 0.08 j | 16.24 ± 0.03 i | 3.70 ± 0.02 a | 0.38 ± 0.01 a | 9.82 ± 0.16 b |
80S/20F | 0.39 ± 0.01 b | 1.46 ± 0.00 d | 12.19 ± 0.19 i | 15.11 ± 0.19 h | 3.66 ± 0.10 a | 0.41 ± 0.02 ab | 9.01 ± 0.59 bc |
70S/30F | 0.49 ± 0.03 c | 1.19 ± 0.02 c | 11.62 ± 0.08 h | 14.00 ± 0.09 g | 4.24 ± 0.02 b | 0.62 ± 0.01 c | 6.81 ± 0.10 a |
60S/40F | 0.52 ± 0.01 c | 1.20 ± 0.02 c | 10.16 ± 0.01 g | 12.56 ± 0.04 f | 4.39 ± 0.08 b | 0.61 ± 0.01 c | 7.15 ± 0.07 ad |
50S/50F | 0.67 ± 0.03 a | 1.01 ± 0.05 b | 8.27 ± 0.01 f | 10.28 ± 0.10 e | 3.61 ± 0.03 a | 0.42 ± 0.02 b | 8.60 ± 0.35 bcd |
40S/60F | 0.69 ± 0.04 a | 0.99 ± 0.01 b | 6.32 ± 0.04 e | 8.30 ± 0.06 d | 3.33 ± 0.12 i | 0.50 ± 0.02 h | 6.70 ± 0.05 a |
30S/70F | 0.62 ± 0.01 a | 0.77 ± 0.01 e | 4.61 ± 0.03 a | 6.14 ± 0.02 a | 3.08 ± 0.01 h | 0.34 ± 0.01 g | 9.07 ± 0.25 bc |
20S/80F | 0.69 ± 0.03 a | 0.66 ± 0.01 a | 4.82 ± 0.03 a | 6.13 ± 0.03 a | 2.85 ± 0.05 g | 0.38 ± 0.01 a | 7.57 ± 0.24 acd |
10S/90F | 0.84 ± 0.06 e | 0.64 ± 0.01 a | 4.25 ± 0.02 d | 5.52 ± 0.02 c | 2.20 ± 0.01 d | 0.17 ± 0.01 e | 13.22 ± 0.86 e |
0S/100F | 1.26 ± 0.06 f | 0.67 ± 0.01 a | 0.00 ± 0.00 b | 1.33 ± 0.02 b | 2.00 ± 0.01 c | 0.11 ± 0.01 d | 18.31 ± 1.67 f |
Control | 0.32 ± 0.01 b | 1.37 ± 0.02 f | 3.42 ± 0.02 c | 6.16 ± 0.05 a | 2.60 ± 0.01 f | 0.40 ± 0.01 ab | 6.56 ± 0.09 a |
Oil Blend | Thermal Stability Tests | |
---|---|---|
Rancimat Test, IP (Hours) | RapidOxy Test, IP (Minutes) | |
100S/0F | 9.48 ± 0.14 k | 34.37 ± 0.46 k |
90S/10F | 9.05 ± 0.15 j | 32.56 ± 0.52 j |
80S/20F | 8.46 ± 0.12 i | 31.27 ± 0.34 i |
70S/30F | 7.92 ± 0.08 h | 29.31 ± 0.46 h |
60S/40F | 7.41 ± 0.07 g | 27.88 ± 0.27 g |
50S/50F | 6.93 ± 0.06 f | 26.35 ± 0.32 f |
40S/60F | 6.38 ± 0.08 e | 24.77 ± 0.22 e |
30S/70F | 5.83 ± 0.05 d | 23.19 ± 0.36 d |
20S/80F | 5.25 ± 0.11 c | 21.69 ± 0.27 c |
10S/90F | 4.77 ± 0.09 b | 20.00 ± 0.33 b |
0S/100F | 4.28 ± 0.08 a | 18.39 ± 0.36 a |
Control | 16.47 ± 0.23 l | 70.50 ± 0.84 l |
Oil Blend | L* | a* | b* | ΔE |
---|---|---|---|---|
100S/0F | 26.50 ± 0.01 j | −1.00 ± 0.05 d | 3.50 ± 0.03 c | 1.28 ± 0.02 d |
90S/10F | 25.42 ± 0.01 h | −2.13 ± 0.10 b | 10.26 ± 0.03 b | 6.08 ± 0.02 h |
80S/20F | 25.30 ± 0.02 g | −1.70 ± 0.01 c | 11.25 ± 0.01 j | 7.02 ± 0.01 j |
70S/30F | 24.97 ± 0.01 b | −1.19 ± 0.02 a | 10.83 ± 0.02 i | 6.60 ± 0.00 i |
60S/40F | 24.69 ± 0.00 a | −0.77 ± 0.04 e | 10.58 ± 0.06 h | 6.40 ± 0.06 c |
50S/50F | 24.85 ± 0.02 d | −0.40 ± 0.06 f | 10.36 ± 0.06 ab | 6.19 ± 0.05 a |
40S/60F | 24.66 ± 0.01 a | −0.13 ± 0.07 g | 10.45 ± 0.04 a | 6.34 ± 0.02 bc |
30S/70F | 25.00 ± 0.01 b | 0.07 ± 0.05 h | 10.39 ± 0.04 a | 6.28 ± 0.04 ab |
20S/80F | 24.29 ± 0.01 c | 0.29 ± 0.02 i | 9.89 ± 0.04 g | 5.95 ± 0.04 g |
10S/90F | 24.91 ± 0.01 e | 0.47 ± 0.03 j | 9.02 ± 0.04 f | 5.08 ± 0.03 f |
0S/100F | 25.14 ± 0.01 f | 0.76 ± 0.03 k | 8.36 ± 0.04 e | 4.56 ± 0.03 e |
Control | 25.48 ± 0.02 i | −1.18 ± 0.06 a | 4.25 ± 0.02 d | / |
Oil Blend | Color | Odor | Taste | Average Rating | Total Acceptability |
---|---|---|---|---|---|
100S/0F | 3.3 ± 0.9 b | 3.9 ± 1.2 a | 4.1 ± 1.4 a | 3.8 ± 0.9 a | 3.8 ± 1.0 a |
90S/10F | 4.4 ± 0.7 a | 3.6 ± 1.0 a | 4.1 ± 1.0 a | 4.0 ± 0.6 a | 4.0 ± 0.7 a |
80S/20F | 4.4 ± 0.7 a | 3.6 ± 0.8 a | 3.9 ± 1.1 ab | 4.0 ± 0.7 a | 3.9 ± 0.7 a |
70S/30F | 4.1 ± 0.7 ab | 3.7 ± 0.8 a | 3.5 ± 1.0 ab | 3.8 ± 0.7 a | 3.7 ± 0.7 a |
60S/40F | 4.1 ± 0.6 ab | 3.7 ± 0.7 a | 3.0 ± 1.1 ab | 3.6 ± 0.6 a | 3.5 ± 0.6 a |
50S/50F | 3.8 ± 0.8 ab | 3.7 ± 0.9 a | 2.7 ± 1.3 ab | 3.4 ± 0.7 a | 3.3 ± 0.8 a |
40S/60F | 3.9 ± 0.7 ab | 4.1 ± 1.0 a | 2.4 ± 1.5 ab | 3.5 ± 0.9 a | 3.3 ± 1.0 a |
30S/70F | 3.7 ± 1.1 ab | 3.9 ± 0.7 a | 2.5 ± 1.7 ab | 3.4 ± 0.9 a | 3.3 ± 1.0 a |
20S/80F | 3.9 ± 1.1 ab | 4.1 ± 0.7 a | 2.3 ± 1.9 b | 3.4 ± 0.8 a | 3.3 ± 0.9 a |
10S/90F | 3.8 ± 0.9 ab | 4.2 ± 0.5 a | 2.3 ± 1.9 ab | 3.4 ± 0.7 a | 3.3 ± 0.9 a |
0S/100F | 3.9 ± 1.0 ab | 3.9 ± 0.7 a | 2.6 ± 2.0 ab | 3.5 ± 0.9 a | 3.4 ± 1.0 a |
Control | 3.6 ± 0.9 ab | 4.1 ± 1.2 a | 3.9 ± 1.1 ab | 3.9 ± 0.9 a | 3.9 ± 0.9 a |
Network Name | Performance | Error | Train. Algorith. | Error Func. | Hidden Active. | Output Active. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Train. | Test. | Valid. | Train. | Test. | Valid. | |||||
MLP 3-7-1 | 0.959 | 0.750 | 0.964 | 6.361 | 9.975 | 6.961 | BFGS 67 | SOS | Exponential | Identity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanić, R.; Lužaić, T.; Pezo, L.; Radić, B.; Kravić, S. Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability. Foods 2024, 13, 3722. https://doi.org/10.3390/foods13233722
Romanić R, Lužaić T, Pezo L, Radić B, Kravić S. Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability. Foods. 2024; 13(23):3722. https://doi.org/10.3390/foods13233722
Chicago/Turabian StyleRomanić, Ranko, Tanja Lužaić, Lato Pezo, Bojana Radić, and Snežana Kravić. 2024. "Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability" Foods 13, no. 23: 3722. https://doi.org/10.3390/foods13233722
APA StyleRomanić, R., Lužaić, T., Pezo, L., Radić, B., & Kravić, S. (2024). Omega 3 Blends of Sunflower and Flaxseed Oil—Modeling Chemical Quality and Sensory Acceptability. Foods, 13(23), 3722. https://doi.org/10.3390/foods13233722