Effect of Dual-Modified Tapioca Starch/Chitosan/SiO2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Clove Essential Oil Emulsion
2.3. Characterization of Clove Essential Oil Emulsion
2.4. Preparation of Dual-Modified Tapioca Starch
2.5. Preparation of Composite Films
2.6. Mechanical Properties
2.7. Light Transmittance of Film
2.8. Antioxidant Capacity
2.9. Preparation of Coating Film Solutions
2.10. Green Grape Preservation
2.10.1. Water Contact Angle of Coating
2.10.2. Scanning Electron Microscopy of Peels
2.10.3. Microbiological Analysis
2.10.4. Color Measurement
2.10.5. Hardness
2.10.6. Weight Loss Rate
2.10.7. Rot Rate
2.10.8. Soluble Solids Content
2.10.9. Titratable Acid (TA)
2.10.10. Anthocyanins, Total Flavonoid Content, Total Polyphenol Content
2.10.11. Sensory Evaluation
- 1.
- Color (Total: 25 points)
- 2.
- Taste (Total: 25 points)
- 3.
- Aroma (Total: 25 points)
- 4.
- Shape (Total: 25 points)
2.10.12. Pearson Correlation Analysis
2.10.13. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Clove Essential Oil Emulsion
3.2. Effects of Different Dual-Modified Tapioca Starch Concentrations, Glycerol Contents, and SiO2 Contents on the Mechanical Properties of the Film
3.3. Antioxidant Capacity
3.4. Wettability of Coating
3.5. Morphology of the Green Grapes Coating
3.6. Green Grapes Storage
3.6.1. The Changes in Appearance of the Green Grapes During Storage and Microbiological Analyses
3.6.2. Color, Hardness, Weight Loss Rate, Rot Rate
3.6.3. Soluble Solids Content (SSC), Titratable Acidity (TA), Anthocyanin Content, TotalPhenol Content, Total Flavonoid Content
3.6.4. Sensory Radar Map
3.6.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Liu, B.; Sun, F.; Zhu, P.; Wang, K.; Peng, L.; Zhuang, Y.; Li, H. Preparation of multi-barrier and multi-functional paper-based materials by chitosan, ethyl cellulose and green walnut husk biorefinery products for sustainable food packaging. Int. J. Biol. Macromol. 2024, 278, 134557. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, P.; Han, L.; Zhang, F.; Liu, B.; Meng, X. Antibacterial mechanism of whey protein isolated-citral nanoparticles and stable synergistic antibacterial eugenol encapsulated Pickering emulsion for grapes preservation. Food Chem. 2024, 455, 139851. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, W.; Xing, M. Low density methacrylated pea, corn, and tapioca starch covalent cryogels with excellent elasticity and water/oil absorption capacity. Carbohydr. Polym. 2024, 340, 122234. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Korma, S.A.; Chen, J.; Yang, T. Preparation, properties, and characterization of dual-modified tapioca starch and its composite film. Ind. Crops Prod. 2024, 222, 119840. [Google Scholar] [CrossRef]
- Kang, S.; Bai, Q.; Qin, Y.; Liang, Q.; Hu, Y.; Li, S.; Luan, G. Film-forming modifications and mechanistic studies of soybean protein isolate by glycerol plasticization and thermal denaturation: A molecular interaction perspective. Food Res. Int. 2024, 196, 115042. [Google Scholar] [CrossRef]
- Bhowmik, S.; Agyei, D.; Ali, A. Enhancement of mechanical, barrier, and functional properties of chitosan film reinforced with glycerol, COS, and gallic acid for active food packaging. Sustain. Mater. Technol. 2024, 41, e01092. [Google Scholar] [CrossRef]
- Nimitkeatkai, H.; Apiwatanapiwat, W.; Janchai, P.; Meelaksana, J.; Vaithanomsat, P.; Techavuthiporn, C.; Jarerat, A. Valorization of freshwater crab shell residues to chitosan for postharvest quality of mango (Mangifera indica L.) by fruit coating. J. Agric. Food Res. 2024, 18, 101441. [Google Scholar] [CrossRef]
- Bhowmik, S.; Agyei, D.; Ali, A. Smart chitosan films as intelligent food packaging: An approach to monitoring food freshness and biomarkers. Food Packag. Shelf Life 2024, 46, 101370. [Google Scholar] [CrossRef]
- Liu, G.; Luo, R.; Li, Q.; Chen, S.; Zhang, Y.; Wang, C.; Yang, Q.; Zhou, S.; Yan, C.; Shi, Y. Bifunctional nano-SiO2 additive for reinforcing the SiC/Al composites fabricated via a novel hybrid additive manufacturing. Compos. Part B Eng. 2024, 283, 111647. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, J.; Essawy, H.; Lee, S.H.; Lum, W.C.; Zhou, X.; Du, G.; Zhang, J. Characterization of hydrophobic epoxy soybean oil-based rigid plastic reinforced with nano SiO2 particles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134630. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Y.; Qiu, W.; Chen, C.; Xie, J. Development of slow release antibacterial polylactic acid bilayer active film with different distributions of clove essential oil and its application for snakehead (Channa argus) preservation. Food Control 2024, 162, 110473. [Google Scholar] [CrossRef]
- Lakshan, N.D.; Senanayake, C.M.; Liyanage, T.; Lankanayaka, A. Clove essential oil emulsions-loaded arrowroot starch-beeswax-based edible coating extends the shelf life and preserves the postharvest quality of fresh tomatoes (Solanum lycopersicum L.) stored at room temperature. Sustain. Food Technol. 2024, 2, 1052–1068. [Google Scholar] [CrossRef]
- Rashid, A.; Qayum, A.; Bacha, S.A.S.; Liang, Q.; Liu, Y.; Kang, L.; Chi, Z.; Chi, R.; Han, X.; Ekumah, J.-N.; et al. Preparation and functional characterization of pullulan-sodium alginate composite film enhanced with ultrasound-assisted clove essential oil Nanoemulsions for effective preservation of cherries and mushrooms. Food Chem. 2024, 457, 140048. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Leng, Z.; Liu, Q.; Zhao, J.; Li, S. Nano-emulsification of Osmanthus essential oil: Characterizations, stability and molecular interactions explaining antibacterial activity. Ind. Crops Prod. 2024, 219, 118987. [Google Scholar] [CrossRef]
- Sun, J.; Wei, Y.; Li, L.; Tang, B.; Yang, Y.; Xiao, Z.; Chen, J.; Lai, P. Investigating the Respiratory and Energy Metabolism Mechanisms behind ε-Poly-L-lysine Chitosan Coating’s Improved Preservation Effectiveness on Tremella fuciformis. Foods 2024, 13, 707. [Google Scholar] [CrossRef]
- Rui, L.; Li, Y.; Wu, X.; Wang, Y.; Xia, X. Effect of clove essential oil nanoemulsion on physicochemical and antioxidant properties of chitosan film. Int. J. Biol. Macromol. 2024, 263, 130286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pu, Y.; Jiang, H.; Chen, L.; Shen, C.; Zhang, W.; Cao, J.; Jiang, W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem. 2024, 435, 137534. [Google Scholar] [CrossRef]
- Pornsuksomboon, K.; Holló, B.B.; Szécsényi, K.M.; Kaewtatip, K. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydr. Polym. 2016, 136, 107–112. [Google Scholar] [CrossRef]
- Adame, M.Y.; Wang, Y.; Shi, C.; Aziz, T.; Al-Asmari, F.; Sameeh, M.Y.; Cui, H.; Lin, L. Fortification of pullulan/cassava starch-based edible films incorporated with LC-EO nanoparticles and the application for beef meat preservation. Int. J. Biol. Macromol. 2024, 279, 135629. [Google Scholar] [CrossRef]
- de Paula Farias, V.; Ascheri, D.P.R.; Ascheri, J.L.R. Substituting corn starch with wolf’s fruit and butterfly lily starches in thermopressed films: Physicochemical, mechanical, and biodegradation properties. Int. J. Biol. Macromol. 2024, 281, 136378. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, H.; Shi, Z.-W.; Lin, C.-q.; Chen, J. Preparation, characterization, and antibacterial effect of bio-based modified starch films. Food Chem. X 2023, 17, 100602. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, B.; Zhang, X.; Ma, Z.; Feng, X. Incorporating Portulaca oleracea extract endows the chitosan-starch film with antioxidant capacity for chilled meat preservation. Food Chem. X 2023, 18, 100662. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, Y.; Yang, J.; Pang, R.; Chen, Y.; Mo, L.; Jiang, Q.; Qin, Z. Preparation of curcumin-chitosan composite film with high antioxidant and antibacterial capacity: Improving the solubility of curcumin by encapsulation of biopolymers. Food Hydrocoll. 2023, 145, 109150. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Wang, H.; Shu, C.; Chen, L.; Cao, J.; Jiang, W. The combination treatment of chlorogenic acid and sodium alginate coating could accelerate the wound healing of pear fruit by promoting the metabolic pathway of phenylpropane. Food Chem. 2023, 414, 135689. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Elsherief, M.F.; Devecioglu, D.; Salama, M.A.; Sakr, H.; Abdin, M.; El Fadly, E.; Kamel, R.M.; Saleh, M.N. Development and characterization of bioactive polyvinyl alcohol/chitosan multilayer-based films loaded with tea tree oil nanoemulsion to extend the shelf life of red grapes. Biocatal. Agric. Biotechnol. 2024, 58, 103206. [Google Scholar] [CrossRef]
- Mukaila, T.; Adeniyi, A.; Bello, I.; Sarker, N.C.; Monono, E.; Hammed, A. Optimizing film mechanical and water contact angle properties via PLA/starch/lecithin concentrations. Clean. Circ. Bioeconomy 2024, 8, 100095. [Google Scholar] [CrossRef]
- Lee, D.; Gwon, J.; Huang, R.; Picha, D.H.; Wu, Q. Bio-based nanomaterial suspensions as sprayable coatings for maintaining blueberry postharvest quality. Food Hydrocoll. 2024, 150, 109743. [Google Scholar] [CrossRef]
- Li, N.; Cheng, Y.; Li, Z.; Yue, T.; Yuan, Y. An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.). Int. J. Biol. Macromol. 2024, 274, 133273. [Google Scholar] [CrossRef]
- Ruan, C.-Q.; Zhao, M.; Zhang, W.; Zeng, K. Carboxymethyl cellulose based edible nanocomposite coating with tunable functionalities and the application on the preservation of postharvest Satsuma mandarin fruit. Food Packag. Shelf Life 2024, 46, 101364. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, J.; Tian, R.; Kuang, Y.; Wu, K.; Xiao, M.; Liu, Y.; Qian, H.; Jiang, F. Properties of konjac glucomannan/curdlan-based emulsion films incorporating camellia oil and the preservation effect as coatings on ‘Kyoho’ grapes. Int. J. Biol. Macromol. 2024, 258, 128836. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Dubey, N.K. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int. J. Biol. Macromol. 2023, 233, 123565. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Xie, C.; Zhao, J.; Dai, Z. Application of plasma-activated hydrogen peroxide solution synergized with Ag@SiO2 modified polyvinyl alcohol coating for strawberry preservation. Heliyon 2024, 10, e31239. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.-F.; Chen, Y.-Y.; Deng, Y.-Y.; Zheng, C.; Hong, C.-Z.; Li, Q.-M.; Yang, X.-F.; Pan, L.-H.; Luo, J.-P.; Li, X.-Y.; et al. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr. Polym. 2024, 323, 121389. [Google Scholar] [CrossRef]
- Teymoorian, M.; Moghimi, R.; Hosseinzadeh, R.; Zandi, F.; Lakouraj, M.M. Fabrication the emulsion-based edible film containing Dracocephalum kotschyi Boiss essential oil using chitosan–gelatin composite for grape preservation. Carbohydr. Polym. Technol. Appl. 2024, 7, 100444. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, W.H.; Xu, Y.Y.; He, X.E.; He, F.Y.; Wang, Y. Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes. Heliyon 2023, 9, e19918. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Wang, W.; Ge, Z.; Zhang, L.; Li, C.; Zhang, B.; Zong, W. Comparison of the effects of dynamic high-pressure microfluidization and conventional homogenization on the quality of peach juice. J. Sci. Food Agric. 2019, 99, 5994–6000. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Dubey, N.K. Angelica archangelica essential oil loaded chitosan nanoemulsion as edible coating for preservation of table grape fruit against Botrytis cinerea contamination and storage quality deterioration. Postharvest Biol. Technol. 2023, 205, 112482. [Google Scholar] [CrossRef]
- Ferreira, G.d.S.; da Silva, D.J.; Rosa, D.S. Super stable Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils: Rheological aspects. J. Mol. Liq. 2023, 372, 121183. [Google Scholar] [CrossRef]
- How, Y.-H.; Lim, E.M.-Y.; Kong, I.; Kee, P.-E.; Pui, L.-P. Development of carboxymethyl cellulose–chitosan based antibacterial films incorporating a Persicaria minor Huds. essential oil nanoemulsion. Sustain. Food Technol. 2024, 2, 400–414. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, J.; Du, B.; Li, X.; Huang, Y.; Cao, Q.; Xu, S.; Wang, X. Research progress on the preparation and application of lignin-based Pickering emulsions: A review. Ind. Crops Prod. 2024, 222, 119723. [Google Scholar] [CrossRef]
- Priyanka, S.; Namasivayam, S.K.R.; John, F.K.; Meivelu, M. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles—Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int. J. Biol. Macromol. 2024, 277, 134319. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Shao, S.; Zheng, X.; Tang, K. Soluble soybean polysaccharide/carboxymethyl chitosan coatings incorporated with lavender essential oil: Structure, properties and application in fruit preservation. Prog. Org. Coat. 2022, 173, 107178. [Google Scholar] [CrossRef]
- Silva, M.V.; de Lima, A.d.C.A.; Silva, M.G.; Caetano, V.F.; de Andrade, M.F.; da Silva, R.G.C.; de Moraes Filho, L.E.P.T.; de Lima Silva, I.D.; Vinhas, G.M. Clove essential oil and eugenol: A review of their significance and uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- Yang, S.; Ban, Z.; Jin, L.; Chen, C.; Li, L.; Yi, G.; Abdollahi, M.; Liu, L. Polyvinyl alcohol films incorporated with clove essential oil emulsions stabilized by soy protein isolate-derived amyloid fibrils: Fabrication, characterization, and its application for active packaging. Food Chem. 2024, 440, 138245. [Google Scholar] [CrossRef]
- Alshehri, M.A.; Panneerselvam, C. Development of quercetin loaded biosynthesized chitosan grafted iron oxide nanoformulation and their antioxidant, antibacterial, and anti-cancer properties. J. Drug Deliv. Sci. Technol. 2024, 101, 106247. [Google Scholar] [CrossRef]
- Gong, W.; Yang, T.-q.; He, W.-y.; Li, Y.-x.; Hu, J.-n. On-demand removable hydrogel film derived from gallic acid-phycocyanin and polyvinyl alcohol for fruit preservation. Food Chem. 2025, 463, 141404. [Google Scholar] [CrossRef]
- Guo, X.; Li, L.; Qi, Y.; Su, J.; Ou, X.; Lv, M.; Jin, Y.; Han, X.; Zhang, Y.; Wu, H.; et al. Green-synthesized antibacterial and unidirectional water-permeable polylactic acid/ZnO composite film for enhanced preservation of perishable fruits. Mater. Today Chem. 2024, 40, 102284. [Google Scholar] [CrossRef]
Elements | Samples | ||
---|---|---|---|
CK | DM Solution | DM/Ceo-1.25 Solution | |
Double-modified tapioca starch (g) | - | 2 | 2 |
Chitosan solution (mL) | - | 100 | 100 |
Glycerin (g) | - | 0.4 | 0.4 |
CEO (g) | - | - | 2.5 |
Nano-SiO2 (g) | - | 0.05 | 0.05 |
Water (mL) | 100 | 100 | 100 |
Samples (Ceo/Tween 80/Water) | Particle Size (nm) | Zeta (mV) | PDI |
---|---|---|---|
1:1:8 | 190.14 ± 0.91 a | −32.3 ± 0.66 a | 0.188 ± 0.021 a |
1:2:7 | 396.95 ± 2.18 b | −23.5 ± 0.45 b | 0.511 ± 0.015 b |
2:1:7 | 255.01 ± 1.36 ab | −21.9 ± 0.73 bc | 0.267 ± 0.024 a |
3:1:6 | 458.67 ± 2.04 c | −23.3 ± 0.25 bc | 0.138 ± 0.030 a |
4:1:5 | 531.17 ± 2.49 c | −25.6 ± 0.68 c | 0.274 ± 0.017 a |
Storage Time (Days) | Color | CK | PE | DM Solution | DM/Ceo-1.25 Solution |
---|---|---|---|---|---|
0 | L* | 33.32 ± 2.21 b | 34.16 ± 1.96 c | 36.92 ± 2.23 c | 37.47 ± 0.94 c |
a* | −2.53 ± 0.23 a | −2.72 ± 0.31 a | −3.19 ± 0.61 a | −3.12 ± 0.24 a | |
b* | 8.75 ± 0.04 a | 8.73 ± 0.68 a | 9.31 ± 1.34 a | 9.77 ± 0.57 a | |
2 | L* | 30.75 ± 0.98 b | 31.71 ± 1.12 b | 33.65 ± 1.96 b | 35.71 ± 1.22 b |
a* | −1.87 ± 0.34 a | −1.82 ± 0.12 a | −2.55 ± 0.34 a | −2.27 ± 0.26 a | |
b* | 11.98 ± 0.21 a | 11.58 ± 1.61 b | 10.93 ± 1.46 a | 11.77 ± 1.34 a | |
4 | L* | 29.47 ± 0.56 b | 30.15 ± 0.98 b | 33.58 ± 1.64 b | 34.56 ± 1.69 a |
a* | −1.53 ± 0.21 a | −1.63 ± 0.34 a | −2.78 ± 0.27 a | −2.37 ± 0.13 a | |
b* | 12.22 ± 0.69 b | 12.03 ± 1.14 b | 13.13 ± 0.67 b | 12.91 ± 1.65 a | |
6 | L* | 27.54 ± 0.96 a | 28.69 ± 0.65 a | 31.33 ± 1.02 a | 34.51 ± 1.37 a |
a* | 1.03 ± 0.43 b | −0.56 ± 0.13 b | −1.10 ± 0.41 b | −2.13 ± 0.17 a | |
b* | 13.33 ± 0.71 b | 13.07 ± 1.28 b | 14.81 ± 1.05 b | 13.88 ± 1.28 b | |
8 | L* | 26.98 ± 0.36 a | 27.99 ± 0.87 a | 30.99 ± 0.62 a | 33.9 ± 0.91 a |
a* | 2.34 ± 0.64 c | 1.63 ± 0.24 b | −0.69 ± 0.35 b | −1.76 ± 0.34 a | |
b* | 13.38 ± 1.31 b | 14.12 ± 0.69 b | 15.16 ± 0.67 b | 13.89 ± 0.31 b | |
10 | L* | 26.05 ± 0.68 a | 27.18 ± 0.76 a | 29.53 ± 0.45 a | 32.55 ± 1.04 a |
a* | 2.70 ± 0.81 c | 1.67 ± 0.27 b | −0.26 ± 0.30 b | −1.30 ± 0.27 a | |
b* | 13.91 ± 1.26 b | 15.68 ± 0.06 b | 15.31 ± 1.36 b | 14.39 ± 0.45 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Li, K.; Ye, J.; Chen, J.; Zhang, J. Effect of Dual-Modified Tapioca Starch/Chitosan/SiO2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes. Foods 2024, 13, 3735. https://doi.org/10.3390/foods13233735
Chang H, Li K, Ye J, Chen J, Zhang J. Effect of Dual-Modified Tapioca Starch/Chitosan/SiO2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes. Foods. 2024; 13(23):3735. https://doi.org/10.3390/foods13233735
Chicago/Turabian StyleChang, Hui, Kaimian Li, Jianqiu Ye, Jian Chen, and Jie Zhang. 2024. "Effect of Dual-Modified Tapioca Starch/Chitosan/SiO2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes" Foods 13, no. 23: 3735. https://doi.org/10.3390/foods13233735
APA StyleChang, H., Li, K., Ye, J., Chen, J., & Zhang, J. (2024). Effect of Dual-Modified Tapioca Starch/Chitosan/SiO2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes. Foods, 13(23), 3735. https://doi.org/10.3390/foods13233735