Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment
Abstract
:1. Introduction
2. Ectopic Odorant Receptor Signaling in Adipose Tissue
2.1. Adcy3 and Gαolf
2.2. ORs
2.3. Food-Derived Ligands for Ectopic ORs
3. The Role of ORs in Obesity: The State of the Art
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moon, Y.; Tong, T.; Kang, W.; Park, T. Filbertone Ameliorates Adiposity in Mice Fed a High-Fat Diet via Activation of Camp Signaling. Nutrients 2019, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Narayan, V.P.; Sung, M.K.; Park, T. Piperonal Attenuates Visceral Adiposity in Mice Fed a High-Fat Diet: Potential Involvement of the Adenylate Cyclase-Protein Kinase a Dependent Pathway. Mol. Nutr. Food Res. 2017, 61, 1601124. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.R.; Ansari, S.H.; Najmi, A.K.; Ahmad, M.A. Monoterpene Phenolic Compound Thymol Prevents High Fat Diet Induced Obesity in Murine Model. Toxicol. Mech. Methods 2014, 24, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wacker, D.; Stevens, R.C.; Roth, B.L. How Ligands Illuminate Gpcr Molecular Pharmacology. Cell 2017, 170, 414–427. [Google Scholar] [CrossRef]
- Roth, B.L.; Irwin, J.J.; Shoichet, B.K. Discovery of New Gpcr Ligands to Illuminate New Biology. Nat. Chem. Biol. 2017, 13, 1143–1151. [Google Scholar] [CrossRef]
- Qian, C.; Zhi, T.; Chencen, L. The Roles and Mechanism of Olfactory Receptors in Non-Olfactory Tissues and Cells. Prog. Biochem. Biophys. 2020, 47, 91–104. [Google Scholar]
- Hussain, A.; Saraiva, L.R.; Korsching, S.I. Positive Darwinian Selection and the Birth of an Olfactory Receptor Clade in Teleosts. Proc. Natl. Acad. Sci. USA 2009, 106, 4313–4318. [Google Scholar] [CrossRef]
- Zozulya, S.; Echeverri, F.; Nguyen, T. The Human Olfactory Receptor Repertoire. Genome Biol. 2001, 2, RESEARCH0018. [Google Scholar] [CrossRef]
- Zhang, X.; Firestein, S. The Olfactory Receptor Gene Superfamily of the Mouse. Nat. Neurosci. 2002, 5, 124–133. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L.B. Combinatorial Receptor Codes for Odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Ronnett, G.V.; Moon, C. G Proteins and Olfactory Signal Transduction. Annu. Rev. Physiol. 2002, 64, 189–222. [Google Scholar] [CrossRef] [PubMed]
- Kaupp, U.B. Olfactory Signalling in Vertebrates and Insects: Differences and Commonalities. Nat. Rev. Neurosci. 2010, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Belluscio, L.; Gold, G.H.; Nemes, A.; Axel, R. Mice Deficient in G(Olf) Are Anosmic. Neuron 1998, 20, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.T.; Trinh, K.; Hacker, B.; Chan, G.C.; Lowe, G.; Gaggar, A. Disruption of the Type Iii Adenylyl Cyclase Gene Leads to Peripheral and Behavioral Anosmia in Transgenic Mice. Neuron 2000, 27, 487–497. [Google Scholar] [CrossRef]
- Parmentier, M.; Libert, F.; Schurmans, S.; Schiffmann, S.; Lefort, A.; Eggerickx, D. Expression of Members of the Putative Olfactory Receptor Gene Family in Mammalian Germ Cells. Nature 1992, 355, 453–455. [Google Scholar] [CrossRef]
- Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M. Olfactory Receptors Are Displayed on Dog Mature Sperm Cells. J. Cell Biol. 1993, 123, 1441–1452. [Google Scholar] [CrossRef]
- Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M. Specific Repertoire of Olfactory Receptor Genes in the Male Germ Cells of Several Mammalian Species. Genomics 1997, 39, 239–246. [Google Scholar] [CrossRef]
- Tham, E.H.; Dyjack, N.; Kim, B.E.; Rios, C.; Seibold, M.A.; Leung, D.Y.M. Expression and Function of the Ectopic Olfactory Receptor Or10g7 in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2019, 143, 1838–1848 e1834. [Google Scholar] [CrossRef]
- Tong, T.; Ryu, S.E.; Min, Y.; March, C.A.; Bushdid, C.; Golebiowski, J. Olfactory Receptor 10j5 Responding to Alpha-Cedrene Regulates Hepatic Steatosis via the Camp-Pka Pathway. Sci. Rep. 2017, 7, 9471. [Google Scholar] [CrossRef]
- Wu, C.; Hwang, S.H.; Jia, Y.; Choi, J.; Kim, Y.J.; Choi, D. Olfactory Receptor 544 Reduces Adiposity by Steering Fuel Preference toward Fats. J. Clin. Investig. 2017, 127, 4118–4123. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.A.; Kafadar, K.A.; Pavlath, G.K. Mor23 Promotes Muscle Regeneration and Regulates Cell Adhesion and Migration. Dev. Cell 2009, 17, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.; Bumbalo, R.; Bautze, V.; Strotmann, J.; Breer, H. Expression of Odorant Receptor Olfr78 in Enteroendocrine Cells of the Colon. Cell Tissue Res. 2015, 361, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J. Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 4410–4415. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Voland, P.; Kunz, L.; Prinz, C.; Gratzl, M. Enterochromaffin Cells of the Human Gut: Sensors for Spices and Odorants. Gastroenterology 2007, 132, 1890–1901. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Shan, H.; Chen, L.; Long, A.; Zhang, Y.; Liu, Y. Olfr734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metab. 2019, 30, 319–328 e318. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.; Ge, X.Y.; Gao, M.X.; Meng, R.; Xu, X. Autonomous Sensing of the Insulin Peptide by an Olfactory G Protein-Coupled Receptor Modulates Glucose Metabolism. Cell Metab. 2022, 34, 240–255 e210. [Google Scholar] [CrossRef]
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H.; World Obesity Federation. Obesity: A Chronic Relapsing Progressive Disease Process. A Position Statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Bray, G.A.; Home, P.D.; Garvey, W.T.; Klein, S.; Pi-Sunyer, F.X. Advances in the Science, Treatment, and Prevention of the Disease of Obesity: Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 2015, 38, 1567–1582. [Google Scholar] [CrossRef]
- Vernochet, C.; Mourier, A.; Bezy, O.; Macotela, Y.; Boucher, J.; Rardin, M.J.; An, D.; Lee, K.Y.; Ilkayeva, O.R.; Zingaretti, C.M.; et al. Adipose-Specific Deletion of Tfam Increases Mitochondrial Oxidation and Protects Mice against Obesity and Insulin Resistance. Cell Metab. 2012, 16, 765–776. [Google Scholar] [CrossRef]
- Tong, T.; Shen, Y.; Lee, H.W.; Yu, R.; Park, T. Adenylyl Cyclase 3 Haploinsufficiency Confers Susceptibility to Diet-Induced Obesity and Insulin Resistance in Mice. Sci. Rep. 2016, 6, 34179. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Park, J.; Moon, C.; Park, T. Regulation of Adipogenesis and Thermogenesis through Mouse Olfactory Receptor 23 Stimulated by Alpha-Cedrene in 3t3-L1 Cells. Nutrients 2018, 10, 1781. [Google Scholar] [CrossRef] [PubMed]
- Baxendale, R.W.; Fraser, L.R. Evidence for Multiple Distinctly Localized Adenylyl Cyclase Isoforms in Mammalian Spermatozoa. Mol. Reprod. Dev. 2003, 66, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Pluznick, J.L.; Zou, D.J.; Zhang, X.; Yan, Q.; Rodriguez-Gil, D.J.; Eisner, C. Functional Expression of the Olfactory Signaling System in the Kidney. Proc. Natl. Acad. Sci. USA 2009, 106, 2059–2064. [Google Scholar] [CrossRef]
- Flegel, C.; Vogel, F.; Hofreuter, A.; Schreiner, B.S.P.; Osthold, S.; Veitinger, S. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front. Mol. Biosci. 2016, 2, 73. [Google Scholar] [CrossRef]
- Choi, Y.; Hur, C.G.; Park, T. Induction of Olfaction and Cancer-Related Genes in Mice Fed a High-Fat Diet as Assessed through the Mode-of-Action by Network Identification Analysis. PLoS ONE 2013, 8, e56610. [Google Scholar] [CrossRef]
- Flegel, C.; Manteniotis, S.; Osthold, S.; Hatt, H.; Gisselmann, G. Expression Profile of Ectopic Olfactory Receptors Determined by Deep Sequencing. PLoS ONE 2013, 8, e55368. [Google Scholar] [CrossRef]
- Giusepponi, M.E.; Kern, M.; Chakaroun, R.; Wohland, T.; Kovacs, P.; Dietrich, A. Gene Expression Profiling in Adipose Tissue of Sprague Dawley Rats Identifies Olfactory Receptor 984 as a Potential Obesity Treatment Target. Biochem. Biophys. Res. Commun. 2018, 505, 801–806. [Google Scholar] [CrossRef]
- Joo, J.I.; Kim, D.H.; Choi, J.W.; Yun, J.W. Proteomic Analysis for Antiobesity Potential of Capsaicin on White Adipose Tissue in Rats Fed with a High Fat Diet. J. Proteome Res. 2010, 9, 2977–2987. [Google Scholar] [CrossRef]
- Neuhaus, E.M.; Zhang, W.; Gelis, L.; Deng, Y.; Noldus, J.; Hatt, H. Activation of an Olfactory Receptor Inhibits Proliferation of Prostate Cancer Cells. J. Biol. Chem. 2009, 284, 16218–16225. [Google Scholar] [CrossRef]
- Sanz, G.; Leray, I.; Grebert, D.; Antoine, S.; Acquistapace, A.; Muscat, A. Structurally Related Odorant Ligands of the Olfactory Receptor Or51e2 Differentially Promote Metastasis Emergence and Tumor Growth. Oncotarget 2017, 8, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Chi, Q.; Zhuang, H.; Matsunami, H.; Mainland, J.D. Odor Coding by a Mammalian Receptor Repertoire. Sci. Signal. 2009, 2, ra9. [Google Scholar] [CrossRef] [PubMed]
- Abaffy, T.; Bain, J.R.; Muehlbauer, M.J.; Spasojevic, I.; Lodha, S.; Bruguera, E. A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor. Front. Oncol. 2018, 8, 162. [Google Scholar] [CrossRef]
- Kerslake, R.; Hall, M.; Randeva, H.S.; Spandidos, D.A.; Chatha, K.; Kyrou, I. Co-Expression of Peripheral Olfactory Receptors with SARS-CoV-2 Infection Mediators: Potential Implications Beyond Loss of Smell as a COVID-19 Symptom. Int. J. Mol. Med. 2020, 46, 949–956. [Google Scholar] [CrossRef]
- Baghaei, K. Large Scale Analysis of Olfactory Receptors with Highly Genetically Variations in Relation with Specific Anosmia. Ph.D. Thesis, Ruhr-University Bochum, Bochum, Germany, 2015. [Google Scholar]
- Adipietro, K.A.; Mainland, J.D.; Matsunami, H. Functional Evolution of Mammalian Odorant Receptors. PLoS Genet. 2012, 8, e1002821. [Google Scholar] [CrossRef]
- Jovancevic, N.; Dendorfer, A.; Matzkies, M.; Kovarova, M.; Heckmann, J.C.; Osterloh, M. Medium-Chain Fatty Acids Modulate Myocardial Function via a Cardiac Odorant Receptor. Basic Res. Cardiol. 2017, 112, 13. [Google Scholar] [CrossRef]
- Mainland, J.D.; Keller, A.; Li, Y.R.; Zhou, T.; Trimmer, C.; Snyder, L.L. The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire. Nat. Neurosci. 2014, 17, 114–120. [Google Scholar] [CrossRef]
- Tsai, T.; Veitinger, S.; Peek, I.; Busse, D.; Eckardt, J.; Vladimirova, D. Two Olfactory Receptors-Or2a4/7 and Or51b5-Differentially Affect Epidermal Proliferation and Differentiation. Exp. Dermatol. 2017, 26, 58–65. [Google Scholar] [CrossRef]
- Jaeger, S.R.; McRae, J.F.; Bava, C.M.; Beresford, M.K.; Hunter, D.; Jia, Y.L. A Mendelian Trait for Olfactory Sensitivity Affects Odor Experience and Food Selection. Curr. Biol. 2013, 23, 1601–1605. [Google Scholar] [CrossRef]
- Wu, C.; Jeong, M.Y.; Kim, J.Y.; Lee, G.; Kim, J.S.; Cheong, Y.E. Activation of Ectopic Olfactory Receptor 544 Induces Glp-1 Secretion and Regulates Gut Inflammation. Gut Microbes 2021, 13, 1987782. [Google Scholar] [CrossRef]
- Oka, Y.; Katada, S.; Omura, M.; Suwa, M.; Yoshihara, Y.; Touhara, K. Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli. Neuron 2006, 52, 857–869. [Google Scholar] [CrossRef] [PubMed]
- von der Weid, B.; Rossier, D.; Lindup, M.; Tuberosa, J.; Widmer, A.; Col, J.D. Large-Scale Transcriptional Profiling of Chemosensory Neurons Identifies Receptor-Ligand Pairs in Vivo. Nat. Neurosci. 2015, 18, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, L.; Ye, F.; Li, S.; Yu, H. Molecular Determinants of Olfactory Receptor Activation: Comparative Analysis of Olfr205 and Olfr740 Family Member Responses to Indole. Arch. Biochem. Biophys. 2024, 758, 110061. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, K.; Inaki, K.; Tanaka, M.; Haga, T.; Kataoka, H.; Touhara, K. Molecular Bases of Odor Discrimination: Reconstitution of Olfactory Receptors That Recognize Overlapping Sets of Odorants. J. Neurosci. 2001, 21, 6018–6025. [Google Scholar] [CrossRef]
- Saito, H.; Kubota, M.; Roberts, R.W.; Chi, Q.; Matsunami, H. Rtp Family Members Induce Functional Expression of Mammalian Odorant Receptors. Cell 2004, 119, 679–691. [Google Scholar] [CrossRef]
- Matarazzo, V.; Clot-Faybesse, O.; Marcet, B.; Guiraudie-Capraz, G.; Atanasova, B.; Devauchelle, G. Functional Characterization of Two Human Olfactory Receptors Expressed in the Baculovirus Sf9 Insect Cell System. Chem. Senses 2005, 30, 195–207. [Google Scholar] [CrossRef]
- Abaffy, T.; Matsunami, H.; Luetje, C.W. Functional Analysis of a Mammalian Odorant Receptor Subfamily. J. Neurochem. 2006, 97, 1506–1518. [Google Scholar] [CrossRef]
- Minic, J.; Persuy, M.A.; Godel, E.; Aioun, J.; Connerton, I.; Salesse, R. Functional Expression of Olfactory Receptors in Yeast and Development of a Bioassay for Odorant Screening. FEBS J. 2005, 272, 524–537. [Google Scholar] [CrossRef]
- Mitsui, K.; Sakihama, T.; Takahashi, K.; Masuda, K.; Fukuda, R.; Hamana, H. Functional Reconstitution of Olfactory Receptor Complex on Baculovirus. Chem. Senses 2012, 37, 837–847. [Google Scholar] [CrossRef]
- Peterlin, Z.; Firestein, S.; Rogers, M.E. The State of the Art of Odorant Receptor Deorphanization: A Report from the Orphanage. J. Gen. Physiol. 2014, 143, 527–542. [Google Scholar] [CrossRef]
- Zhuang, H.; Matsunami, H. Evaluating Cell-Surface Expression and Measuring Activation of Mammalian Odorant Receptors in Heterologous Cells. Nat. Protoc. 2008, 3, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Kang, S.G.; Huang, K.; Tong, T. Dietary Supplementation with Alpha-Ionone Alleviates Chronic Uvb Exposure-Induced Skin Photoaging in Mice. Food Funct. 2024, 15, 1884–1898. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Liu, T.; Wang, Y.; Kang, S.; Huang, K.; Tong, T. Β-Ionone Prevents Dextran Sulfate Sodium-Induced Ulcerative Colitis and Modulates Gut Microbiota in Mice. Food Innov. Adv. 2024, 3, 320–324. [Google Scholar] [CrossRef]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2016, 56, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Maiti, P.; Manna, J.; Thammathong, J.; Evans, B.; Dubey, K.D.; Banerjee, S. Tetrahydrocurcumin Has Similar Anti-Amyloid Properties as Curcumin: In Vitro Comparative Structure-Activity Studies. Antioxidants 2021, 10, 1592. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Bath, C.; Marett, L.; Pryce, J.; Rochfort, S. Optimised Method for Short-Chain Fatty Acid Profiling of Bovine Milk and Serum. Molecules 2022, 27, 436. [Google Scholar] [CrossRef]
- Lao, Y.; Guo, J.; Fang, J.; Geng, R.; Li, M.; Qin, Y. Beyond Flavor: The Versatile Roles of Eugenol in Health and Disease. Food Funct. 2024, 15, 10567–10581. [Google Scholar] [CrossRef]
- Fayek, N.M.; Xiao, J.B.; Farag, M.A. A Multifunctional Study of Naturally Occurring Pyrazines in Biological Systems; Formation Mechanisms, Metabolism, Food Applications and Functional Properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 5322–5338. [Google Scholar] [CrossRef]
- Khakimov, B.; Jespersen, B.M.; Engelsen, S.B. Comprehensive and Comparative Metabolomic Profiling of Wheat, Barley, Oat and Rye Using Gas Chromatography-Mass Spectrometry and Advanced Chemometrics. Foods 2014, 3, 569–585. [Google Scholar] [CrossRef]
- Tong, T.; Yu, R.; Park, T. Alpha-Cedrene Protects Rodents from High-Fat Diet-Induced Adiposity Via Adenylyl Cyclase. Int. J. Obes. 2019, 43, 202–216. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, R.; Yu, S.; Lee, C.; Wang, H. Simulative Structure and Binding Sites of Lyral with Olfactory Receptor 10j5 Using Computational Prediction Methods. J. Toxicol. Environ. Health A 2020, 83, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, V.; Chan, G.C.; Phan, T.; Nudelman, A.S.; Xia, Z. Adult Type 3 Adenylyl Cyclase-Deficient Mice Are Obese. PLoS ONE 2009, 4, e6979. [Google Scholar] [CrossRef] [PubMed]
- Pitman, J.L.; Wheeler, M.C.; Lloyd, D.J.; Walker, J.R.; Glynne, R.J.; Gekakis, N. A Gain-of-Function Mutation in Adenylate Cyclase 3 Protects Mice from Diet-Induced Obesity. PLoS ONE 2014, 9, e110226. [Google Scholar] [CrossRef] [PubMed]
- Grarup, N.; Moltke, I.; Andersen, M.K.; Dalby, M.; Vitting-Seerup, K.; Kern, T. Loss-of-Function Variants in Adcy3 Increase Risk of Obesity and Type 2 Diabetes. Nat. Genet. 2018, 50, 172–174. [Google Scholar] [CrossRef]
- Saeed, S.; Bonnefond, A.; Tamanini, F.; Mirza, M.U.; Manzoor, J.; Janjua, Q.M. Loss-of-Function Mutations in Adcy3 Cause Monogenic Severe Obesity. Nat. Genet. 2018, 50, 175–179. [Google Scholar] [CrossRef]
- Dodge-Kafka, K.L.; Bauman, A.; Mayer, N.; Henson, E.; Heredia, L.; Ahn, J. Camp-Stimulated Protein Phosphatase 2a Activity Associated with Muscle a Kinase-Anchoring Protein (Makap) Signaling Complexes Inhibits the Phosphorylation and Activity of the Camp-Specific Phosphodiesterase Pde4d. J. Biol. Chem. 2010, 285, 11078–11086. [Google Scholar] [CrossRef]
- Yin, W.; Mu, J.; Birnbaum, M.J. Role of Amp-Activated Protein Kinase in Cyclic Amp-Dependent Lipolysis in 3t3-L1 Adipocytes. J. Biol. Chem. 2003, 278, 43074–43080. [Google Scholar] [CrossRef]
- Djouder, N.; Tuerk, R.D.; Suter, M.; Salvioni, P.; Thali, R.F.; Scholz, R. Pka Phosphorylates and Inactivates Ampk Alpha to Promote Efficient Lipolysis. EMBO J. 2010, 29, 469–481. [Google Scholar] [CrossRef]
- Habinowski, S.A.; Witters, L.A. The Effects of Aicar on Adipocyte Differentiation of 3t3-L1 Cells. Biochem. Biophys. Res. Commun. 2001, 286, 852–856. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. Ppar Gamma: A Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. J. Biol. Chem. 2001, 276, 37731–37734. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Coleman, R.A.; Kraemer, F.B.; McManaman, J.L.; Obin, M.S.; Puri, V. The Role of Lipid Droplets in Metabolic Disease in Rodents and Humans. J. Clin. Investig. 2011, 121, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yoon, Y.C.; Hwang, J.T.; Sung, M.J.; Kim, M.S.; Hur, H.J. Tangeretin Synergistically Enhances Odorant-Induced Increases in Camp and Calcium Levels and Creb Phosphorylation in Non-Neuronal 3t3-L1 Cells. Appl. Biol. Chem. 2016, 59, 103–108. [Google Scholar] [CrossRef]
- Fukuda, N.; Yomogida, K.; Okabe, M.; Touhara, K. Functional Characterization of a Mouse Testicular Olfactory Receptor and Its Role in Chemosensing and in Regulation of Sperm Motility. J. Cell Sci. 2004, 117, 5835–5845. [Google Scholar] [CrossRef] [PubMed]
- Opdyke, D.L.J. Fragrance Raw Materials Monographs: A-Cedrene. Food Cosmet. Toxicol. 1978, 16, 679–680. [Google Scholar] [CrossRef]
- Kang, W.; Zhang, K.; Tong, T.; Park, T. Improved Glucose Intolerance through a Distinct Mouse Olfactory Receptor 23-Induced Signaling Pathway Mediating Glucose Uptake in Myotubes and Adipocytes. Mol. Nutr. Food Res. 2020, 64, e1901329. [Google Scholar] [CrossRef]
- Yoon, Y.C.; Kim, S.-H.; Hwang, J.-T.; Sung, M.J.; Kim, M.-S.; Hur, H.J. Ethanol Extract of Polygonatumofficinale Rhizome Inhibits Odorant-Induced Camp and Calcium Levels in Non-Chemosensory 3t3-L1 Cells. Food Nutr. Res. 2014, 2, 776–780. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Wang, Y.; Geng, R.; Fang, J.; Kang, S.G. Eugenol, a Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High-Fat Diet-Fed Mice. Mol. Nutr. Food Res. 2022, 66, e2200387. [Google Scholar] [CrossRef]
- Li, M.; Guo, J.; Qin, Y.; Lao, Y.; Kang, S.G.; Huang, K. Dietary Eugenol Ameliorates Long-Term High-Fat Diet-Induced Skeletal Muscle Atrophy: Mechanistic Insights from Integrated Multi-Omics. Food Funct. 2024, 15, 10136–10150. [Google Scholar] [CrossRef]
- Li, M.; Huang, K.; Tong, T. Eugenol Inhibits Differentiation in 3t3-L1 Preadipocytes Via the Camp Signaling Pathways. Food Res. Dev. 2024, 45, 68–73. [Google Scholar]
- Wu, C.; Thach, T.T.; Kim, Y.J.; Lee, S.J. Olfactory Receptor 43 Reduces Hepatic Lipid Accumulation and Adiposity in Mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 489–499. [Google Scholar] [CrossRef]
- Liu, Y.; Long, A.; Chen, L.; Jia, L.; Wang, Y. The Asprosin-Olfr734 Module Regulates Appetitive Behaviors. Cell Discov. 2020, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Bleymehl, K. 1630-P: Therapeutic Potential of Olfactory Receptor Or51t1 in Obesity. Diabetes 2024, 73, 1630-P. [Google Scholar] [CrossRef]
- Chang, A.J.; Ortega, F.E.; Riegler, J.; Madison, D.V.; Krasnow, M.A. Oxygen Regulation of Breathing through an Olfactory Receptor Activated by Lactate. Nature 2015, 527, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Aisenberg, W.H.; Huang, J.; Zhu, W.; Rajkumar, P.; Cruz, R.; Santhanam, L. Defining an Olfactory Receptor Function in Airway Smooth Muscle Cells. Sci. Rep. 2016, 6, 38231. [Google Scholar] [CrossRef] [PubMed]
- Munakata, Y.; Yamada, T.; Imai, J.; Takahashi, K.; Tsukita, S.; Shirai, Y. Olfactory Receptors Are Expressed in Pancreatic Beta-Cells and Promote Glucose-Stimulated Insulin Secretion. Sci. Rep. 2018, 8, 1499. [Google Scholar] [CrossRef]
- Leem, J.; Shim, H.M.; Cho, H.; Park, J.H. Octanoic Acid Potentiates Glucose-Stimulated Insulin Secretion and Expression of Glucokinase through the Olfactory Receptor in Pancreatic Beta-Cells. Biochem. Biophys. Res. Commun. 2018, 503, 278–284. [Google Scholar] [CrossRef]
- Muhlhaus, J.; Dinter, J.; Nurnberg, D.; Rehders, M.; Depke, J.; Golchert, J. Analysis of Human Taar8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile. Int. J. Mol. Sci. 2014, 15, 20638–20655. [Google Scholar] [CrossRef]
- Dinter, J.; Muhlhaus, J.; Wienchol, C.L.; Yi, C.X.; Nurnberg, D.; Morin, S. Inverse Agonistic Action of 3-Iodothyronamine at the Human Trace Amine-Associated Receptor. PLoS ONE 2015, 10, e0117774. [Google Scholar] [CrossRef]
- Belagali, Y.; Ullal, S.D.; Shoeb, A.; Bhagwath, V.; Ramya, K.; Maskeri, R. Effect of Vanillin on Lipid Profile in a Model of Hyperlipidemia, a Preliminary Study. Indian J. Exp. Biol. 2013, 51, 288–291. [Google Scholar]
- Liao, J.T.; Huang, Y.W.; Hou, C.Y.; Wang, J.J.; Wu, C.C.; Hsieh, S.L. D-Limonene Promotes Anti-Obesity in 3t3-L1 Adipocytes and High-Calorie Diet-Induced Obese Rats by Activating the Ampk Signaling Pathway. Nutrients 2023, 15, 267. [Google Scholar] [CrossRef]
- Tamilmani, P.; Sathibabu Uddandrao, V.V.; Chandrasekaran, P.; Saravanan, G.; Brahma Naidu, P.; Sengottuvelu, S. Linalool Attenuates Lipid Accumulation and Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease Via Sirt1/Akt/Ppra-Alpha/Ampk and Nrf-2/Ho-1 Signaling Pathways. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102231. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.S.; Li, M.; Pan, S.Y.; Ren, J.N.; Fan, G. Regulation of Lipid Metabolism by the Major Components of Orange Essential Oil in High-Fat Diet Mice. Food Biosci. 2024, 59, 103965. [Google Scholar] [CrossRef]
- Sabir, U.; Irfan, H.M.; Alamgeer; Ullah, A.; Althobaiti, Y.S.; Alshehri, F.S. Downregulation of Hepatic Fat Accumulation, Inflammation and Fibrosis by Nerolidol in Purpose Built Western-Diet-Induced Multiple-Hit Pathogenesis of Nash Animal Model. Biomed. Pharmacother. 2022, 150, 112956. [Google Scholar] [CrossRef] [PubMed]
- Ejiofor, E.; Oyedemi, S.; Egedigwe-Ekeleme, C.; Obike, C.; Aguwamba, C.; Nweje-Anyalowu, P. Essential Oil Components with Antidiabetic and Anti-Obesity Properties: A Review of Mechanisms of Action and Toxicity. J. Essent. Oil Res. 2023, 35, 335–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Xie, Y.; He, S. Design and Synthesis of Guaiacol-Based Fibrate Derivatives with Potential Hypolipidemic and Liver Protective Actions. Results Chem. 2024, 7, 101400. [Google Scholar] [CrossRef]
OR | Species | Detection Method | Ligands | Refs. |
---|---|---|---|---|
OR51E2 | Human | RNA-Seq | Acetate; propionate; β-ionone; α-ionone; pelargonidin; palmitic acid; tetrahydrocurcumin | [24,37,40,41,42,43] |
OR2W3 | Human | RNA-Seq | Nerol | [35,44] |
OR2A1 | Human | RNA-Seq | - | [44] |
OR10Q1 | Human | RNA-Seq | Pentadecalactone | [44,45] |
OR1Q1 | Human | RNA-Seq | - | [44] |
OR51E1 | Human | RNA-Seq | Butyric acid; dimethyl disulfide; eugenol methyl ether; eugenyl acetate; hexanoic acid; isovaleric acid; methyl furfuryl disulfide; (+)-menthol; nonanoic acid; octanoic acid; propanal; pyrazine; pentanoic acid | [35,37,46,47,48] |
OR2A1/42 | Human | RNA-Seq | - | [37] |
OR2A4/7 | Human | RNA-Seq | Cyclohexyl salicylate | [37,44,49] |
OR52N4 | Human | RNA-Seq | - | [37] |
OR13A1 | Human | RNA-Seq | - | [37] |
OR7D2 | Human | RNA-Seq | - | [37] |
OR10J1 | Human | RNA-Seq | Dimetol | [35,37] |
OR1L8 | Human | RNA-Seq | - | [37] |
OR2B6 | Human | RNA-Seq | - | [37] |
OR4D6 | Human | RNA-Seq | β-Ionone | [37,50] |
OR6C3 | Human | qRT-PCR | - | [38] |
Olfr544 | Mouse | Microarray/RT-PCR | Azelaic acid; octanoic acid | [21,51] |
Olfr1181 | Mouse | Microarray | - | [36] |
Olfr855 | Mouse | Microarray | - | [36] |
Olfr1056 | Mouse | Microarray | - | [36] |
Olfr716 | Mouse | Microarray | - | [36] |
Olfr1143 | Mouse | Microarray | - | [36] |
Olfr1245 | Mouse | Microarray | - | [36] |
Olfr996 | Mouse | Microarray | - | [36] |
Olfr960 | Mouse | Microarray | Eugenol | [36,52] |
Olfr536 | Mouse | Microarray | - | [36] |
Olfr654 | Mouse | Microarray | - | [36] |
Olfr652 | Mouse | Microarray | - | [36] |
Olfr16 | Mouse | Microarray | α-Cedrene; lyral; acetophenone | [36,53] |
Olfr527 | Mouse | Microarray | - | [36] |
Olfr1000 | Mouse | Microarray | - | [36] |
Olfr685 | Mouse | Microarray | - | [36] |
Olfr1048 | Mouse | Microarray | - | [36] |
Olfr715 | Mouse | Microarray | - | [36] |
Olfr1173 | Mouse | Microarray | - | [36] |
Olfr823 | Mouse | Microarray | - | [36] |
Olfr411 | Mouse | Microarray | - | [36] |
Olfr1408 | Mouse | Microarray | - | [36] |
Olfr875 | Mouse | Microarray | - | [36] |
Olfr888 | Mouse | Microarray | - | [36] |
Olfr305 | Mouse | Microarray | - | [36] |
Olfr395 | Mouse | Microarray | - | [36] |
Olfr1409 | Mouse | Microarray | - | [36] |
Olfr609 | Mouse | Microarray | - | [36] |
Olfr205 | Mouse | Microarray | Indole | [36,54] |
Olfr1121 | Mouse | Microarray | - | [36] |
Olfr45 | Mouse | Microarray | - | [36] |
Olfr513 | Mouse | Microarray | - | [36] |
Olfr433 | Mouse | Microarray | - | [36] |
Olfr788 | Mouse | qRT-PCR | - | [38] |
Olr984 | Rat | qRT-PCR | - | [38] |
Olr1434 | Rat | RT-PCR | - | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Kang, S.-G.; Huang, K.; Tong, T. Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods 2024, 13, 3938. https://doi.org/10.3390/foods13233938
Guo J, Kang S-G, Huang K, Tong T. Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods. 2024; 13(23):3938. https://doi.org/10.3390/foods13233938
Chicago/Turabian StyleGuo, Jingya, Seong-Gook Kang, Kunlun Huang, and Tao Tong. 2024. "Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment" Foods 13, no. 23: 3938. https://doi.org/10.3390/foods13233938
APA StyleGuo, J., Kang, S.-G., Huang, K., & Tong, T. (2024). Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods, 13(23), 3938. https://doi.org/10.3390/foods13233938