The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Plant Materials
2.3. Grape Skin Extraction
2.4. Determination of Total Phenol Content
2.5. Determination of Antioxidant Activity
2.6. In Vitro α-Amylase Inhibitory Assay
2.7. In Vitro α-Glucosidase Inhibitory Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Activity
3.2. Inhibition of α-Amylase and α-Glucosidase by Grape Skins Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Sig. Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Kalinovskii, A.P.; Sintsova, O.V.; Gladkikh, I.N.; Leychenko, E.V. Natural inhibitors of mammalian α-amylases as promising drugs for the treatment of metabolic diseases. Int. J. Mol. Sci. 2023, 24, 16514. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-K.; Hao, H.; Bian, Y.; Ge, Y.-X.; Lu, S.; Xie, H.-X.; Wang, K.-M.; Tao, H.; Yuan, C.; Zhang, J.; et al. Discovery of new α-glucosidase inhibitors: Structure-based virtual screening and biological evaluation. Front. Chem. 2021, 9, 639279. [Google Scholar] [CrossRef]
- Ghatage, T.; Jarag, R.; Jadhav, S.; Raut, R. A review on adverse drug reactions of antidiabetic drugs. Int. J. Allied Med. Sci. Clin. Res. 2017, 5, 426–433. [Google Scholar]
- Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev. 2020, 16, 117–136. [Google Scholar] [CrossRef]
- Ogunyemi, O.M.; Gyebi, G.A.; Saheed, A.; Paul, J.; Nwaneri-Chidozie, V.; Olorundare, O.; Adebayo, J.; Koketsu, M.; Aljarba, N.; Alkahtani, S.; et al. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front. Mol. Biosci. 2022, 9, 866719. [Google Scholar] [CrossRef]
- Chandrasekher, G.; Raju, D.S.; Pattabiraman, T.N. Natural plant enzyme inhibitors. α-amylase inhibitors in millets. J. Sci. Food Agric. 1981, 32, 9–16. [Google Scholar] [CrossRef]
- Rastija, V.; Bešlo, D.; Nikolić, S. Two-dimensional quantitative structure-activity relationship study on polyphenols as inhibitors of a-glucosidase. Med. Chem. Res. 2012, 21, 3984–3993. [Google Scholar] [CrossRef]
- Alam, F.; Shafique, Z.; Amjad, S.T.; Asad, M.H.H.B. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res. 2019, 33, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Siddiqui, N.A.; Mir, S.R.; Akbar, S.; Mothana, R.A.; Masoodi, M.H. Anti-diabetic activity-guided isolation of α-amylase and α-glucosidase inhibitory terpenes from Capsella bursa-pastoris Linn. Open Chem. 2024, 22, 20240025. [Google Scholar] [CrossRef]
- Mousinhoa, N.M.H.D.C.; van Tondera, J.J.; Steenkamp, V. In vitro anti-diabetic activity of Sclerocarya birrea and Ziziphus mucronata. Nat. Prod. Commun. 2013, 8, 1279–1284. [Google Scholar]
- Sekhon-Loodu, S.; Rupasinghe, H.P.V. Evaluation of antioxidant, antidiabetic, antiobesity potential of selected traditional medicinal plants. Front. Nutr. 2019, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-X.; Liu, C.-H.; Nan, H.-J.; Li, Z. Phenolic compound profiles in skins of white wine and table grape cultivars grown in the national grape germplasm resource nursery of China. S. Afr. J. Enol. Vitic. 2024, 36, 154–164. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2224-79042015000100004&lng=en&tlng=en (accessed on 15 November 2024). [CrossRef]
- Ishmael, S.M.; Soltan, S.S.A.; Selim, K.A.; Ahmed, H.M.H. Phenolic compounds and antioxidant activity of white, red, black grape skin and white grape seeds. Life Sci. J. 2012, 9, 3464–3472. [Google Scholar]
- Hrnčić, M.-K.; Cör, D.; Kotnik, P.; Knez, Ž. Extracts of white and red grape skin and rosehip fruit: Phenolic compounds and their antioxidative activity. Acta Chim. Slov. 2019, 66, 751–761. [Google Scholar] [CrossRef]
- Mendes, J.A.S.; Xavier, A.M.R.B.; Evtuguin, D.V.; Lopes, L.P.C. Integrated utilization of grape skins from white grape pomaces. Ind. Crop. Prod. 2013, 49, 286–291. [Google Scholar] [CrossRef]
- Nakarada, Đ.; Marković, S.Z.; Popović, M.D.; Dimitrijević, M.S.; Rakić, A.A.; Mojović, M.D. Redox properties of grape wine skin extracts from the Šumadija region—An electron paramagnetic resonance study. Hosp. Pharmacol. 2021, 8, 1004–1013. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P.E. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chem. 2015, 183, 78–82. [Google Scholar] [CrossRef]
- Song, Y.; Bondad, S.E.C.; Tajima, H.; Sato, T.; Wakamiya, N.; Ohtani, K.; Ito, K.; Okuno, T.; Kurasaki, M. Grape skin extract prevents UV irradiation induced DNA damage of normal human epidermal keratinocytes cells. J. Berry Res. 2020, 10, 585–601. [Google Scholar] [CrossRef]
- Katalinić, V.; Smole Možina, S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Harsha, P.S.C.S.; Mesias, M.; Lavelli, V.; Morales, F.J. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species. Sci. Food Agric. 2016, 96, 656–663. [Google Scholar] [CrossRef]
- Lavelli, V.; Harsha, P.S.C.S.; Ferranti, P.; Scarafoni, A.; Iametti, S. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase—Effect of food matrix and processing on efficacy. Food Funct. 2016, 7, 1655–1663. [Google Scholar] [CrossRef]
- Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S.J.; Zhou, K. Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice. Food Chem. 2011, 126, 466–471. [Google Scholar] [CrossRef]
- Campos, F.; Peixoto, A.F.; Fernandes, P.A.R.; Coimbra, M.A.; Mateus, N.; de Freitas, V.; Fernandes, I.; Fernandes, A. The antidiabetic effect of grape pomace polysaccharide-polyphenol complexes. Nutrients 2021, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- Pejić, I.; Meltić, E. Conservation, evaluation and revitalization of native grapevine varieties in Croatia. Mit. Klosterneubg. 2010, 60, 363–368. [Google Scholar]
- Vuković, D.; Tkalec, D.; Ivančić, A. Interdisciplinary approach to wine preferences: Case of north Croatia. Interdiscip. Descr. Complex 2023, 21, 495–513. [Google Scholar] [CrossRef]
- Radeka, S.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Kovačević Ganić, K.; Horvat, I.; Lukić, I.; Orbanić, F.; Zaninović Jurjević, T.; Dvornik, Š. Bioactive compounds and antioxidant activity of red and white wines produced from autochthonous Croatian varieties: Effect of moderate consumption on human health. Foods 2022, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Von Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of antioxidant activity of aspalathin with that of other plant phenols of Rooibosd tea (Aspalathon linearis), a-tocopherol, BHT, and BHA. J. Agric. Food Chem. 1997, 45, 632–638. [Google Scholar] [CrossRef]
- Marinova, G.; Batchvarov, V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg. J. Agric. Sci. 2011, 17, 11–24. Available online: https://www.agrojournal.org/17/01-02-11.pdf (accessed on 15 November 2024).
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophaë rhamnoides L.) fruits modulated by chemical components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Torres, J.C.; Villagómez-Castro, J.C.; Calvo-Méndez, C.; Flores-Carreón, A.; López-Romero, E. Purification and biochemical characterisation of a membrane-bound α-glucosidase from the parasite Entamoeba histolytica. Int. J. Parasitol. 2004, 34, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Profeta, G.S.; Pereira, J.A.S.; Costa, S.G.; Azambuja, P.; Garcia, E.S.; Moraes, C.S.; Genta, F.A. Standardization of a continuous assay for glycosidases and its use for screening insect gut samples at individual and populational levels. Front. Physiol. 2017, 8, 308. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M. Green extraction of natural antioxidants from white grape waste using bio-renewable solvents and ultrasonic process intensification. Chem. Eng. Process. 2024, 196, 109644. [Google Scholar] [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Redovniković, I.R.; Šobajić, S. Impact of deep eutectic solvents on extraction of polyphenols from grape seeds and skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Pantelić, M.M.; Dabić Zagorac, D.Č.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Bunea, C.-I.; Pop, N.; Babeş, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 2012, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Derradji-Benmeziane, F.; Djamai, R.; Cadot, Y. Antioxidant capacity, total phenolic, carotenoid, and vitamin C contents of five table grape varieties from Algeria and their correlations. J. Int. Sci. Vigne Vin. 2014, 48, 153–162. [Google Scholar] [CrossRef]
- Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 2011, 76, C1088–C1093. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Xing, Y.; Wen, C.; Yu, X.-X.; Sun, W.-I.; Xiu, Z.-L.; Dong, Y.-S. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg. Med. Chem. Lett. 2017, 27, 5065–5070. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, A.; Majie, A.; Karmakar, V.; Das, S.; Dinda, S.C.; Bose, A. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. Phytomedicine 2024, 129, 155638. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, J.; Li, T.; Liu, C.; Zhai, Y.; McClements, D.J.; Liu, J. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): Inhibitory activity of proanthocyanidins against glycolysis enzymes. Food Funct. 2015, 6, 3693–3701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Qiao, J.; Ni, Y.; Liu, P.; Huang, D.; Huo, J. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chem. 2022, 385, 132588. [Google Scholar] [CrossRef] [PubMed]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Brenna, O. Evolution of some phenolic components, carotenoids and chlorophylls during ripening of three Italian grape varieties. Eur. Food Res. Technol. 2007, 225, 145–150. [Google Scholar] [CrossRef]
- Guedes De Pinho, P.; Silva Ferreira, A.C.; Mendes Pinto, M.; Gomez Benitez, J.; Hogg, T.A. Determination of carotenoid profiles in grapes, musts, and fortified wines from Douro varieties of Vitis vinifera. J. Agric. Food Chem. 2001, 49, 5484–5488. [Google Scholar] [CrossRef]
- Qi, J.; Kim, S.M. α-Glucosidase inhibitory activities of lutein and zeaxanthin purified from green alga Chlorella ellipsoidea. J. Ocean Univ. China 2018, 17, 983–989. [Google Scholar] [CrossRef]
- Gopal, S.S.; Jhansilakshmi, M.; Gurunathan, S.; Sathaiah, G.; Sreerama, Y.N.; Vallikannan, B. Lactucaxanthin—A potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats. Food Funct. 2017, 8, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Puspawati, G.A.K.D.; Marsono, Y.; Armunanto, R.; Supriyadi, S. Inhibitory potency of indonesian tamarillo (Solanum betaceum Cav) crude extract against α-glucosidase enzyme activity. Curr. Res. Nutr. Food Sci. 2018, 6, 392–403. [Google Scholar] [CrossRef]
- Parklak, W.; Ounjaijean, S.; Kulprachakarn, K.; Boonyapranai, K. In vitro α-amylase and α-glucosidase inhibitory effects, antioxidant activities, and lutein content of nine different cultivars of marigold flowers (Tagetes spp.). Molecules 2023, 28, 3314. [Google Scholar] [CrossRef]
- Fan, H.; Chen, J.; Lv, H.; Ao, X.; Wu, Y.; Ren, B.; Li, W. Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. Eur. Food Res. Technol. 2017, 243, 1009–1017. [Google Scholar] [CrossRef]
- Shah, M.; Bashir, S.; Jaan, S.; Nawaz, H.; Nishan, U.; Abbasi, S.W.; Jamal, S.B.; Khan, A.; Afridi, S.G.; Iqbal, A. Computational analysis of plant-derived terpenes as α -glucosidase inhibitors for the discovery of therapeutic agents against type 2 diabetes mellitus. S. Afr. J. Bot. 2021, 143, 462–473. [Google Scholar] [CrossRef]
- Maletić, E.; Karoglan Kontić, J.; Pejić, I.; Preiner, D.; Zdunić, G.; Bubola, M.; Stupić, D.; Andabaka, Ž.; Marković, Z.; Šimon, S.; et al. Green Book: Indigenous Grapevine Varieties of Croatia; Croatian Agency for Environment and Nature: Zagreb, Croatia, 2018. [Google Scholar]
Grape Variety | Grape Code | AM10B/g | AMFS10B/g | AMDS10B/g |
---|---|---|---|---|
Šipelj | SHI | 19.88 ± 0.39 | 2.68 ± 0.41 | 0.83 ± 0.09 |
Smudna belina | SMB | 13.40 ± 0.39 | 1.86 ± 0.14 | 0.56 ± 0.04 |
Šemnička belina | SHB | 22.38 ± 0.22 | 3.84 ± 0.27 | 1.34 ± 0.11 |
Mirkovačka belina | MRB | 18.74 ± 2.06 | 1.52 ± 0.14 | 0.46 ± 0.04 |
Mala belina | MLB | 17.40 ± 0.37 | 2.19 ± 0.18 | 0.65 ± 0.05 |
Svetokriška belina | SVB | 15.07 ± 0.90 | 1.94 ± 0.16 | 0.66 ± 0.06 |
Kozjak | KOZ | 24.86 ± 0.71 | 3.24 ± 0.37 | 1.09 ± 0.10 |
Ranfol | RAN | 16.56 ± 0.36 | 2.10 ± 0.17 | 0.62 ± 0.03 |
Pikasta belina | PKB | 22.00 ± 1.06 | 2.78 ± 0.04 | 0.80 ± 0.01 |
Svjetljak | SVJ | 17.30 ± 0.79 | 2.81 ± 0.16 | 0.83 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastija, V.; Drenjančević, M.; Kujundžić, T.; Zmaić, L.; Karnaš, M. The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties. Foods 2024, 13, 4143. https://doi.org/10.3390/foods13244143
Rastija V, Drenjančević M, Kujundžić T, Zmaić L, Karnaš M. The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties. Foods. 2024; 13(24):4143. https://doi.org/10.3390/foods13244143
Chicago/Turabian StyleRastija, Vesna, Mato Drenjančević, Toni Kujundžić, Luka Zmaić, and Maja Karnaš. 2024. "The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties" Foods 13, no. 24: 4143. https://doi.org/10.3390/foods13244143
APA StyleRastija, V., Drenjančević, M., Kujundžić, T., Zmaić, L., & Karnaš, M. (2024). The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties. Foods, 13(24), 4143. https://doi.org/10.3390/foods13244143