The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Honey Powder Production
2.3. Model Chicken Product Production
2.4. Analyses of Model Chicken Products
2.4.1. Cooking Loss
2.4.2. Basic Chemical Composition
2.4.3. Water Activity
2.4.4. Shear Force
2.4.5. Color
2.4.6. TBARS
2.4.7. Oxidation Induction Time
2.4.8. Microbiological Quality
2.4.9. Sensory Profiling
2.4.10. Volatile Compound Profile
2.5. Statistical Analysis
3. Results and Discussion
3.1. Cooking Loss and Chemical Composition of Model Chicken Products
3.2. Water Activity of Model Chicken Products
3.3. Shear Force of Model Chicken Products
3.4. Color of Model Chicken Products
3.5. Lipid Oxidation of Model Chicken Products
3.6. Microbiological Quality of Model Chicken Products
3.7. Sensory Quality of Model Chicken Products
3.8. Volatile Compounds Profile of Model Chicken Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotecka-Majchrzak, K.; Kasałka-Czarna, N.; Spychaj, A.; Mikołajczak, B.; Montowska, M. The Effect of Hemp Cake (Cannabis sativa L.) on the Characteristics of Meatballs Stored in Refrigerated Conditions. Molecules 2021, 26, 5284. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications and Future Perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
- Kilic, S.; Oz, E.; Oz, F. Effect of Turmeric on the Reduction of Heterocyclic Aromatic Amines and Quality of Chicken Meatballs. Food Control 2021, 128, 108189. [Google Scholar] [CrossRef]
- Pires, J.R.A.; de Souza, V.G.L.; Fernando, A.L. Chitosan/Montmorillonite Bionanocomposites Incorporated with Rosemary and Ginger Essential Oil as Packaging for Fresh Poultry Meat. Food Packag. Shelf Life 2018, 17, 142–149. [Google Scholar] [CrossRef]
- Chmiel, M.; Roszko, M.; Adamczak, L.; Florowski, T.; Pietrzak, D. Influence of Storage and Packaging Method on Chicken Breast Meat Chemical Composition and Fat Oxidation. Poult. Sci. 2019, 98, 2679–2690. [Google Scholar] [CrossRef] [PubMed]
- Kodogiannis, V.S. Application of an Electronic Nose Coupled with Fuzzy-Wavelet Network for the Detection of Meat Spoilage. Food Bioprocess Technol. 2017, 10, 730–749. [Google Scholar] [CrossRef]
- Jaworska, D.; Rosiak, E.; Kostyra, E.; Jaszczyk, K.; Wroniszewska, M.; Przybylski, W. Effect of Herbal Addition on the Microbiological, Oxidative Stability and Sensory Quality of Minced Poultry Meat. Foods 2021, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Półtorak, A.; Marcinkowska-Lesiak, M.; Lendzion, K.; Moczkowska, M.; Onopiuk, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A. Evaluation of the Antioxidant, Anti-Inflammatory and Antimicrobial Effects of Catuaba, Galangal, Roseroot, Maca Root, Guarana and Polyfloral Honey in Sausages during Storage. LWT 2018, 96, 364–370. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural Antioxidants against Lipid–Protein Oxidative Deterioration in Meat and Meat Products: A Review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. The Effect of Common Spices and Meat Type on the Formation of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Deep-Fried Meatballs. Food Control 2018, 92, 399–411. [Google Scholar] [CrossRef]
- Yerlikaya, S.; Şen Arslan, H. Antioxidant and Chemical Effects of Propolis, Sage (Salvia officinalis L.), and Lavender (Lavandula angustifolia Mill) Ethanolic Extracts on Chicken Sausages. J. Food Process Preserv. 2021, 45, e15551. [Google Scholar] [CrossRef]
- Zwolan, A.; Pietrzak, D.; Adamczak, L.; Chmiel, M.; Florowski, T.; Kalisz, S.; Hać-Szymańczuk, E.; Bryś, J.; Oszmiański, J. Characteristics of Water and Ethanolic Extracts of Scutellaria baicalensis Root and Their Effect on Color, Lipid Oxidation, and Microbiological Quality of Chicken Meatballs during Refrigerated Storage. J. Food Process Preserv. 2022, 46, e16192. [Google Scholar] [CrossRef]
- Bak, K.H.; Bauer, S.; Bauer, F. Effect of Different Genotypes and Harvest Times of Sage (Salvia spp. Labiatae) on Lipid Oxidation of Cooked Meat. Antioxidants 2023, 12, 616. [Google Scholar] [CrossRef] [PubMed]
- Szymandera-Buszka, K.; Waszkowiak, K.; Jędrusek-Golińska, A.; Hęś, M. Sensory Analysis in Assessing the Possibility of Using Ethanol Extracts of Spices to Develop New Meat Products. Foods 2020, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Antony, S.; Rieck, J.R.; Dawson, P.L. Effect of Dry Honey on Oxidation in Turkey Breast Meat. Poult. Sci. 2000, 79, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Antony, S.; Rieck, J.R.; Acton, J.C.; Han, I.Y.; Halpin, E.L.; Dawson, P.L. Effect of Dry Honey on the Shelf Life of Packaged Turkey Slices. Poult. Sci. 2006, 85, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Malak, N. The Effect of Different Cooking Methods on Sensory Attributes, Physicochemical Properties, and Microbial Safety of Ostrich Meat (Struthio camelus). J. Adv. Vet. Anim. Res. 2024, 11, 1. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork Meat Prepared by Different Cooking Methods. A Microstructural, Sensorial and Physicochemical Approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef] [PubMed]
- Samborska, K.; Langa, E.; Kamińska-Dwórznicka, A.; Witrowa-Rajchert, D. The Influence of Sodium Caseinate on the Physical Properties of Spray-Dried Honey. Int. J. Food Sci. Technol. 2015, 50, 256–262. [Google Scholar] [CrossRef]
- Osés, S.M.; Cantero, L.; Puertas, G.; Fernández-Muiño, M.Á.; Sancho, M.T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Ling-Heather Honey Powder Obtained by Different Methods with Several Carriers. LWT 2022, 159, 113235. [Google Scholar] [CrossRef]
- Tong, Q.; Zhang, X.; Wu, F.; Tong, J.; Zhang, P.; Zhang, J. Effect of Honey Powder on Dough Rheology and Bread Quality. Food Res. Int. 2010, 43, 2284–2288. [Google Scholar] [CrossRef]
- Sathivel, S.; Ahalya, K.R.; Luis, E.; Joan, K.; Rafael, C.; Kevin, M.S. Application of Honey Powder in Bread and Its Effect on Bread Characteristics. J. Food Process Technol. 2013, 4, 279. [Google Scholar] [CrossRef]
- Kılınç, M. The Facilities of Spray Dried Honey Powder Use as a Substitute for Sugar in Cookie Production. J. Food Health Sci. 2017, 3, 67–74. [Google Scholar] [CrossRef]
- Samborska, K.; Jedlińska, A.; Wiktor, A.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; et al. The Effect of Low-Temperature Spray Drying with Dehumidified Air on Phenolic Compounds, Antioxidant Activity, and Aroma Compounds of Rapeseed Honey Powders. Food Bioprocess Technol. 2019, 12, 919–932. [Google Scholar] [CrossRef]
- PN A-82109:2010; Meat and Meat Products—Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) with Artificial Neural Network Calibration. Polish Committee for Standardization: Warsaw, Poland, 2010.
- Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A.; Ostrowska-Ligęza, E. Effect of Enzymatic Interesterification on Physiochemical and Thermal Properties of Fat Used in Cookies. LWT 2016, 74, 99–105. [Google Scholar] [CrossRef]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Oz, F.; Aksu, M.I.; Turan, M. The Effects of Different Cooking Methods on Some Quality Criteria and Mineral Composition of Beef Steaks. J. Food Process Preserv. 2017, 41, e13008. [Google Scholar] [CrossRef]
- Suhag, Y.; Nanda, V. Optimisation of Process Parameters to Develop Nutritionally Rich Spray-dried Honey Powder with Vitamin C Content and Antioxidant Properties. Int. J. Food Sci. Technol. 2015, 50, 1771–1777. [Google Scholar] [CrossRef]
- Shi, Q.; Fang, Z.; Bhandari, B. Effect of Addition of Whey Protein Isolate on Spray-Drying Behavior of Honey with Maltodextrin as a Carrier Material. Dry. Technol. 2013, 31, 1681–1692. [Google Scholar] [CrossRef]
- Turhan, S.; Yazici, F.; Saricaoglu, T.; Mortas, M.; Genccelep, H. Evaluation of the Nutritional and Storage Quality of Meatballs Formulated with Bee Pollen. Korean J. Food Sci. Anim. Resour. 2014, 34, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Grasso, S.; Smith, G.; Bowers, S.; Ajayi, O.M.; Swainson, M. Effect of Texturised Soy Protein and Yeast on the Instrumental and Sensory Quality of Hybrid Beef Meatballs. J. Food Sci. Technol. 2019, 56, 3126–3135. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, S.; Du, Z.; Chao, M.; O’Quinn, T.; Li, Y. Effect of Adding Modified Pea Protein as Functional Extender on the Physical and Sensory Properties of Beef Patties. LWT 2022, 154, 112774. [Google Scholar] [CrossRef]
- Câmara, A.K.F.I.; Okuro, P.K.; da Cunha, R.L.; Herrero, A.M.; Ruiz-Capillas, C.; Pollonio, M.A.R. Chia (Salvia hispanica L.) Mucilage as a New Fat Substitute in Emulsified Meat Products: Technological, Physicochemical, and Rheological Characterization. LWT 2020, 125, 109193. [Google Scholar] [CrossRef]
- Pematilleke, N.; Kaur, M.; Rai Wai, C.T.; Adhikari, B.; Torley, P.J. Effect of the Addition of Hydrocolloids on Beef Texture: Targeted to the Needs of People with Dysphagia. Food Hydrocoll. 2020, 113, 106413. [Google Scholar] [CrossRef]
- Şen, D.B.; Kılıç, B. Effects of Edible Coatings Containing Acai Powder and Matcha Extracts on Shelf Life and Quality Parameters of Cooked Meatballs. Meat Sci. 2021, 179, 108547. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, X.; Xu, B. Glycosylation Modification: A Promising Strategy for Regulating the Functionalities of Myofibrillar Proteins. Crit. Rev. Food Sci. Nutr. 2024, 64, 8933–8947. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, H.; Li, S.; Song, C.; Zhang, S.; Ren, J.; Udenigwe, C.C. Maillard-Type Protein–Polysaccharide Conjugates and Electrostatic Protein–Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022, 8, 135. [Google Scholar] [CrossRef]
- Dong, M.; Chen, H.; Zhang, Y.; Xu, Y.; Han, M.; Xu, X.; Zhou, G. Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: A Review. Food Bioprocess Technol. 2020, 13, 1280–1291. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Gea-Quesada, A.; Sayas-Barberá, E.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Viuda-Martos, M. Improving the Lipid Profile of Beef Burgers Added with Chia Oil (Salvia hispanica L.) or Hemp Oil (Cannabis sativa L.) Gelled Emulsions as Partial Animal Fat Replacers. LWT 2022, 161, 113416. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Marcinkowska-Lesiak, M.; Wojtasik-Kalinowska, I.; Stelmasiak, A.; Poltorak, A. The Effect of Partial Substitution of Beef Tallow on Selected Physicochemical Properties, Fatty Acid Profile and PAH Content of Grilled Beef Burgers. Foods 2022, 11, 1986. [Google Scholar] [CrossRef] [PubMed]
- Turp, G.Y. Effects of Four Different Cooking Methods on Some Quality Characteristics of Low Fat Inegol Meatball Enriched with Flaxseed Flour. Meat Sci. 2016, 121, 40–46. [Google Scholar] [CrossRef]
- Suleman, R.; Wang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.-T.; Takahashi, K.; Kaido, T.; Kasukawa, M.; Okazaki, E.; Osako, K. Relationship among PH, Generation of Free Amino Acids, and Maillard Browning of Dried Japanese Common Squid Todarodes Pacificus Meat. Food Chem. 2019, 283, 324–330. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid Oxidation in Food Science and Nutritional Health: A Comprehensive Review. Oil Crop Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.B.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding Beef Flavour and Overall Liking Traits Using Two Different Methods for Determination of Thiobarbituric Acid Reactive Substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Miranda, L.T.; Rakovski, C.; Were, L.M. Effect of Maillard Reaction Products on Oxidation Products in Ground Chicken Breast. Meat Sci. 2012, 90, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.-Q.; Wang, H.-O.; Wang, F.-W.; Du, Y.-L.; Xiao, J.-X. Maillard Reaction in Protein—Polysaccharide Coacervated Microcapsules and Its Effects on Microcapsule Properties. Int. J. Biol. Macromol. 2020, 155, 1194–1201. [Google Scholar] [CrossRef]
- International Commission on Microbiological Specifications for Foods (ICMSF); Swanson, K.M. Poultry Products; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-9374-8. [Google Scholar]
- Fyfe, L.; Okoro, P.; Paterson, E.; Coyle, S.; McDougall, G.J. Compositional Analysis of Scottish Honeys with Antimicrobial Activity against Antibiotic-Resistant Bacteria Reveals Novel Antimicrobial Components. LWT 2017, 79, 52–59. [Google Scholar] [CrossRef]
- Camacho-Bernal, G.I.; Cruz-Cansino, N.d.S.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Zafra-Rojas, Q.Y.; Castañeda-Ovando, A.; Suárez-Jacobo, Á. Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Appl. Sci. 2021, 11, 8156. [Google Scholar] [CrossRef]
- dos Reis, A.S.; Diedrich, C.; de Moura, C.; Pereira, D.; Almeida, J.d.F.; da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavares, R.A.W.; Carpes, S.T. Physico-Chemical Characteristics of Microencapsulated Propolis Co-Product Extract and Its Effect on Storage Stability of Burger Meat during Storage at −15 °C. LWT 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Szpicer, A.; Binkowska, W.; Hanula, M.; Marcinkowska-Lesiak, M.; Poltorak, A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Appl. Sci. 2023, 13, 705. [Google Scholar] [CrossRef]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile Compounds in Meat and Meat Products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef]
- Ayseli, M.T.; Filik, G.; Selli, S. Evaluation of Volatile Compounds in Chicken Breast Meat Using Simultaneous Distillation and Extraction with Odour Activity Value. J. Food Nutr. Res. 2014, 53, 137–142. [Google Scholar]
- Mancinelli, C.A.; Silletti, E.; Mattioli, S.; Dal Bosco, A.; Sebastiani, B.; Menchetti, L.; Koot, A.; van Ruth, S.; Castellini, C. Fatty Acid Profile, Oxidative Status, and Content of Volatile Organic Compounds in Raw and Cooked Meat of Different Chicken Strains. Poult. Sci. 2021, 100, 1273–1282. [Google Scholar] [CrossRef]
- Sotiropoulou, N.S.; Xagoraris, M.; Revelou, P.K.; Kaparakou, E.; Kanakis, C.; Pappas, C.; Tarantilis, P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021, 10, 1671. [Google Scholar] [CrossRef]
- Utrera, M.; Morcuende, D.; Estévez, M. Temperature of Frozen Storage Affects the Nature and Consequences of Protein Oxidation in Beef Patties. Meat Sci. 2014, 96, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Górska-Horczyczak, E.; Brodowska-Trębacz, M.; Hanula, M.; Pogorzelska-Nowicka, E.; Wierzbicka, A.; Wojtasik-Kalinowska, I.; Półtorak, A. Influence of Nigella Sativa L. Oil Addition on Physicochemical and Sensory Properties of Freezer-Stored Ground Pork for Pâté. Appl. Sci. 2023, 13, 12550. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Song, H. Variation in Volatile Flavor Compounds of Cooked Mutton Meatballs during Storage. Foods 2021, 10, 2430. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour Chemistry of Chicken Meat: A Review. Asian-Australas. J. Anim. Sci. 2013, 26, 732–742. [Google Scholar] [CrossRef]
- Flores, M. The Eating Quality of Meat: III—Flavor. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 421–455. [Google Scholar]
- Mikš-Krajnik, M.; Yoon, Y.-J.; Yuk, H.-G. Detection of Volatile Organic Compounds as Markers of Chicken Breast Spoilage Using HS-SPME-GC/MS-FASST. Food Sci. Biotechnol. 2015, 24, 361–372. [Google Scholar] [CrossRef]
C | HP1% | HP2% | |
---|---|---|---|
Cooking loss (%) | 9.1 ± 0.5 a1 | 8.7 ± 0.7 a | 8.7 ± 0.6 a |
Water (%) | 69.5 ± 0.2 b | 68.1 ± 0.3 a | 67.4 ± 0.5 a |
Protein (%) | 19.3 ± 0.4 b | 19.1 ± 0.1 ab | 18.6 ± 0.2 a |
Fat (%) | 6.8 ± 0.3 a | 7.0 ± 0.3 a | 7.1 ± 0.4 a |
Carbohydrates (%) | 1.3 ± 0.1 a | 2.8 ± 0.2 b | 4.0 ± 0.2 c |
Salt (%) | 1.9 ± 0.2 a | 1.8 ± 0.1 a | 1.8 ± 0.1 a |
Days of Storage | C | HP1% | HP2% |
---|---|---|---|
0 | 0.975 ± 0.003 ax1 | 0.975 ± 0.002 ax | 0.975 ± 0.002 ax |
7 | 0.973 ± 0.001 ax | 0.977 ± 0.001 ax | 0.973 ± 0.004 ax |
14 | 0.976 ± 0.001 ax | 0.975 ± 0.002 ax | 0.975 ± 0.002 ax |
Days of Storage | C | HP1% | HP2% |
---|---|---|---|
0 | 14.29 ± 1.10 ax1 | 14.57 ± 1.43 ax | 14.95 ± 1.23 ax |
7 | 14.48 ± 1.16 axy | 14.13 ± 1.35 ax | 15.19 ± 0.94 ax |
14 | 15.55 ± 1.33 ay | 14.52 ± 1.49 ax | 14.34 ± 1.14 ax |
Days of Storage | C | HP1% | HP2% |
---|---|---|---|
L* (─) | |||
1 | 67.23 ± 1.81 ax1 | 67.88 ± 1.69 ax | 67.25 ± 1.83 ax |
7 | 69.30 ± 1.28 ay | 69.13 ± 1.98 ax | 68.06 ± 1.74 ax |
14 | 69.19 ± 1.84 ay | 69.11 ± 1.70 ax | 67.88 ± 1.14 ax |
a* (─) | |||
1 | 2.79 ± 0.59 ax | 4.85 ± 0.85 bx | 4.71 ± 0.95 bx |
7 | 3.39 ± 0.55 ay | 5.29 ± 0.95 bx | 5.61 ± 0.68 by |
14 | 3.67 ± 0.69 ay | 5.38 ± 0.68 bx | 6.20 ± 0.77 cy |
b* (─) | |||
1 | 14.97 ± 0.76 bx | 13.35 ± 1.15 ax | 13.47 ± 1.95 ax |
7 | 15.43 ± 1.20 bx | 14.27 ± 1.26 ax | 13.58 ± 0.94 ax |
14 | 15.51 ± 0.86 bx | 13.80 ± 0.71 ax | 13.47 ± 1.18 ax |
ΔE (─) | |||
1 | – | 3.16 ± 1.41 a | 3.22 ± 1.07 a |
7 | – | 3.89 ± 0.98 a | 3.76 ± 0.74 a |
14 | – | 2.94 ± 0.93 a | 3.82 ± 0.93 b |
Days of Storage | C | HP1% | HP2% |
---|---|---|---|
TBARS (mg MDA/kg) | |||
1 | 0.37 ± 0.04 ax1 | 0.38 ± 0.02 ax | 0.39 ± 0.03 ax |
7 | 0.66 ± 0.02 cy | 0.50 ± 0.02 by | 0.42 ± 0.05 ax |
14 | 1.17 ± 0.05 cz | 0.99 ± 0.03 bz | 0.60 ± 0.02 ay |
OIT (min) | |||
1 | 16.93 ± 0.75 az | 16.80 ± 1.18 ax | 17.78 ± 0.40 ax |
7 | 13.86 ± 0.49 ay | 16.67 ± 0.13 bx | 17.61 ± 0.32 cx |
14 | 12.47 ± 0.11 ax | 15.69 ± 0.51 bx | 17.62 ± 0.30 cx |
Days of Storage | C | HP1% | HP2% |
---|---|---|---|
Enterobacteriaceae | |||
1 | nd | nd | nd |
7 | nd | nd | nd |
14 | nd | nd | nd |
Total Mesophilic Count (TMC) | |||
1 | 2.15 ± 0.23 ax1 | 2.18 ± 0.13 ax | 2.35 ± 0.16 ax |
7 | 2.62 ± 0.03 by | 1.91 ± 0.12 ay | 2.07 ± 0.24 ax |
14 | 2.98 ± 0.12 ay | 3.20 ± 0.03 az | 2.90 ± 0.19 ay |
Psychrotrophic Bacteria | |||
1 | 1.26 ± 0.45 ax | 1.20 ± 0.17 ax | 1.52 ± 0.07 ax |
7 | 2.83 ± 0.10 by | 2.24 ± 0.18 by | 1.37 ± 0.21 ax |
14 | 2.92 ± 0.19 by | 2.05 ± 0.02 ay | 1.74 ± 0.13 ay |
Lactic Acid Bacteria (LAB) | |||
1 | 1.56 ± 0.24 ax | 1.30 ± 0.30 ax | 1.46 ± 0.15 ax |
7 | 2.66 ± 0.08 by | 1.25 ± 0.18 ax | 1.52 ± 0.24 ax |
14 | 2.23 ± 0.16 by | 1.42 ± 0.10 ax | 1.33 ± 0.35 ax |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogusz, R.; Onopiuk, A.; Chmiel, M.; Piotrowska, A.; Kostyra, E.; Lipińska, E.; Bryś, J.; Samborska, K.; Pietrzak, D. The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products. Foods 2024, 13, 4163. https://doi.org/10.3390/foods13244163
Bogusz R, Onopiuk A, Chmiel M, Piotrowska A, Kostyra E, Lipińska E, Bryś J, Samborska K, Pietrzak D. The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products. Foods. 2024; 13(24):4163. https://doi.org/10.3390/foods13244163
Chicago/Turabian StyleBogusz, Radosław, Anna Onopiuk, Marta Chmiel, Anna Piotrowska, Eliza Kostyra, Edyta Lipińska, Joanna Bryś, Katarzyna Samborska, and Dorota Pietrzak. 2024. "The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products" Foods 13, no. 24: 4163. https://doi.org/10.3390/foods13244163
APA StyleBogusz, R., Onopiuk, A., Chmiel, M., Piotrowska, A., Kostyra, E., Lipińska, E., Bryś, J., Samborska, K., & Pietrzak, D. (2024). The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products. Foods, 13(24), 4163. https://doi.org/10.3390/foods13244163