Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Research Methods
2.2.1. Bread Baking
2.2.2. Preparation of Control Kvass and Kvasses with Additives
2.2.3. Organoleptic Evaluation of Kvasses
2.2.4. Measurements of Antioxidant Activity of Kvasses
2.2.5. Measurements of Selected Quality Parameters of Kvasses
2.2.6. Chromatographic Analysis of Kvasses by UPLC-PDA-ESI-MS/MS Method
2.3. Statistical Analysis
3. Results and Discussion
3.1. Organoleptic Evaluation and Antioxidant Properties of the Tested Kvass
3.2. Comparison of the Quality Parameters of Selected Tested Kvass
3.3. Chromatographic Analysis of Selected Tested Kvass
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ragaee, S.; Gamel, T.; Seethraman, K.; Abdel-Aal, E.S.M. Food grains. In Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; Tiwari, B.K., Brunton, N.P., Brennan, C., Eds.; John Wiley & Sons: New York, NY, USA, 2013; pp. 138–162. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cereal grain-based functional beverages: From cereal grain bioactive phytochemicals to beverage processing technologies, health benefits and product features. Crit. Rev. Food Sci. Nutr. 2020, 62, 2404–2431. [Google Scholar] [CrossRef] [PubMed]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The major constituents of rye (Secale cereale L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- El-Mahis, A.; Baky, M.H.; Farag, M.A. How does rye compare to other cereals? A com-prehensive review of its potential nutritional value and better opportunities for its processing as a food-based cereal. Food Rev. Int. 2023, 39, 7. [Google Scholar] [CrossRef]
- Kulichová, K.; Sokol, J.; Nemeček, P.; Maliarová, M.; Maliar, T.; Havrlentová, M.; Kraic, J. Phenolic compounds and bio-logical activities of rye (Secale cereale L.) grains. Open Chem. 2019, 17, 988–999. [Google Scholar] [CrossRef]
- Grabiński, J.; Sułek, A.; Wyzińska, M.; Stuper-Szablewska, K.; Cacak-Pietrzak, G.; Nieróbca, A.; Dziki, D. Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy 2021, 11, 151. [Google Scholar] [CrossRef]
- Wrigley, C.W.; Rye, I.; Mir, S.A.; Manickavasagan, A.; Shah, M.A. (Eds.) Whole Grains: Processing, Product Development, and Nutritional Aspects; CRC Press: Boca Raton, FL, USA, 2019; pp. 173–196. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Aura, A.; Vuorela, S.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Rye phenolics in nutrition and health. J. Cereal Sci. 2009, 49, 323–336. [Google Scholar] [CrossRef]
- Rahnama, S.; Ardestani, E.G.; Ebrahimi, A.; Nikookhah, F. Seed priming with plant growth-promoting bacteria (PGPB) improves growth and water stress tolerance of Secale montanum. Heliyon 2023, 9, e15498. [Google Scholar] [CrossRef]
- Basinskiene, L.; Cizeikiene, D. Cereal-Based Nonalcoholic Beverages. Chapter 3. Trends in Non-Alcoholic Beverages; Academic Press: Cambridge, MA, USA, 2020; pp. 63–99. [Google Scholar] [CrossRef]
- Dlusskaya, E.; Jänsch, A.; Schwab, C.; Gänzle, M.G. Microbial and chemical analysis of a kvass fermentation. Eur. Food Res. Technol. 2008, 227, 261–266. [Google Scholar] [CrossRef]
- Gambuś, H.; Mickowska, B.; Bartoń, H.; Augustyn, G.; Zięć, G.; Litwinek, D.; Szary-Sworst, K.; Berski, W. Health benefits of kvass manufactured from rye wholemeal bread. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 34–39. [Google Scholar] [CrossRef]
- Lidums, I.; Karklina, D.; Kirse, A. Quality parameters of fermented kvass extract. Chem. Technol. 2016, 1, 67. [Google Scholar] [CrossRef]
- Wang, P.; Wu, J.; Wang, T.; Zhang, Y.; Yao, X.; Li, J.; Wang, X.; Lü, X. Fermentation process optimization, chemical analysis, and storage stability evaluation of a probiotic barley malt kvass. Bioprocess Biosyst. Eng. 2022, 45, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Dziugan, P. Kwas chlebowy—Napój na nowo odkrywany (2). Przem. Ferment. Owoc. Warz. 2006, 50, 74–76. (In Polish) [Google Scholar]
- Lidums, I.; Karklina, D.; Sabovics, M.; Kirse, A. Evaluation of aroma volatiles in naturally fermented kvass and kvass extract. Res. Rural. Dev. 2014, 1, 143–149. [Google Scholar]
- Lidums, I.; Karklina, D.; Kirse, A.; Šabovics, M. Nutritional value, vitamins, sugars and aroma volatiles in naturally fermented and dry kvass. In Proceedings of the Foodbalt 2017, 11th Baltic Conference on Food Science and Technology “Food Science and Technology in a Changing World”, Jelgava, Latvia, 27–28 April 2017; pp. 61–65. [Google Scholar] [CrossRef]
- Polanowska, K.; Varghese, R.; Kuligowski, M.; Majcher, M. Carob kibbles as an alternative raw material for production of kvass with probiotic potential. J. Sci. Food Agric. 2021, 101, 5487–5497. [Google Scholar] [CrossRef]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Kulling, S.; Rawel, H. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanov, C.; Číž, M.; Lojek, A.; Kratchanova, M. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Urbaniak, S.; Kaźmierczak-Barańska, J.; Karwowski, B.T. Sea buckthorn (Hippophaë rhamnoides L.) as a vitamin C treasury. Adv. Biochem. 2019, 65, 212–216. (In Polish) [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, L.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6761–6782. [Google Scholar] [CrossRef]
- Beigi, M.; Torki-Harchegani, M.; Pirbalouti, A.G. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef]
- Pavlić, B.; Teslić, N.; Zengin, G.; Đurović, S.; Rakić, D.; Cvetanović, A.; Gunes, A.K.; Zeković, Z. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chem. 2021, 338, 127724. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, G.; Rahman, L.-U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phytother Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef] [PubMed]
- Bartnik, M.; Ceglińska, A. Effect of the method of dough fermentation on the content of phytic compounds in rye bread. Acta Aliment. Pol. 1981, 7, 25–34. [Google Scholar]
- Kirchhoff, E.; Schieberle, P. Determination of key aroma compounds in the crumb of a three-stage sourdough rye bread by stable isotope dilution assays and sensory studies. J. Agric. Food Chem. 2001, 49, 4304–4311. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Wibowo, S.; Vervoort, L.; Tomic, J.; Santiago, J.S.; Lemmens, L.; Panozzo, A.; Van Loey, A. Colour and carotenoid changes of pasteurised orange juice during storage. Food Chem. 2015, 171, 330–340. [Google Scholar] [CrossRef]
- Pérez-Cid, B.; Río Segade, S.; Vecino, X.; Moldes, A.B.; Cruz, J.M. Effect of a biosurfactant extract obtained from a corn kernel fermented stream on the sensory colour properties of apple and orange juices. Foods 2023, 12, 1959. [Google Scholar] [CrossRef]
- Clydesdale, F.M. Color perception and food quality. J. Food Qual. 1991, 14, 61–74. [Google Scholar] [CrossRef]
- PN-A-75101-09:1990; Fruit and Vegetable Products—Preparation of Samples and Methods of Physicochemical Tests—Determination of Ethyl Alcohol Content. The Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish)
- Kapusta, I.; Cebulak, T.; Oszmiański, J. Characterization of polish wines produced from the interspecifc hybrid grapes grown in south-east Poland. Eur. Food Res. Technol. 2018, 244, 441–455. [Google Scholar] [CrossRef]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.D.; Koşar, M.; Başer, K.H.C.; Hiltunen, R. Phenolic profile and antioxidant evaluation of Mentha x piperita L. (peppermint) extracts. Nat. Prod. Commun. 2009, 4, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Arzani, A.; Arzani, V.; Roberts, T.H. Phenolic compounds and antimicrobial properties of mint and thyme. J. Herb. Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Tanashkina, T.V.; Peregoedova, A.A.; Semenyuta, A.A.; Boyarova, M.D. Gluten-free buckwheat kvass with aromatic raw materials. Food Process. Tech. Technol. 2020, 50, 70–78. [Google Scholar] [CrossRef]
- Habschied, K.; Nišević, J.; Krstanović, V.; Lončarić, A.; Valek Lendić, K.; Mastanjević, K. Formulation of a Wort-Based Beverage with the Addition of Chokeberry (Aronia melanocarpa) Juice and Mint Essential Oil. Appl. Sci. 2023, 13, 2334. [Google Scholar] [CrossRef]
- Xu, F.; Lv, S. Manufacture of jujube and tomato Kvass beverage. J. Food Saf. Qual. 2018, 9, 2480–2484. [Google Scholar]
Points | Clarity | Smell | Color | Taste |
---|---|---|---|---|
5 | very clear and uniform, slightly cloudy | very pleasant, sour, slightly yeasty | very uniform and homogeneous, very characteristic of the additives used, highly specific, intense | very pleasant, sour, yeasty, very characteristic of the flavor of the additives used |
4 | clear and uniform, slightly cloudy | pleasant, sour, yeasty | uniform, homogeneous, characteristic of the additives used, specific, intense | pleasant, sour, characteristic of the flavor of the additives used |
3 | clear and quite uniform, cloudy | quite pleasant, slightly sour | slightly less uniform and homogeneous, slightly less characteristic of additives | less pleasant, very sour, characteristic of the flavor of the additives used |
2 | small-colored, non-uniform | not very pleasant | slightly less uniform and homogeneous, not very characteristic of the additives used | unharmonized, too sour or too sweet, less characteristic of the additives used |
1 | heterogeneous, non-clarity | unpleasant, weakly perceptible | heterogeneous, uncharacteristic of the additives used | very weak or no taste at all, foreign taste, clearly altered |
Kvass | Clarity | Smell | Color | Taste | Total Points |
---|---|---|---|---|---|
Fermentation Temperature 28 °C | |||||
control kvass 28 | 3.8 ± 0.1 b | 4.1 ± 0.2 b | 3.8 ± 0.7 bc | 3.4 ± 0.8 bc | 15.1 ± 1.2 bc |
BC (J) 3% | 4.1 ± 0.3 b | 4.8 ± 0.8 cd | 4.9 ± 0.4 c | 4.8 ± 0.4 c | 18.6 ± 0.8 de |
BC (J) 5% | 4.3 ± 0.3 b | 4.8 ± 0.9 cd | 5.0 ± 0.1 c | 4.8 ± 0.4 c | 18.9 ± 0.6 e |
BC (J) 10% | 4.3 ± 0.2 b | 5.0 ± 0.2 d | 4.9 ± 0.2 c | 4.9 ± 0.3 c | 19.1 ± 0.5 e |
BC (I) 3% | 3.1 ± 0.8 ab | 4.2 ± 0.3 b | 2.1 ± 0.2 a | 4.2 ± 0.3 bc | 13.6 ± 0.5 b |
BC (I) 5% | 2.7 ± 0.7 ab | 4.3 ± 0.3 b | 2.2 ± 0.4 a | 3.8 ± 0.7 bc | 13.0 ± 0.7 b |
BC (I) 10% | 2.8 ± 0.7 ab | 3.9 ± 0.5 b | 2.2 ± 0.3 a | 3.8 ± 0.8 bc | 12.7 ± 0.4 b |
SB(J) 3% | 2.0 ± 0.2 a | 2.8 ± 0.3 b | 3.4 ± 0.4 b | 2.1 ± 0.2 a | 10.3 ± 0.3 a |
SB (J) 5% | 2.2 ± 0.2 a | 2.7 ± 0.2 b | 3.2 ± 0.2 b | 1.8 ± 0.4 a | 9.9 ± 0.4 a |
SB (J) 10% | 2.1 ± 0.3 a | 3.1 ± 0.1 b | 3.2 ± 0.2 b | 1.8 ± 0.4 a | 10.2 ± 0.6 a |
SB (I) 3% | 4.1 ± 0.3 b | 3.0 ± 0.0 b | 1.8 ± 0.3 a | 3.2 ± 0.1 b | 12.1 ± 0.5 a |
SB (I) 5% | 3.7 ± 0.5 b | 3.2 ± 0.2 b | 2.0 ± 0.2 a | 2.1 ± 0.3 a | 11.0 ± 0.5 a |
SB (I) 10% | 3.9 ± 0.4 b | 3.2 ± 0.4 b | 2.2 ± 0.4 a | 2.2 ± 0.2 a | 11.5 ± 0.4 a |
P (I) 3% | 2.8 ± 0.9 ab | 4.5 ± 0.7 cd | 3.3 ± 0.1 b | 5.0 ± 0.4 c | 15.6 ± 0.6 c |
P (I) 5% | 2.3 ± 0.4 a | 4.7 ± 0.8 cd | 3.2 ± 0.3 b | 4.8 ± 0.2 c | 15.0 ± 0.9 bc |
P (I) 10% | 2.2 ± 0.2 a | 4.8 ± 0.8 cd | 3.2 ± 0.3 b | 4.8 ± 0.3 c | 15.0 ± 0.8 bc |
Fermentation Temperature 34 °C | |||||
control kvass 34 | 4.7 ± 0.7 bc | 4.4 ± 0.7 cd | 4.0 ± 0.8 bc | 4.3 ± 0.8 bc | 17.4 ± 1.2 cd |
BC (J) 3% | 4.8 ± 0.2 c | 4.9 ± 0.3 d | 4.2 ± 0.9 bc | 5.0 ± 0.1 c | 18.9 ± 1.4 de |
BC (J) 5% | 5.0 ± 0.3 c | 5.0 ± 0.1 d | 4.8 ± 0.2 c | 5.0 ± 0.1 c | 19.8 ± 0.6 e |
BC (J)10% | 4.9 ± 0.1 c | 5.0 ± 0.1 d | 5.0 ± 0.4 c | 5.0 ± 0.1 c | 19.9 ± 0.4 e |
BC (I) 3% | 3.7 ± 0.4 b | 4.2 ± 0.2 c | 3.2 ± 0.2 b | 4.1 ± 0.7 bc | 15.2 ± 1.1 bc |
BC (I) 5% | 3.9 ± 0.2 b | 4.0 ± 0.1 c | 2.1 ± 0.1 a | 3.7 ± 0.8 bc | 13.7 ± 0.4 b |
BC (I) 10% | 3.3 ± 0.8 ab | 4.1 ± 0.4 c | 2.2 ± 0.3 a | 3.9 ± 0.7 bc | 13.5 ± 0.3 b |
SB (J) 3% | 2.1 ± 0.2 a | 2.8 ± 0.4 b | 3.1 ± 0.4 b | 3.1 ± 0.4 b | 11.1 ± 0.4 a |
SB (J) 5% | 2.0 ± 0.0 a | 3.0 ± 0.1 b | 3.3 ± 0.4 b | 2.2 ± 0.2 a | 10.5 ± 0.4 a |
SB (J) 10% | 1.8 ± 0.3 a | 2.2 ± 0.4 a | 3.3 ± 0.2 b | 1.8 ± 0.1 a | 9.1 ± 0.5 a |
SB (I) 3% | 4.2 ± 0.2 b | 3.1 ± 0.2 b | 3.2 ± 0.1 b | 2.9 ± 0.2 b | 13.4 ± 0.6 b |
SB (I) 5% | 4.0 ± 0.4 b | 2.9 ± 0.3 b | 3.0 ± 0.1 b | 3.0 ± 0.2 b | 12.9 ± 0.4 b |
SB (I) 10% | 3.9 ± 0.5 b | 3.2 ± 0.2 ab | 3.0 ± 0.2 b | 3.1 ± 0.4 b | 13.2 ± 0.5 b |
P (I) 3% | 4.2 ± 0.2 b | 4.8 ± 0.4 cd | 3.8 ± 0.6 bc | 4.8 ± 0.3 c | 17.6 ± 0.4 d |
P (I) 5% | 3.2 ± 0.8 ab | 5.0 ± 0.1 d | 3.9 ± 0.8 bc | 4.9 ± 0.2 c | 17.0 ± 0.8 cd |
P (I) 10% | 3.4 ± 0.7 ab | 4.9 ± 0.4 d | 4.0 ± 0.7 bc | 5.0 ± 0.1 c | 17.3 ± 0.9 cd |
Factor | Total Antioxidant Activity | ||
---|---|---|---|
Kvass (K) | Fermentation Temperature (IT) | ABTS (µmol Trolox g−1) | DPPH (µmol Trolox g−1) |
Kvass (K) | |||
control kvass | 0.264 ± 0.053 e | 1.83 ± 0.57 f | |
BC (J) 3% | 0.287 ± 0.026 f | 1.75 ± 0.32 e | |
BC (J) 5% | 0.394 ± 0.044 i | 2.77 ± 0.12 j | |
BC (J) 10% | 0.734 ± 0.046 j | 3.90 ± 0.53 k | |
BC (I) 3% | 0.160 ± 0.006 a | 1.15 ± 0.13 a | |
BC (I) 5% | 0.178 ± 0.012 b | 1.40 ± 0.17 c | |
BC (I) 10% | 0.220 ± 0.006 d | 1.62 ± 0.10 d | |
SB (J) 3% | 0.211 ± 0.015 c | 1.39 ± 0.06 c | |
SB (J) 5% | 0.262 ± 0.015 e | 1.71 ± 0.07 e | |
SB (J) 10% | 0.367 ± 0.018 h | 2.21 ± 0.35 h | |
SB (I) 3% | 0.154 ± 0.004 a | 1.27 ± 0.28 b | |
SB (I) 5% | 0.173 ± 0.005 b | 1.45 ± 0.28 c | |
SB (I) 10% | 0.226 ± 0.020 d | 1.84 ± 0.54 f | |
P (I) 3% | 0.310 ± 0.025 g | 1.92 ± 0.25 g | |
P (I) 5% | 0.399 ± 0.023 i | 2.61 ± 0.05 i | |
P (I) 10% | 0.773 ± 0.016 k | 4.71 ± 0.11 l | |
Fermentation temperature (IT) | |||
28 °C | 0.308 ± 0.180 a | 1.99 ± 0.98 a | |
34 °C | 0.345 ± 0.193 b | 2.32 ± 1.02 b | |
Mean | 0.321 ± 0.185 | 2.10 ± 1.00 | |
Significance (F/p value) | |||
K | F= 9982.4 p < 0.0001 | F= 5222.6 p < 0.0001 | |
IT | F = 1695.5 p < 0.0001 | F = 2594.1 p < 0.0001 | |
K × IT | F = 58.3 p < 0.0001 | F = 295.7 p < 0.0001 |
Kvass | pH Value | Alcohol Content (% vol.) | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|
Fermentation Temperature 28 °C | ||||||
control kvass 28 | 4.10 ± 0.06 a | 0.49 ± 0.04 d | 40.31 ± 0.93 e | −0.30 ± 0.02 a | 1.82 ± 0.04 d | na |
BC (J) 5% | 4.15 ± 0.01 ab | 0.41 ± 0.02 d | 28.55 ± 1.27 b | 3.09 ± 0.23 f | −0.06 ± 0.01 a | 12.4 |
BC (J) 10% | 4.20 ± 0.01 b | 0.43 ± 0.01 b | 23.49 ± 1.12 a | 3.36 ± 0.20 fg | −0.45 ± 0.01 b | 17.5 |
P (I) 5% | 4.39 ± 0.02 c | 0.42 ± 0.01 a | 36.50 ± 0.77 d | −0.81 ± 0.01 c | 2.46 ± 0.03 f | 3.9 |
P (I) 10% | 4.48 ± 0.02 d | 0.42 ± 0.01 a | 33.31 ± 1.04 c | −1.73 ± 0.06 e | 6.57 ± 0.44 i | 8.7 |
Fermentation Temperature 34 °C | ||||||
control kvass 34 | 4.19 ± 0.03 ab | 0.45 ± 0.02 c | 39.97 ± 1.01 e | −0.24 ± 0.03 a | 1.79 ± 0.02 d | na |
BC (J) 5% | 4.19 ± 0.02 ab | 0.45 ± 0.01 c | 29.04 ± 1.58 b | 3.96 ± 0.08 h | 1.95 ± 0.04 e | 11.7 |
BC (J) 10% | 4.25 ± 0.04 b | 0.42 ± 0.02 ab | 23.75 ± 1.49 a | 4.01 ± 0.10 h | −1.54 ± 0.02 c | 16.8 |
P (I) 5% | 4.47 ± 0.03 d | 0.40 ± 0.01 a | 35.12 ± 0.89 d | −0.58 ± 0.03 b | 2.97 ± 0.12 g | 5.1 |
P (I) 10% | 4.60 ± 0.04 e | 0.40 ± 0.01 a | 33.04 ± 0.34 c | −1.42 ± 0.03 d | 5.61 ± 0.23 h | 8.1 |
Compound | Rt | λmax | [M − H] m/z | Concentration µg/100 mL | |||||
---|---|---|---|---|---|---|---|---|---|
min | nm | MS | MS/MS | 28 °C | 34 °C | ||||
P (I) 5% | P (I) 10% | P (I) 5% | P (I) 10% | ||||||
1. | Cyanidin 3-O-glucoside | 2.52 | 279, 515 | 449+ | 287 | 59.3 b | 97.7 c | 48.1 a | 100.8 c |
2. | Cyanidin 3-O-galactoside | 2.76 | 279, 514 | 449+ | 287 | 35.0 a | 50.2 b | 34.6 a | 57.4 bc |
3. | Neochlorogenic acid | 2.26 | 288 sh, 324 | 353− | 191 | 199.2 a | 384.1 b | 205.1 a | 446.6 c |
4. | Chlorogenic acid | 2.86 | 288 sh, 324 | 353− | 191 | 316.0 a | 618.1 b | 323.4 a | 645.6 b |
5. | Cryptochlorogenic acid | 2,99 | 288 sh, 324 | 353− | 191 | 52.4 b | 86.4 c | 46.5 ab | 80.4 b |
6. | Coumaroylquinic acid | 3.51 | 309 | 337− | 163 | 12.4 a | 19.2 b | 10.5 a | 17.2 b |
7. | Quercetin 3-O-sophoroside | 3.74 | 255, 354 | 625− | 301 | 21.2 a | 37.2 b | 21.9 a | 37.5 b |
8. | Kaempferol 3-O-rhamnoside-pentoside | 3.81 | 264, 355 | 563− | 285 | 9.5 a | 18.5 b | 9.7 a | 18.6 b |
9. | Quercetin 3-O-glucoside-pentoside | 4.13 | 255, 354 | 595− | 301 | 32.6 a | 62.4 b | 34.0 a | 58.3 b |
10. | Quercetin 3-O-rutinoside | 4.36 | 255, 355 | 609− | 301 | 31.8 a | 61.4 c | 34.1 a | 55.9 bc |
11. | Quercetin 3-O-galactoside-rhamnoside | 4.44 | 255, 355 | 609− | 301 | 37.0 a | 67.9 b | 37.9 a | 62.5 b |
12. | Quercetin 3-O-glucoside | 4.57 | 255, 355 | 463− | 301 | 46.6 a | 95.4 c | 47.4 a | 76.8 b |
13. | Quercetin 3-O-galactoside | 4.71 | 255, 355 | 463− | 301 | 40.7 a | 81.7 c | 43.2 a | 69.1 b |
TOTAL | 893.6 a | 1680.2 b | 896.3 a | 1726.8 b |
Compound | Rt | λmax | [M − H] m/z | Concentration µg/100 mL | |||||
---|---|---|---|---|---|---|---|---|---|
min | nm | MS | MS/MS | 28 °C | 34 °C | ||||
P (I) 5% | P (I) 10% | P (I) 5% | P (I) 10% | ||||||
1. | Luteolin di-O-glucuronide | 3.75 | 253, 347 | 637− | 285 | 156.3 b | 341.9 d | 141.1 a | 304.9 c |
2. | Salvionolic acid H | 4.31 | 341 | 537− | 285 | 91.3 a | 220.7 c | 88.8 a | 190.2 b |
3. | Galloyl-gallocatechin dimer | 4.57 | 285 | 761− | 591, 305 | 803.4 b | 1162.9 c | 735.9 a | 1099.0 c |
4. | Quercetin 3-O-glucoside-pentoside | 4.62 | 255, 344 | 595− | 301 | 779.6 b | 1596.7 c | 682.2 a | 1429.9 c |
5. | Luteolin 3-O-glucuronide | 4.74 | 253, 347 | 461− | 285 | 331.0 a | 807.9 c | 296.7 a | 715.6 b |
6. | Salvianolic acid isomer I | 5.03 | 285, 343 | 717− | 519, 339 | 89.7 a | 252.0 c | 90.3 b | 226.8 c |
7. | Isorhamnetin 3-O-rutinoside | 5.21 | 267, 336 | 623− | 315 | 114.1 ab | 230.4 d | 99.5 a | 201.9 c |
8. | Salvianolic acid isomer II | 5.32 | 284, 344 | 717− | 519, 339 | 80.2 a | 211.9 c | 78.4 a | 188.4 b |
9. | Lipedoside A | 5.55 | 251, 345 | 607− | 461, 179 | 94.3 b | 167.8 d | 81.8 a | 148.7 c |
10. | Rosmarinic acid | 5.62 | 329 | 359− | 179 | 1039.4 b | 2037.6 d | 955.7 a | 1805.6 c |
11. | Sagerinic acid | 5.67 | 283 | 719− | 359, 179 | 322.9 b | 617.2 d | 286.8 a | 548.9 c |
TOTAL | 3902.2 b | 7647.1 d | 3537.3 a | 6859.9 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaszuba, J.; Jańczak-Pieniążek, M.; Migut, D.; Kapusta, I.; Buczek, J. Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods 2024, 13, 357. https://doi.org/10.3390/foods13030357
Kaszuba J, Jańczak-Pieniążek M, Migut D, Kapusta I, Buczek J. Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods. 2024; 13(3):357. https://doi.org/10.3390/foods13030357
Chicago/Turabian StyleKaszuba, Joanna, Marta Jańczak-Pieniążek, Dagmara Migut, Ireneusz Kapusta, and Jan Buczek. 2024. "Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials" Foods 13, no. 3: 357. https://doi.org/10.3390/foods13030357
APA StyleKaszuba, J., Jańczak-Pieniążek, M., Migut, D., Kapusta, I., & Buczek, J. (2024). Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods, 13(3), 357. https://doi.org/10.3390/foods13030357