The Influence of Different Sustainable Substrates on the Nutritional Value of Tenebrio molitor Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Larval Rearing Condition, Lyophilization and Coding
2.2. Method for Determination of Protein Content
2.3. Determination of Fat Content
2.4. Determination of Carbohydrate Content
2.5. Determination of Energy Values
2.6. Method for Determination of Sugars
2.7. Determination of Salt Content
2.8. Determination of Total Ash Content in Larvae and Substrate
2.9. Determination of Microelements
2.10. Method for Determining Moisture Content
2.11. Determination of Acidity (pH)
2.12. A Method for Determining Color Coordinates
2.13. Determination of Fiber Content
2.14. The Method of Sensory Profiling
- Overall color acceptability (from unacceptable to acceptable);
- General acceptability of the smell (from unacceptable to acceptable);
- The level of cohesion in the mouth (from low cohesion to high cohesion);
- General taste acceptability (from unacceptable to acceptable);
- Aftertaste in the mouth (from faint to bright);
- Intensity of fat taste (from mild to intense);
- Intensity of salty taste (from mild to intense);
- Intensity of sweet taste (from mild to intense);
- Intensity of bitter taste (from mild to intense).
2.15. Statistic
3. Results and Discussion
3.1. Energy Value, Carbohydrates, Fat, Proteins and Fiber
3.2. Amount of Trace Elements and Ash
3.3. Amount of Dry Materials, Moisture, pH
3.4. Color Coordinates
3.5. Content of Salt
3.6. Content of Sugar
3.7. Sensory Profiling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Panagiotakopulu, E. Archaeology and Entomology in the Eastern Mediterranean: Research into the History of Insect Synanthropy in Greece and Egypt; Archaeopress: Oxford, UK, 2000; ISBN 978-1-84171-129-4. [Google Scholar]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of UV-Treated Powder of Whole Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e08009. [Google Scholar] [CrossRef] [PubMed]
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animals 2021, 11, 2568. [Google Scholar] [CrossRef]
- Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.; Alagawany, M.; Naiel, M.A.E.; Dawood, M.A.O.; Yilmaz, S.; Liu, Q. The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry. Animals 2021, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. J. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Curry, N.; Pillay, P. Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renew. Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Food Waste: We Need to Stop Wasting 30% of Our Food. Available online: https://climatescience.org/ (accessed on 13 December 2023).
- Fehr, M.; Calçado, M.D.R.; Romão, D.C. The basis of a policy for minimizing and recycling food waste. Environ. Sci. Policy 2002, 5, 247–253. [Google Scholar] [CrossRef]
- Oelofse, S.H.; Nahman, A. Estimating the Magnitude of Food Waste Generated in South Africa. Waste Manag. Res. 2013, 31, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former Foodstuff Products in Tenebrio molitor Rearing: Effects on Growth, Chemical Composition, Microbiological Load, and Antioxidant Status. Animals 2019, 9, 484. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth Performance and Feed Conversion Efficiency of Three Edible Mealworm Species (Coleoptera: Tenebrionidae) on Diets Composed of Organic by-Products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the Nutritional Value of Mysore Thorn Borer (Anoplophora chinensis) and Mealworm Larva (Tenebrio molitor): Amino Acid, Fatty Acid, and Element Profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef] [PubMed]
- Goran, G.V.; Tudoreanu, L.; Rotaru, E.; Crivineanu, V. Comparative Study of Mineral Composition of Beef Steak and Pork Chops Depending on the Thermal Preparation Method. Meat Sci. 2016, 118, 117–121. [Google Scholar] [CrossRef]
- Song, Y.-S.; Kim, M.-W.; Moon, C.; Seo, D.-J.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Park, Y.-K.; Kim, S.-A.; Kim, Y.W.; et al. Extraction of Chitin and Chitosan from Larval Exuvium and Whole Body of Edible Mealworm, Tenebrio molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Son, Y.-J.; Hwang, I.-K.; Nho, C.W.; Kim, S.M.; Kim, S.H. Determination of Carbohydrate Composition in Mealworm (Tenebrio molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Koide, S.S. Chitin-Chitosan: Properties, Benefits and Risks. Nutr. Res. 1998, 18, 1091–1101. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Moruzzo, R.; Mancini, S.; Schouteten, J.J.; Liu, A.; Li, J.; Sogari, G. Consumers’ Acceptance toward Whole and Processed Mealworms: A Cross-Country Study in Belgium, China, Italy, Mexico, and the US–PMC. PLoS ONE 2023, 18, e0279530. [Google Scholar] [CrossRef]
- Insect Protein Solutions. Available online: https://www.divaks.com/ (accessed on 23 October 2023).
- Kauno Grūdai. Available online: https://www.kauno-grudai.lt/ (accessed on 23 October 2023).
- Fasma. Available online: https://fasma.lt/en/ (accessed on 23 October 2023).
- Sausų Alaus Mielių Gamyba. Available online: https://ekoproduktas.com/lt/ (accessed on 23 October 2023).
- Prekyba Grūdais, Pašarais Ir Trąšomis. Available online: https://www.eurokorma.lt/ (accessed on 23 October 2023).
- Sanitex Grupė—Sanitex Lithuania. Available online: https://sanitex.eu/ (accessed on 23 October 2023).
- Carl Roth—International. Available online: https://www.carlroth.com/com/en/ (accessed on 23 October 2023).
- Nacionalinis Maisto Ir Veterinarijos Rizikos Vertinimo Institutas. Laboratoriniai Tyrimai, Rizikos Vertinimas. Available online: https://nmvrvi.lt/en/ (accessed on 23 October 2023).
- COMMISSION REGULATION (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. Available online: https://eur-lex.europa.eu/legal-content/LT/TXT/?uri=CELEX:32009R0152 (accessed on 23 October 2023).
- Kauno Technologijos Universitetas. Available online: https://en.ktu.edu/ (accessed on 23 October 2023).
- 14:00-17:00 ISO 1443:1973. Available online: https://www.iso.org/standard/6038.html (accessed on 13 December 2023).
- Analysis of Carbohydrates. Available online: https://people.umass.edu/~mcclemen/581Carbohydrates.html (accessed on 13 December 2023).
- Rolls, B.J. Dietary Energy Density: Applying Behavioural Science to Weight Management. Nutr. Bull. 2017, 42, 246–253. [Google Scholar] [CrossRef]
- Noyens, I.; Schoeters, F.; Van Peer, M.; Berrens, S.; Goossens, S.; Van Miert, S. The Nutritional Profile, Mineral Content and Heavy Metal Uptake of Yellow Mealworm Reared with Supplementation of Agricultural Sidestreams. Sci. Rep. 2023, 13, 11604. [Google Scholar] [CrossRef]
- Lietuvos Agrarinių Ir Miškų Mokslų Centras. Available online: https://www.lammc.lt/en (accessed on 23 October 2023).
- BS EN 15621:2017 Animal Feeding Stuffs: Methods of Sampling and Analysis. Determination of Calcium, Sodium, Phosphorus, Magnesium, Potassium, Sulphur, Iron, Zinc, Copper, Manganese and Cobalt after Pressure Digestion by ICP-AES. Available online: https://www.en-standard.eu/bs-en-15621-2017-animal-feeding-stuffs-methods-of-sampling-and-analysis-determination-of-calcium-sodium-phosphorus-magnesium-potassium-sulphur-iron-zinc-copper-manganese-and-cobalt-after-pressure-digestion-by-icp-aes/ (accessed on 23 October 2023).
- CEN/TS 16188:2012 Sludge, Treated Biowaste and Soil—Determinati. Available online: https://infostore.saiglobal.com/en-au/standards/cen-ts-16188-2012-337728_saig_cen_cen_774768/ (accessed on 13 December 2023).
- 14:00-17:00 ISO 1442:2023. Available online: https://www.iso.org/standard/82664.html (accessed on 13 December 2023).
- 14:00-17:00 ISO 712:2009. Available online: https://www.iso.org/standard/44807.html (accessed on 13 December 2023).
- 14:00-17:00 ISO 2917:1999. Available online: https://www.iso.org/standard/24785.html (accessed on 13 December 2023).
- Total Dietary Fiber, Assay Procedure. Available online: https://d1kkimny8vk5e2.cloudfront.net/documents/Assay_Protocol/K-TDFR-200A_DATA.pdf (accessed on 13 December 2023).
- Mariod, A.A. Nutrient Composition of Mealworm (Tenebrio molitor). In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Springer International Publishing: Cham, Switzerland, 2020; pp. 275–280. ISBN 978-3-030-32952-5. [Google Scholar]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Exploring the Potential of Grease from Yellow Mealworm Beetle (Tenebrio molitor) as a Novel Biodiesel Feedstock. Appl. Energy 2013, 101, 618–621. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc Requirements and the Risks and Benefits of Zinc Supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Rosalind, S.G.; Janet, C.K.; Lowe, N. A Review of Dietary Zinc Recommendations. Food Nutr. Bull. 2016, 37, 443–460. [Google Scholar] [CrossRef]
- Warner, R.D. The Eating Quality of Meat—IV Water-Holding Capacity and Juiciness. In Lawrie’s Meat Science, 8th ed.; Toldrá, F., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2017; pp. 419–459. ISBN 978-0-08-100694-8. [Google Scholar]
- Fenton, T.R.; Huang, T. Systematic Review of the Association between Dietary Acid Load, Alkaline Water and Cancer. BMJ Open 2016, 6, e010438. [Google Scholar] [CrossRef] [PubMed]
- Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Lee, K.-T.; Lee, S.-H.; Song, J.-K. Origin of Human Colour Preference for Food. J. Food Eng. 2013, 119, 508–515. [Google Scholar] [CrossRef]
- Kohno, Y.; Fujimoto, Y.; Shibata, M.; Tomita, Y.; Watanabe, R.; Fukuhara, C. Effect of Stabilizers on the Stability Enhancement of Naturally Occurring Dye Incorporated in Clay Interlayer. J. Phys. Chem. Solids. 2022, 163, 110546. [Google Scholar] [CrossRef]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.; Polak-Juszczak, L.; Jarocki, A.; Jędras, M. Larvae of Mealworm (Tenebrio molitor L.) as European Novel Food. J. Agric. Sci. 2013, 4, 287–291. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)—Optimization of Rearing Conditions to Obtain Desired Nutritional Values. J Insect Sci. 2020, 20, 24. [Google Scholar] [CrossRef]
- Nutritional Value of Pupae Versus Larvae of Tenebrio molitor (Coleoptera: Tenebrionidae) as Food for Rearing Podisus Maculiventris (Heteroptera: Pentatomidae). Available online: https://academic.oup.com/jee/article/109/2/564/2379517 (accessed on 13 December 2023).
- Sensory Evaluation. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/sensory-evaluation (accessed on 13 December 2023).
- Florenca, S.G.; Guine, R.P.F.; Goncalves, F.J.A.; Barroca, M.J.; Ferreira, M.; Costa, C.C.; Correia, P.M.R.; Cardoso, A.P.; Campos, S.; Anjos, O.; et al. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B. Strategies to Convince Consumers to Eat Insects? A Review. Food Qual. Prefer. 2023, 110, 104927. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Kopaei, H.R.; Petrescu, D.C. Consumers’ Acceptance of the First Novel Insect Food Approved in the European Union: Predictors of Yellow Mealworm Chips Consumption. Food Sci. Nutr. 2022, 10, 846–862. [Google Scholar] [CrossRef] [PubMed]
- Kulma, M.; Škvorová, P.; Petříčková, D.; Kouřimská, L. A Descriptive Sensory Evaluation of Edible Insects in Czechia: Do the Species and Size Matter? Int. J. Food Prop. 2023, 26, 218–230. [Google Scholar] [CrossRef]
- Bartkowicz, J.; Babicz-Zielińska, E. Acceptance of Bars with Edible Insects by a Selected Group of Students from Tri-City, Poland. Czech J. Food Sci. 2020, 38, 192–197. [Google Scholar] [CrossRef]
- Wendin, K.; Olsson, V.; Langton, M. Mealworms as Food Ingredient—Sensory Investigation of a Model System. Foods 2019, 8, 319. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Kouřimská, L.; Mlček, J.; Vojáčková, K.; Orsavová, J.; Bučková, M.; Faměra, O.; Búran, M. Sensory Evaluation and Acceptance of Food Made of Edible Insects. Potravin. Slovak J. Food Sci. 2020, 14, 921–928. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2020, 14, e0211747. [Google Scholar] [CrossRef]
Samples | Energy Value, Kcal | Carbohydrates, % | Fat, % | Proteins, % | Insoluble Fiber, % | Soluble Fiber, % | Total Content of Fiber, % |
---|---|---|---|---|---|---|---|
SWYG | 183.27 ± 0.66 d | 59.99 ± 2.88 a | 4.16 ± 0.15 a | 18.23 ± 0.02 d | - | - | - |
SWYP | 179.58 ± 0.46 ab | 59.61 ± 3.14 a | 4.13 ± 0.07 a | 17.80 ± 0.00 a | - | - | - |
SWYC | 168.71 ± 0.07 b | 63.09 ± 0.12 a | 4.43 ± 0.02 b | 16.11 ± 0.00 b | - | - | - |
SBYC | 255.90 ± 0.71 c | 51.21 ± 3.57 b | 7.77 ± 0.16 c | 23.25 ± 0.10 c | - | - | - |
LWYG (control) | 689.27 ± 0.10 d | 10.03 ± 0.51 b | 32.54 ± 0.02 d | 49.55 ± 0.05 d | 5.0 ± −0.20 | 0.5 ± 0.0 | 5.5 ± 0.20 |
LWYP | 701.64 ± 0.33 a | 8.67 ± 0.18 a | 30.78 ± 0.08 a | 53.08 ± 0.01 a | 4.53 ± 0.15 | 0.57 ± 0.05 | 5.1 ± 0.45 |
LWYC | 708.26 ± 0.16 c | 9.57 ± 0.48 ab | 35.55 ± 0.03 b | 48.54 ± 0.00 b | 4.53 ± 0.2 | 0.57 ± 0.05 | 5.10 ± 0.25 |
LBYC | 655.52 ± 0.04 c | 9.34 ± 0.80 ab | 20.23 ± 0.02 c | 59.18 ± 0.00 c | 6.47 ± 0.06 | 1.60 ± 0.29 | 8.07 ± 0.35 |
Units | LWYG | LWYP | LWYC | LBYC | SWYG | SWYP | SWYC | SBYC | |
---|---|---|---|---|---|---|---|---|---|
Nitrogen | % | 8.46 ± 0.01 d | 8.73 ± 0.01 a | 8.30 ± 0.01 b | 10.24 ± 0.01 c | 2.84 ± 0.01 d | 3.02 ± 0.01 a | 2.96 ± 0.01 b | 3.82 ± 0.01 c |
Potassium | % | 0.99 ± 0.01 a | 1.00 ± 0.01 a | 0.91 ± 0.01 b | 1.18 ± 0.01 c | 1.00 ± 0.01 d | 1.16 ± 0.01 a | 1.25 ± 0.01 b | 0.63 ± 0.01 c |
Phosphorus | % | 0.83 ± 0.01 c | 0.72 ± 0.01 a | 0.73 ± 0.01 a | 1.03 ± 0.01 b | 0.83 ± 0.01 d | 0.95 ± 0.01 a | 0.88 ± 0.01 b | 0.73 ± 0.01 c |
Magnesium | % | 0.19 ± 0.01 b | 0.15 ± 0.01 a | 0.18 ± 0.01 b | 0.23 ± 0.01 c | 0.31 ± 0.01 d | 0.29 ± 0.01 a | 0.27 ± 0.01 b | 0.22 ± 0.01 c |
Calcium | % | 0.034 ± 0.001 d | 0.019 ± 0.001 a | 0.031 ± 0.001 b | 0.067 ± 0.001 c | 0.230 ± 0.001 d | 0.082 ± 0.001 a | 0.220 ± 0.001 b | 0.410 ± 0.001 c |
Selenium | mg/kg | 0.002 ± 0.0001 d | 0.009 ± 0.0001 a | 0.002 ± 0.0001 b | 0.010 ± 0.0001 c | 0.005 ± 0.0001 c | 0.008 ± 0.0001 a | 0.001 ± 0.0001 b | 0.001 ± 0.0001 b |
Iron | mg/kg | 59.4 ± 0.2 d | 64.1 ± 0.3 a | 49.1 ± 0.4 b | 47.1 ± 0.5 c | 87.5 ± 0.11 d | 110.0 ± 0.41 a | 84.1 ± 0.61 b | 200.5 ± 0.01 c |
Copper | mg/kg | 15.1 ± 0.04 d | 15.6 ± 0.05 a | 13.5 ± 0.2 b | 13.7 ± 0.04 c | 6.30 ± 0.12 a | 6.15 ± 0.11 a | 6.25 ± 0.14 a | 8.05 ± 0.17 b |
Zinc | mg/kg | 133.5 ± 0.15 a | 133.5 ± 0.13 a | 128.0 ± 0.42 b | 147.5 ± 0.61 c | 57.3 ± 1.8 d | 60.0 ± 1.22 a | 54.3 ± 0.73 b | 82.8 ± 1.53 c |
Mineral content (ash) | % | 3.08 ± 0.13 a | 2.99 ± 0.14 ab | 2.86 ± 0.13 b | 3.81 ± 0.16 c | 5.08 ± 0.13 b | 3.98 ± 0.30 a | 4.08 ± 0.02 a | 5.01 ± 0.14 b |
Material | Nitrogen, % | Magnesium, % | Calcium, % | Iron, mg/kg | Copper, mg/kg | Zinc, mg/kg | Mineral Content (Ash), % |
---|---|---|---|---|---|---|---|
Mealworms | 8.93 ± 0.8 *** | 0.19 ± 0.03 *** | 0.04 ± 0.02 *** | 54.9 ± 7.3 ** | 14.48 ± 0.94 *** | 135.6 ± 7.6 *** | 3.19 ± 0.40 *** |
Substrate | 3.16 ± 0.4 | 0.27 ± 0.04 | 0.24 ± 0.12 | 120.5 ± 49.3 | 6.69 ± 0.83 | 63.6 ± 11.8 | 4.54 ± 0.54 |
Sample | LWYG | LWYP | LWYC | LBYC | SWYG | SWYP | SWYC | SBYC |
---|---|---|---|---|---|---|---|---|
Moisture content, % | 4.80 ± 0.54 a | 4.48 ± 0.17 ab | 3.48 ± 0.50 b | 7.43 ± 0.79 c | 13.55 ± 2.84 | 14.48 ± 3.11 | 12.30 ± 0.12 | 12.77 ± 3.47 |
Dry materials, % | 95.20 ± 0.54 a | 95.52 ± 0.17 ab | 96.52 ± 0.50 b | 92.5 ± 0.79 c | 86.45 ± 2.84 | 85.52 ± 3.11 | 87.70 ± 0.12 | 87.23 ± 3.47 |
pH | 6.38 ± 0.04 ab | 6.52 ± 0.05 a | 6.50 ± 0.04 a | 6.31 ± 0.25 b | 6.38 ± 0.04 d | 6.34 ± 0.02 a | 6.26 ± 0.01 b | 5.15 ± 0.03 c |
LWYG | LWYP | LWYC | LBYC | SWYG | SWYP | SWYC | SBYC | |
---|---|---|---|---|---|---|---|---|
L* | 55.4 ± 0.44 a | 56.0 ± 1.57 a | 56.77 ± 1.10 a | 70.87 ± 0.40 b | 70.27 ± 0.15 ab | 71.73 ± 1.42 a | 69.9 ± 0.79 b | 61.4 ± 0.78 c |
a* | 5.6 ± 0.26 a | 5.53 ± 0.21 a | 4.90 ± 0.46 b | 3.97 ± 0.15 c | 6.17 ± 0.32 c | 5.2 ± 0.20 a | 7.87 ± 0.50 b | 5.23 ± 0.25 a |
b* | 13.43 ± 0.25 a | 14.23 ± 1.62 a | 14.33 ± 1.19 a | 18.1 ± 0.40 b | 16.7 ± 0.40 a | 16.03 ± 0.38 a | 18.13 ± 0.57 b | 14.9 ± 0.35 c |
Material | Fructose | Glucose | Sucrose | Lactose | Arabinose | Maltose |
---|---|---|---|---|---|---|
LWYG | 0.37 ± 0.04 a | 3 ± 0.09 c | <0.20 | <0.20 | <0.20 c | <0.20 |
LWYP | 0.34 ± 0.04 a | 2.16 ± 0.08 a | <0.20 | <0.20 | 4.43 ± 1.41 a | <0.20 |
LWYC | 0.37 ± 0.06 a | 3.9 ± 0.25 b | <0.20 | <0.20 | 5.94 ± 0.38 b | <0.20 |
LBYC | 0.56 ± 0.15 b | 1.95 ± 0.11 a | <0.20 | <0.20 | <0.20 c | <0.20 |
SWYG | 0.49 ± 0.06 a | 0.65 ± 0.08 a | 1.25 ± 0.03 d | <0.20 | <0.20 | 2.69 ± 0.03 d |
SWYP | 0.38 ± 0.03 a | 0.71 ± 0.04 a | 1.78 ± 0.03 a | <0.20 | <0.20 | 2.19 ± 0.07 a |
SWYC | 0.9 ± 0.04 b | 1.17 ± 0.02 b | 3.56 ± 0.15 b | <0.20 | <0.20 | 2.76 ± 0.10 b |
SBYC | 0.79 ± 0.13 b | 0.96 ± 0.17 c | 2.54 ± 0.12 c | <0.20 | <0.20 | 1.31 ± 0.33 c |
Material | Fructose | Glucose | Sucrose | Arabinose | Maltose |
---|---|---|---|---|---|
Larva | 0.41 ± 0.12 ** | 2.75 ± 0.81 *** | 0 ± 0 *** | 2.59 ± 2.83 ** | 0 ± 0 *** |
Substrate | 0.65 ± 0.24 | 0.89 ± 0.23 | 2.38 ± 0.89 | 0 ± 0 | 2.2 ± 0.64 |
Sensory Characteristic | LWYP | LWYC | LBYC | LWYG |
---|---|---|---|---|
General odor acceptability | 7.17 ± 0.74 | 7.14 ± 0.70 | 7.54 ± 2.11 | 7.96 ± 1.63 |
General acceptability of the smell | 6.03 ± 2.08 ab | 6.49 ± 2.28 ab | 4.34 ± 2.53 a | 7.3 ± 1.98 b |
The level of cohesion in the mouth | 4.53 ± 2.48 | 4.01 ± 2.21 | 5.16 ± 2.49 | 4.64 ± 2.23 |
Overall taste acceptability | 2.87 ± 1.91 a | 4.76 ± 2.90 ab | 4.50 ± 2.14 ab | 6.34 ± 1.96 b |
Aftertaste in the mouth | 8.45 ± 1 | 8.5 ± 1.43 | 7.36 ± 0.83 | 6.9 ± 2.39 |
Fat flavor intensity | 1.14 ± 0.95 a | 2.1 ± 1.49 a | 2.6 ± 1.81 a | 4.63 ± 2.57 b |
The intensity of the salty taste | 4.30 ± 2.87 | 5.53 ± 3.22 | 5.29 ± 2.45 | 5.10 ± 1.51 |
The intensity of the sweet taste | 0.41 ± 0.41 a | 1.01 ± 1 a | 2.41 ± 1.33 b | 3.29 ± 1.67 b |
Bitter taste intensity | 5.92 ± 1.72 | 5.21 ± 1.83 | 5.19 ± 2.86 | 7.04 ± 1.41 |
Overall product acceptability | 3.09 ± 1.62 a | 4.64 ± 2.41 ab | 3.84 ± 1.36 a | 5.99 ± 2.37 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankauskienė, A.; Aleknavičius, D.; Kiseliovienė, S.; Antanaitis, Š.; Falkauskas, R.; Šumskienė, M.; Juknienė, I.; Kabašinskienė, A. The Influence of Different Sustainable Substrates on the Nutritional Value of Tenebrio molitor Larvae. Foods 2024, 13, 365. https://doi.org/10.3390/foods13030365
Jankauskienė A, Aleknavičius D, Kiseliovienė S, Antanaitis Š, Falkauskas R, Šumskienė M, Juknienė I, Kabašinskienė A. The Influence of Different Sustainable Substrates on the Nutritional Value of Tenebrio molitor Larvae. Foods. 2024; 13(3):365. https://doi.org/10.3390/foods13030365
Chicago/Turabian StyleJankauskienė, Agnė, Dominykas Aleknavičius, Sandra Kiseliovienė, Šarūnas Antanaitis, Rimvydas Falkauskas, Marijona Šumskienė, Ignė Juknienė, and Aistė Kabašinskienė. 2024. "The Influence of Different Sustainable Substrates on the Nutritional Value of Tenebrio molitor Larvae" Foods 13, no. 3: 365. https://doi.org/10.3390/foods13030365
APA StyleJankauskienė, A., Aleknavičius, D., Kiseliovienė, S., Antanaitis, Š., Falkauskas, R., Šumskienė, M., Juknienė, I., & Kabašinskienė, A. (2024). The Influence of Different Sustainable Substrates on the Nutritional Value of Tenebrio molitor Larvae. Foods, 13(3), 365. https://doi.org/10.3390/foods13030365