Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant Lactococcus lactis and Enzyme Production
2.2. Enzyme Activity Assay
2.3. Production and Optimization of 4,6-α-GTase and 4,3-α-GTase under Bioreactor Conditions
2.4. Purification of 4,6-α-GTase and 4,3-α-GTase
2.5. Lyophilization of 4,6- and 4,3-α-Glucanotransferase Enzymes
2.6. SEM Images of the Effect of 4,6-α-GTase and 4,3-α-GTase on Starch
2.7. Utilization of 4,6-α-GTase and 4,3-α-GTase in Bakery Products and Determination of Their Effects on Quality Characteristics
2.8. Bread Production Using GtfB Enzymes
2.9. Bun Preparation Using GtfB Enzymes
2.10. Textural Properties of Bakery Products
2.11. Determination of Estimated-Glycemic Index (eGI) Values
2.12. DSC Analysis of Bakery Products
2.13. Sensory Analysis
2.14. Statistical Analysis
2.14.1. Experimental Design and Optimization
2.14.2. Statistical Analysis of Data
3. Results and Discussion
3.1. Structural Characterization of Products Formed by the Catalytic Action of 4,6-α-GTase and 4,3-α-GTase Enzymes
3.2. Extracellular Production and Optimization of GtfB Enzymes in Bioreactor
3.2.1. The Results of BBD Experiments of 4,6-α-GTase and 4,3-α-Gtase
3.2.2. Response Surface Analysis of Interaction of Various Factors on GtfB Production
3.3. SEM Images of the Effect of 4,6-α-GTase and 4,3-α-GTase on Starch
3.4. Calorimetric DSC Properties of Bread and Bun Samples
3.5. Texture Characteristics of Bread and Bun Samples
3.6. eGI and SDS Properties of Bread and Bun Samples
3.7. Sensory Properties of Bread and Bun Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kralj, S.; Grijpstra, P.; van Leeuwen, S.S.; Leemhuis, H.; Dobruchowska, J.M.; van der Kaaij, R.M.; Malik, A.; Oetari, A.; Kamerling, J.P.; Dijkhuizen, L. 4,6-α-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70. Appl. Environ. Microbiol. 2011, 77, 8154–8163. [Google Scholar] [CrossRef]
- Gangoiti, J.; Lamothe, L.; Van Leeuwen, S.S.; Vafiadi, C.; Dijkhuizen, L. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and Its Glucan Polymer Products Representing a New Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes. PLoS ONE 2017, 12, e0172622. [Google Scholar] [CrossRef]
- Gangoiti, J.; Pijning, T.; Dijkhuizen, L. Biotechnological Potential of Novel Glycoside Hydrolase Family 70 Enzymes Synthesizing α-Glucans from Starch and Sucrose. Biotechnol. Adv. 2018, 36, 196–207. [Google Scholar] [CrossRef]
- Gangoiti, J.; Van Leeuwen, S.S.; Vafiadi, C.; Dijkhuizen, L. The Gram-Negative Bacterium Azotobacter chroococcum NCIMB 8003 Employs a New Glycoside Hydrolase Family 70 4,6-α-Glucanotransferase Enzyme (GtfD) to Synthesize a Reuteran like Polymer from Maltodextrins and Starch. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 1224–1236. [Google Scholar] [CrossRef]
- Gangoiti, J.; Pijning, T.; Dijkhuizen, L. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes. Appl. Environ. Microbiol. 2016, 82, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gangoiti, J.; Dijkstra, B.W.; Dijkhuizen, L.; Pijning, T. Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure 2017, 25, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Gangoiti, J.; Van Leeuwen, S.S.; Gerwig, G.J.; Duboux, S.; Vafiadi, C.; Pijning, T.; Dijkhuizen, L. 4,3-α-Glucanotransferase, a Novel Reaction Specificity in Glycoside Hydrolase Family 70 and Clan GH-H. Sci. Rep. 2017, 7, 39761. [Google Scholar] [CrossRef] [PubMed]
- Te Poele, E.M.; Van Der Hoek, S.E.; Chatziioannou, A.C.; Gerwig, G.J.; Duisterwinkel, W.J.; Oudhuis, L.A.A.C.M.; Gangoiti, J.; Dijkhuizen, L.; Leemhuis, H. GtfC Enzyme of Geobacillus sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (A1→6)/(A1→4) α-Glucan and Delays Bread Staling. J. Agric. Food Chem. 2021, 69, 9859–9868. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, T.; Imanaka, T. The Concept of the α-Amylase Family: Structural Similarity and Common Catalytic Mechanism. J. Biosci. Bioeng. 1999, 87, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, B.I.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes Database (CAZy): An Expert Resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Stam, M.R.; Danchin, E.G.J.; Rancurel, C.; Coutinho, P.M.; Henrissat, B. Dividing the Large Glycoside Hydrolase Family 13 into Subfamilies: Towards Improved Functional Annotations of α-Amylase-Related Proteins. Protein Eng. Des. Sel. 2006, 19, 555–562. [Google Scholar] [CrossRef]
- Murakami, S.; Nakashima, R.; Yamashita, E.; Matsumoto, T.; Yamaguchi, A. Crystal Structures of a Multidrug Transporter Reveal a Functionally Rotating Mechanism. Nature 2006, 443, 173–179. [Google Scholar] [CrossRef]
- Pijning, T.; Gangoiti, J.; Te Poele, E.M.; Börner, T.; Dijkhuizen, L. Insights into Broad-Specificity Starch Modification from the Crystal Structure of Limosilactobacillus Reuteri NCC 2613 4,6-α-Glucanotransferase GtfB. J. Agric. Food Chem. 2021, 69, 13235–13245. [Google Scholar] [CrossRef] [PubMed]
- Leemhuis, H.; Dobruchowska, J.M.; Ebbelaar, M.; Faber, F.; Buwalda, P.L.; Van Der Maarel, M.J.E.C.; Kamerling, J.P.; Dijkhuizen, L. Isomalto/Malto-Polysaccharide, a Novel Soluble Dietary Fiber Made via Enzymatic Conversion of Starch. J. Agric. Food Chem. 2014, 62, 12034–12044. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Norziah, M.H.; Seow, C.C. Methods for the Study of Starch Retrogradation. Food Chem. 2000, 71, 9–36. [Google Scholar] [CrossRef]
- Gudmundsson, M. Retrogradation of Starch and the Role of Its Components. Thermochim. Acta 1994, 246, 329–341. [Google Scholar] [CrossRef]
- Li, X.; Fei, T.; Wang, Y.; Zhao, Y.; Pan, Y.; Li, D. Wheat Starch with Low Retrogradation Properties Produced by Modification of the GtfB Enzyme 4,6-α-Glucanotransferase from Streptococcus thermophilus. J. Agric. Food Chem. 2018, 66, 3891–3898. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, B.; Jin, Z.; BeMiller, J.N. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1238–1260. [Google Scholar] [CrossRef]
- van der Maarel, M.J.E.C.; Leemhuis, H. Starch Modification with Microbial Alpha-Glucanotransferase Enzymes. Carbohydr. Polym. 2013, 93, 116–121. [Google Scholar] [CrossRef]
- Bıyıklı, A.; Niçin, R.; Dertli, E.; Şimşek, Ö. Extracellular Recombinant Production of 4,6 and 4,3 α-Glucanotransferases in Lactococcus lactis. Enzym. Microb. Technol. 2023, 164, 110175. [Google Scholar] [CrossRef]
- Bai, Y.; van der Kaaij, R.M.; Leemhuis, H.; Pijning, T.; van Leeuwen, S.S.; Jin, Z.; Dijkhuizen, L. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Appl. Environ. Microbiol. 2015, 81, 7223–7232. [Google Scholar] [CrossRef]
- Certel, M.; Erem, F.; Erem, F.; Konak, Ü.İ.; Karakaş, B. Dondurulmuş Hamur ile Kısmi Olarak Pişirilip Dondurulmuş Hamurlardan Üretilen Beyaz Ekmeklerin Fiziksel Tekstürel ve Duyusal Özellikleri. Akdeniz Univ. J. Fac. Agric. 2009, 22, 91–102. [Google Scholar]
- AACC. Approved Methods of the American Association of Cereal Chemists, Method 74-09, 10th ed.; AACC: Saint Paul, MN, USA, 2000. [Google Scholar]
- Serin, S.; Sayar, S. The Effect of the Replacement of Fat with Carbohydrate-Based Fat Replacers on the Dough Properties and Quality of the Baked Pogaca: A Traditional High-Fat Bakery Product. Food Sci. Technol. 2016, 37, 25–32. [Google Scholar] [CrossRef]
- Englyst, H.N.; Hudson, G.J. The Classification and Measurement of Dietary Carbohydrates. Food Chem. 1996, 57, 15–21. [Google Scholar] [CrossRef]
- Yaman, M.; Sargın, H.S.; Mızrak, Ö.F. Free Sugar Content, in Vitro Starch Digestibility and Predicted Glycemic Index of Ready-to-Eat Breakfast Cereals Commonly Consumed in Turkey: An Evaluation of Nutritional Quality. Int. J. Biol. Macromol. 2019, 135, 1082–1087. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification Methods in Microplastic Analysis: A Review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Niçin, R.T.; Özdemir, N.; Şimşek, Ö.; Çon, A.H. Production of Volatiles Relation to Bread Aroma in Flour-Based Fermentation with Yeast. Food Chem. 2022, 378, 132125. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, B.; Wang, F.; Ji, Y.; Gu, P.; Fan, X.; Li, Q. Response Surface Optimization of Poly-β-Hydroxybutyrate Synthesized by Bacillus Cereus L17 Using Acetic Acid as Carbon Source. Int. J. Biol. Macromol. 2023, 247, 125628. [Google Scholar] [CrossRef] [PubMed]
- Mutanda, I.; Zahoor; Sethupathy, S.; Xu, Q.; Zhu, B.; Shah, S.W.A.; Zhuang, Z.; Zhu, D. Optimization of Heterologous Production of Bacillus Ligniniphilus L1 Laccase in Escherichia Coli through Statistical Design of Experiments. Microbiol. Res. 2023, 274, 127416. [Google Scholar] [CrossRef]
- Pontes, D.S.; de Azevedo, M.S.P.; Chatel, J.-M.; Langella, P.; Azevedo, V.; Miyoshi, A. Lactococcus lactis as a Live Vector: Heterologous Protein Production and DNA Delivery Systems. Protein Expr. Purif. 2011, 79, 165–175. [Google Scholar] [CrossRef]
- Te Poele, E.M.; Corwin, S.G.; Hamaker, B.R.; Lamothe, L.M.; Vafiadi, C.; Dijkhuizen, L. Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes. J. Agric. Food Chem. 2020, 68, 6664–6671. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, J.; Liu, X.; Wang, Y.; Li, K.; Chang, J.; Yang, G.; He, G. Effect of the Phytate and Hydrogen Peroxide Chemical Modifications on the Physicochemical and Functional Properties of Wheat Starch. Food Res. Int. 2017, 100, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, Q.; Cui, S.W. Studies on the Granular Structure of Resistant Starches (Type 4) from Normal, High Amylose and Waxy Corn Starch Citrates. Food Res. Int. 2006, 39, 332–341. [Google Scholar] [CrossRef]
- Guo, L.; Deng, Y.; Lu, L.; Zou, F.; Cui, B. Synergistic Effects of Branching Enzyme and Transglucosidase on the Modification of Potato Starch Granules. Int. J. Biol. Macromol. 2019, 130, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Bello-Perez, L.A.; Flores-Silva, P.C. Interaction between Starch and Dietary Compounds: New Findings and Perspectives to Produce Functional Foods. Food Res. Int. 2023, 172, 113182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hamaker, B.R. Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly Digestible Starch—Its Structure and Health Implications: A Review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Li, D.; Fu, X.; Mu, S.; Fei, T.; Zhao, Y.; Fu, J.; Lee, B.H.; Ma, Y.; Zhao, J.; Hou, J.; et al. Potato Starch Modified by Streptococcus thermophilus GtfB Enzyme Has Low Viscoelastic and Slowly Digestible Properties. Int. J. Biol. Macromol. 2021, 183, 1248–1256. [Google Scholar] [CrossRef]
Variables and Ranges | ||||
---|---|---|---|---|
Factors | Independent Variables | −1 | 0 | +1 |
Initial substrate concentration (g dm−3) % | 1% | 3% | 5% | |
Air-flow rate (vvm) % | 10 | 30 | 50 | |
pH | 5 | 5.5 | 6 |
Run | Factors | 4,6-α-GTFB | 4,3-α-GTFB | ||||
---|---|---|---|---|---|---|---|
(Glu) | (O2) | (pH) | Predicted 4,6-α-GTase Production (U/mL) | 4,6-α-GTase Production (U/mL) | Predicted 4,3-α-GTase Production (U/mL) | 4,3-α-GTase Production (U/mL) | |
1 | −1 | 0 | +1 | 15.18 | 15.63 ± 1.65 | 18.8 | 19.01 ± 1.75 |
2 | −1 | 0 | −1 | 6.5 | 6.46 ± 0.43 | 9.03 | 9.83 ± 0.71 |
3 | +1 | −1 | 0 | 10.67 | 11.03 ± 1.61 | 11.85 | 12.47 ± 0.91 |
4 | 0 | +1 | −1 | 6.09 | 6.49 ± 0.54 | 8.92 | 8.74 ± 0.65 |
5 | 0 | 0 | 0 | 8.52 | 8.35 ± 0.11 | 12.26 | 10.86 ± 0.37 |
6 | 0 | −1 | −1 | 8.43 | 8.53 ± 0.73 | 10.06 | 9.65 ± 0.99 |
7 | 0 | 0 | 0 | 8.52 | 8.46 ± 0.82 | 12.26 | 12.03 ± 0.74 |
8 | 0 | +1 | +1 | 13.15 | 13.06 ± 1.25 | 16.47 | 16.89 ± 2.06 |
9 | −1 | +1 | 0 | 12.44 | 12.09 ± 1.21 | 12.06 | 11.45 ± 1.14 |
10 | 0 | 0 | 0 | 8.52 | 8.76 ± 0.93 | 12.26 | 13.89 ± 1.84 |
11 | +1 | 0 | −1 | 7.29 | 6.85 ± 0.35 | 11.32 | 11.12 ± 0.42 |
12 | −1 | −1 | 0 | 12.85 | 12.81 ± 1.66 | 11.70 | 11.32 ± 0.5 |
13 | +1 | +1 | 0 | 9.68 | 9.73 ± 0.91 | 10.64 | 11.03 ± 0.23 |
14 | 0 | −1 | +1 | 12.22 | 11.83 ± 0.65 | 16.18 | 16.37 ± 1.33 |
15 | +1 | 0 | +1 | 9.45 | 9.5 ± 0.98 | 15.23 | 14.43 ± 0.21 |
Source of Variance | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 100.54 | 9 | 11.17 | 52.28 | 0.0002 | significant |
12.20 | 1 | 12.20 | 57.10 | 0.0006 | ||
1.00 | 1 | 1.00 | 4.69 | 0.0827 | ||
58.81 | 1 | 58.81 | 275.21 | <0.0001 | ||
0.0841 | 1 | 0.0841 | 0.3936 | 0.5580 | ||
10.63 | 1 | 10.63 | 49.74 | 0.0009 | ||
2.67 | 1 | 2.67 | 12.51 | 0.0166 | ||
5.88 | 1 | 5.88 | 27.52 | 0.0033 | ||
9.81 | 1 | 9.81 | 45.89 | 0.0011 | ||
0.1136 | 1 | 0.1136 | 0.5317 | 0.4986 | ||
Residual error | 1.07 | 5 | 0.2137 | |||
Lack of fit | 0.9783 | 3 | 0.3261 | 7.24 | 0.1237 | not significant |
Pure error | 0.0901 | 2 | 0.0450 | |||
Total deviation | 101.61 | 14 |
Source of Variance | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 113.47 | 9 | 12.61 | 8.40 | 0.0152 | significant |
0.8192 | 1 | 0.8192 | 0.5459 | 0.4932 | ||
0.3612 | 1 | 0.3612 | 0.2407 | 0.6445 | ||
93.57 | 1 | 93.57 | 62.35 | 0.0005 | ||
0.6162 | 1 | 0.6162 | 0.4106 | 0.5499 | ||
8.61 | 1 | 8.61 | 5.74 | 0.0619 | ||
0.5112 | 1 | 0.5112 | 0.3406 | 0.5848 | ||
0.0001 | 1 | 0.0001 | 0.0000 | 0.9955 | ||
1.75 | 1 | 1.75 | 1.17 | 0.3293 | ||
6.64 | 1 | 6.64 | 4.43 | 0.0893 | ||
Residual error | 7.50 | 5 | 1.50 | |||
Lack of fit | 2.83 | 3 | 0.9446 | 0.4046 | 0.7679 | not significant |
Pure error | 4.67 | 2 | 2.33 | |||
Total deviation | 120.98 | 14 |
Days | Control Bread | 4,6 GtfB-Bread | 4,3 GtfB-Bread | Control-Bun | 4,6 GtfB-Bun | 4,3 GtfB-Bun |
---|---|---|---|---|---|---|
Hardness (N) | ||||||
0 | 3.71 ± 0.30 c, A | 3.66 ± 0.38 c, A | 3.36 ± 0.32 c, A | 3.71 ± 0.30 c, A | 2.45 ± 0.62 c, B | 1.91 ± 0.48 c, B |
3 | 8.44 ± 0.22 b, A | 6.70 ± 0.70 b, B | 7.18 ± 0.58 b, A | 8.44 ± 0.22 b, A | 7.45 ± 0.75 b, A | 6.55 ± 1.84 b, B |
7 | 20.24 ± 5.39 a, A | 14.09 ± 1.98 a, B | 12.02 ± 1.75 a, B | 20.24 ± 5.39 a, A | 16.19 ± 5.11 a, B | 11.53 ± 2.84 a, B |
Stickiness (c) | ||||||
0 | 0.74 ± 0.04 a, A | 0.78 ± 0.02 a, A | 0.81 ± 0.01 a, A | 0.74 ± 0.03 a, B | 0.82 ± 0.01 a, A | 0.82 ± 0.03 a, A |
3 | 0.48 ± 0.03 b, A | 0.48 ± 0.02 b, A | 0.50 ± 0.06 b, A | 0.57 ± 0.04 b, B | 0.55 ± 0.02 b, B | 0.61 ± 0.06 b, A |
7 | 0.39 ± 0.04 c, B | 0.47 ± 0.04 b, A | 0.44 ± 0.03 b, A | 0.39 ± 0.05 c, B | 0.41 ± 0.04 c, A | 0.43 ± 0.06 c, A |
Elasticity (mm) | ||||||
0 | 8.22 ± 0.18 a, A | 7.92 ± 0.19 a, B | 8.16 ± 0.21 a, A | 8.22 ± 0.18 a, A | 8.30 ± 0.12 a, A | 8.32 ± 0.15 a, A |
3 | 7.63 ± 0.30 b, B | 7.88 ± 0.20 a, B | 8.23 ± 0.11 a, A | 7.63 ± 0.30 b, B | 8.17 ± 0.16 a, A | 8.04 ± 0.18 a, A |
7 | 7.25 ± 0.45 b, B | 7.80 ± 0.29 a, A | 8.06 ± 0.17 a, A | 7.24 ± 0.45 b, B | 7.65 ± 0.19 b, B | 8.01 ± 0.15 a, A |
Chewability (Mj) | ||||||
0 | 22.58 ± 1.41 c, A | 22.08 ± 1.33 c, A | 15.59 ± 2.25 c, B | 22.58 ± 1.40 c, A | 14.59 ± 2.28 b, B | 13.14 ± 3.79 c, B |
3 | 36.64 ± 2.57 b, A | 30.73 ± 2.30 b, B | 34.20 ± 3.20 b, A | 36.64 ± 2.57 b, A | 33.58 ± 1.66 a, A | 31.49 ± 6.57 b, A |
7 | 55.07 ± 9.35 a, A | 51.45 ± 5.77 a, A | 40.80 ± 8.01 a, B | 55.07 ± 9.34 a, A | 36.44 ± 10.93 a,B | 55.95 ± 19.97 a, A |
RS (g/100 g) | RDS (g/100 g) | SDS (g/100 g) | HI | eGI | |
---|---|---|---|---|---|
Control Bread | 3.45 ± 0.75 c | 32.25 ± 0.81 a | 22.95 ± 1.10 b | 93.08 ± 5.50 a | 90.81 ± 7.99 a |
4,6 GtfB-Bread | 9.87 ± 0.52 b | 12.49 ± 0.58 b | 34.31 ± 0.06 a | 63.27 ± 7.48 b | 74.45 ± 4.18 b |
4,3 GtfB-Bread | 11.41 ± 0,75 a | 16.56 ± 0.62 c | 31.67 ± 0.94 a | 70.08 ± 6.84 b | 78.18 ± 5.09 b |
Control Bun | 3.76 ± 0.75 b | 26.14 ± 2.82 a | 15.88 ± 1.37 b | 127.85 ± 10.64 a | 109.89 ± 12.25 a |
4,6 GtfB Bun | 5.17 ± 0.86 a | 19.97 ± 2.44 b | 17.81 ± 1.18 a | 91.45 ± 11.99 b | 89.67 ± 2.76 b |
4,3 GtfB Bun | 6.12 ± 1.22 a | 14.53 ± 1.90 c | 18.94 ± 1.54 a | 87.49 ± 12.06 b | 87.74 ± 3.79 b |
Color | Pore Structure | Internal Texture | Chewiness | Softness | Wetness-Dryness | Swallowability | Fermented Odor | Acid Odor | General Evaluation | ||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.5916 | 0.7570 | 0.5087 | 0.5495 | 0.6320 | 0.7067 | 0.6243 | 0.8611 | 0.4984 | 0.4295 | |
F | 4.6571 | 10.0166 | 3.3286 | 3.9214 | 5.5215 | 7.7483 | 5.3423 | 19.9285 | 3.1943 | 2.4206 | |
Pr > F | <0.0001 | <0.0001 | 0.001 | 0.000 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.002 | 0.013 | |
Product | F | 4.7956 | 1.4651 | 0.6047 | 2.7 | 8.1534 | 8.8807 | 0.3103 | 0 | 3.8571 | 0.4444 |
Pr > F | 0.001 | 0.220 | 0.697 | 0.032 | <0.0001 | <0.0001 | 0.904 | 1.000 | 0.005 | 0.815 | |
Assessor | F | 4.5802 | 14.7674 | 4.8418 | 4.6 | 4.05940 | 7.1192 | 8.1379 | 31 | 2.8260 | 3.5185 |
Pr > F | 0.000 | <0.0001 | 0.000 | 0.000 | 0.001 | <0.0001 | <0.0001 | <0.0001 | 0.010 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niçin, R.T.; Zehir-Şentürk, D.; Özkan, B.; Göksungur, Y.; Şimşek, Ö. Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products. Foods 2024, 13, 432. https://doi.org/10.3390/foods13030432
Niçin RT, Zehir-Şentürk D, Özkan B, Göksungur Y, Şimşek Ö. Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products. Foods. 2024; 13(3):432. https://doi.org/10.3390/foods13030432
Chicago/Turabian StyleNiçin, Ramazan Tolga, Duygu Zehir-Şentürk, Busenur Özkan, Yekta Göksungur, and Ömer Şimşek. 2024. "Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products" Foods 13, no. 3: 432. https://doi.org/10.3390/foods13030432
APA StyleNiçin, R. T., Zehir-Şentürk, D., Özkan, B., Göksungur, Y., & Şimşek, Ö. (2024). Optimization of 4,6-α and 4,3-α-Glucanotransferase Production in Lactococcus lactis and Determination of Their Effects on Some Quality Characteristics of Bakery Products. Foods, 13(3), 432. https://doi.org/10.3390/foods13030432