Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops (Brassica rapa) Growing under Mediterranean Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Material and Reagents
2.2. Samples
2.3. Bioaccessibility Assay
2.4. Trace Element Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Pectin
3.2. Gum Arabic
3.3. Cellulose
3.4. Casein
3.5. Lactalbumin
3.6. Soy Protein
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there arelationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- World Health Organization. Cancer: Carcinogenicity of the Consumption of Red Meat and Processed Meat. [WWW Document]. URL. 2015. Available online: https://www.who.int/news-room/questions-and-answers/item/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat (accessed on 18 December 2023).
- Rizzo, G.; Testa, R.; Cubero Dudinskaya, E.C.; Mandolesi, S.; Solfanelli, F.; Zanoli, R.; Schifani, G.; Migliore, G. Understanding the consumption of plant—Based meat alternatives and the role of health—Related aspects. A study of the Italian market. Int. J. Gastron. Food Sci. 2023, 32, 100690. [Google Scholar] [CrossRef]
- Iaquinta, F.; Rodríguez, N.; Machado, I. In vitro bioaccessibility of copper, iron, and zinc from common meat substitutes, influence of exogenously added garlic/onion and contribution to the diet. J. Food Compos. Anal. 2023, 115, 104910. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Cartea, M.E.; Velasco, P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 2008, 7, 213–229. [Google Scholar] [CrossRef]
- Melchini, A.; Costa, C.; Traka, M.; Miceli, N.; Mithen, R.; De Pasquale, R.; Trovato, A. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food Chem. Toxicol. 2009, 47, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.; Mithen, R. Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 2009, 8, 269–282. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Obregón-Cano, S.; Mesa-Plata, O.; Cartea-González, E.; de Haro-Bailón, A. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Food Chem. 2021, 339, 127860. [Google Scholar] [CrossRef] [PubMed]
- Kamchan, A.; Puwastien, P.; Sirichakwal, P.P.; Kongkachuichai, R. In vitro calcium bioavailability of vegetables, legumes and seeds. J. Food Compos. Anal. 2004, 17, 311–320. [Google Scholar] [CrossRef]
- Mataix-Verdú, J.; Llopis-González, J. Minerales. Nutrición y Alimentación Humana, 2nd ed.; Ergón: Madrid, Spain, 2015; pp. 265–301. [Google Scholar]
- Gómez-Campo, C.; Prakash, S. 2 Origin and domestication. In Developments in Plant Genetics and Breeding; Elsevier BV: London, UK, 1999; pp. 33–58. [Google Scholar]
- Prakash, S.; Wu, X.-M.; Bhat, S.R. History, Evolution, and Domestication of Brassica Crops. Plant Breed. Rev. 2011, 35, 19–84. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Obregón-Cano, S.; de Haro-Bailón, A. Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods 2022, 11, 350. [Google Scholar] [CrossRef]
- Cartea-González, M.E.; Cámara-Martos, F.; Obregón, S.; Badenes-Pérez, F.R.; De Haro-Bailón, A. Advances in Breeding in Vegetable Brassica rapa Crops. In Brassica Breeding and Biotechnology; Aminul, I.A.K.M., Mohammad, A.H., Mominul, I.A.K.M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Obregón-Cano, S.; Cartea, M.; Moreno, R.; De Haro-Bailón, A. Variation in Glucosinolate and Mineral Content in Galician Germplasm of Brassica rapa L. Cultivated under Mediterranean Conditions; Acta Horticulturae: Leuven, Belgium, 2018; pp. 157–164. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends Analyt. Chem. 2006, 25, 876–886. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva-Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2012, 75, 588–602. [Google Scholar] [CrossRef]
- Grenha, A.; Guerreiro, F.; Lourenço, J.P.; Lopes, J.A.; Cámara-Martos, F. Microencapsulation of selenium. Food Chem. 2023, 402, 134463. [Google Scholar] [CrossRef]
- Minnekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardized static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Egger, L.; Ménard, O.; Delgado, C.; Alvito, P.; Assuncão, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Assunção, R.; Balance, S.; et al. The harmonized INFOGEST in vitro digestion method: From Knowledge to action. Food Res. Int. 2016, 88, 217–225. [Google Scholar] [CrossRef]
- Rebellato, A.P.; Siqueira Silva, J.G.; Probio de Moraes, P.; Trajano, B.; Lima Pallone, J.A. Static in vitro digestión methods for assessing essential minerals in processed meat products. Food Res. Int. 2022, 155, 111121. [Google Scholar] [CrossRef]
- Marval-León, J.R.; Cámara-Martos, F.; Amaro-López, M.A.; Moreno-Rojas, R. Bioaccessibility and content of Se in fish and shellfish widely consumed in Mediterranean countries: Influence of proteins, fat and heavy metals. Int. J. Food Sci. Nutr. 2014, 65, 678–685. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domíguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada–Rodríguez, D.; Bermejo–Barrera, P. In vitro bioavailability of total selenium and selenium species from seafood. Food Chem. 2013, 139, 872–877. [Google Scholar] [CrossRef]
- Ramírez-Ojeda, A.; Moreno-Rojas, R.; Sevillano-Morales, J.; Cámara-Martos, F. Influence of dietary components on minerals and trace elements bioaccessible fraction in organic weaning food: A probabilistic assessment. Eur. Food Res. Technol. 2017, 243, 639–650. [Google Scholar] [CrossRef]
- Cámara, F.; Amaro, M.A.; Barberá, R.; Clemente, G. Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chem. 2005, 92, 481–489. [Google Scholar] [CrossRef]
- Martínez-Castro, J.; de Haro-Bailón, A.; Obregón-Cano, S.; García-Magdaleno, I.M.; Moreno-Ortega, A.; Cámara-Martos, F. Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model. Food Res. Int. 2023, 166, 112598. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Sevillano-Morales, J.; Rubio-Pedraza, L.; Bonilla-Herrera, J.; de Haro-Bailón, A. Comparative Effects of Organic and Conventional Cropping Systemson Trace Elements Contents in Vegetable Brassicaceae: Risk Assessment. Appl. Sci. 2021, 11, 707. [Google Scholar] [CrossRef]
- BeMiller, J.N. Pectins. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J.N., Ed.; Woodhead Publishing and AACC International Press, Sawston: Cambridge, England, 2018; pp. 303–312. [Google Scholar]
- De Cindio, B.; Gabriele, D.; Lupi, F.R. Pectin: Properties determination and uses. In Enclyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier—Academic Press: Kidlington, UK, 2016; Volume 4, pp. 294–300. [Google Scholar]
- Bosscher, D.; Van Caillie-Bertrand, M.; Van Cauwenbergh, R.; Deelstra, H. Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibres and modified starch fractions. Nutrition 2003, 19, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Kyomugasho, C.; Willemsen, K.L.D.; Christiaens, S.; Van Loey, A.M.; Hendrickx, M.E. Pectin-interactions and in vitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocoll. 2015, 49, 164–175. [Google Scholar] [CrossRef]
- Assifaoui, A.; Lerbret, A.; Uyen, H.T.D.; Neiers, F.; Chambin, O.; Loupiac, C.; Cousin, F. Structural behaviour differences in low methoxy pectin solutions in thepresence of divalent cations (Ca2+ and Zn2+): A process driven by the binding mechanism of the cation with the galacturonate unit. Soft Matter 2015, 11, 551–560. [Google Scholar] [CrossRef]
- Peixoto, R.A.; Devesa, V.; Vélez, D.; Cervera, M.L.; Cadore, S. Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder. J. Food Compos. Anal. 2016, 48, 41–47. [Google Scholar] [CrossRef]
- Miyada, T.; Nakajima, A.; Ebihara, K. Iron bound to pection is utilised by rats. Br. J. Nutr. 2011, 106, 73–78. [Google Scholar] [CrossRef]
- Rousseau, S.; Celus, M.; Duijsens, D.; Gwala, S.; Hendrickx, M.; Grauwet, T. The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans. Food Funct. 2020, 11, 7584–7595. [Google Scholar] [CrossRef]
- Rousseau, S.; Pallares, A.; Vancoillie, F.; Hendrickx, M. Pectin and phytic acid reduce mineral bioaccessibility in cooked common bean cotyledons regardless of cell wall integrity. Food Res. Int. 2020, 137, 109685. [Google Scholar] [CrossRef]
- Kyomugasho, C.; Gwala, S.; Christiaens, S.; Kermani, Z.J.; Van Loey, A.M.; Grauwet, T.; Hendrickx, M.E. Pectin nanostructure influences pectin-cation interactions and in vitro-bioaccessibility of Ca2+, Zn2+, Fe2+ and Mg2+-ions in model systems. Food Hydrocoll. 2017, 62, 299–310. [Google Scholar] [CrossRef]
- Guang, Y.; Zhong, Q. Gum arabig and Fe+2 synergistically improve the heat and acid stability of norbixin at pH 3.0–5.0. J. Agric. Food Chem. 2014, 62, 12668. [Google Scholar] [CrossRef]
- Williams, P.A. Gums: Properties and Uses. In Enclyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier—Academic Press: Kidlington, UK, 2016; Volume 3, pp. 283–289. [Google Scholar]
- Hu, B.; Han, L.; Kong, H.; Nishinari, K.; Phillips, G.O.; Yang, J.; Fang, Y. Preparation and emulsifying properties of trace elements fortified gum Arabic. Food Hydrocoll. 2019, 88, 43–49. [Google Scholar] [CrossRef]
- Li, S.; Xing, W.; Gang, Y.; Guo, W.; Zeng, M.; Wu, H. Gum Arabic-Stabilized Ferric Oxyhydroxide Nanoparticles for Efficient and Targeted Intestinal Delivery of Bioavailable Iron. J. Agric. Food Chem. 2023, 71, 7058–7068. [Google Scholar] [CrossRef]
- García–Villanova, B. Hortalizas y productos hortícolas. In Tratado de Nutrición. Composición y Calidad Nutritive de los Alimentos, 1st ed.; Gil, A., Ed.; Editorial Médica Panamericana: Madrid, España, 2017; Volume 3, pp. 171–201. [Google Scholar]
- García-Villanova, B.; Guerra-Hernández, E.J. Cereales y productos derivados. In Tratado de Nutrición. Composición y Calidad Nutritive de los Alimentos, 1st ed.; Gil, A., Ed.; Editorial Médica Panamericana: Madrid, España, 2017; Volume 3, pp. 111–154. [Google Scholar]
- Torre, M.; Rodriguez, A.R.; Saura-Calixto, F. Effects of dietary fibre and phytic acid on mineral availability. Crit. Rev. Food Sci. Nutr. 1991, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, Y.; Ou, K.; Lin, L.; Liang, J. In vitro solubility of calcium, iron, and zinc in rice bran treated with phytase, cellulase, and protease. J. Agric. Food Chem. 2008, 56, 11868–11874. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhang, Y.; Huang, A.; Zhou, J.; Lin, N.; Lu, X. Electrostatic adsorption and cytotoxity of cellulose nanocrystals with loading trace metal elements. Macromol. Biosci. 2022, 22, 2100318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Huang, C.; Ou, S. In vitro binding capacities of three dietary fibresand their mixture for toxic elements, cholesterol, and bile acid. J. Hazard. Mater. 2011, 186, 236–239. [Google Scholar] [CrossRef]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.E.G.; Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant–based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 2020, 60, 826–843. [Google Scholar] [CrossRef]
- He, X.; Sun, C.; Khalesi, H.; Yang, Y.; Zhao, J.; Zhang, Y.; Wen, Y.; Fang, Y. Comparison of cellulose derivatives for Ca+2 and Zn+2 adsorption: Binding behavoir and in vivo bioavailability. Carbohydr. Polym. 2022, 294, 119837. [Google Scholar] [CrossRef]
- Plait, S.R.; Clydesdale, F.M. Mineral binding characteristics of lignin, guar gum, cellulose, pectin, and neutral detergent fibre under simulated duodenal pH conditions. J. Food Sci. 1987, 52, 1414–1419. [Google Scholar] [CrossRef]
- Horniblow, R.D.; Pathak, P.; Eshrati, M.; Latunde-Dada, G.O.; Tselepis, C. Intestinal iron bio-accessibility changes by lignin and the subsequent impact on cell metabolism and intestinal microbiome communities. Food Funct. 2023, 14, 3673–3685. [Google Scholar] [CrossRef]
- Lönnerdal, B. Effects of Milk and Milk Components on Calcium, Magnesium, and Trace Element Absorption During Infancy. Physiol. Rev. 1997, 77, 644–669. [Google Scholar] [CrossRef] [PubMed]
- Rodzik, A.; Pomatowski, P.; Railean-Plugaru, V.; Sprynskyy, M.; Buszewski, R. The study of zinc ions binding to αs1-, β- and k-casein. Int. J. Mol. Sci. 2020, 21, 8096. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ceballos, L.; Ramos-Morales, E.; de la Torre-Adarve, G.; Díaz-Castro, J.; Pérez-Martínez, L.; Sanz-Sampelayo, M.R. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V.A.; Ellis, A.; Ye, A.; Edwards, P.J.B.; Das, S.; Singh, H. Iron binding to caseins in the presence of orthophosphate. Food Chem. 2016, 190, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V.A.; Ellis, A.; Ye, A.; Edwards, P.J.B.; Das, S.; Singh, H. The adsorption of orthophosphate onto casein-iron precipitates. Food Chem. 2018, 239, 17–22. [Google Scholar] [CrossRef]
- Henare, S.J.; Singh, N.N.; Ellis, A.M.; Moughan, P.J.; Thompson, A.K.; Walczyk, T. Iron bioavailability of a casein–based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. Am. J. Clin. Nutr. 2019, 110, 1362–1369. [Google Scholar] [CrossRef]
- Sabatier, M.; Rytz, A.; Husny, J.; Dubascoux, S.; Nicolas, M.; Dave, A.; Singh, A.; Bodis, M.; Glahn, R.P. Impact of Ascorbic Acid on the In Vitro Iron Bioavailability of a Casein-Based Iron Fortificant. Nutrients 2020, 12, 2776. [Google Scholar] [CrossRef]
- Zhu, L.; Glahn, R.P.; Nelson, D.; Miller, D.D. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model. J. Agric. Food Chem. 2009, 57, 5014–5019. [Google Scholar] [CrossRef] [PubMed]
- Meisel, H.; FitzGerald, R.J. Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharm. Des. 2003, 9, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- García–Nebot, M.J.; Alegría, A.; Barberá, R.; Gaboriau, F.; Bouhallab, S. Effect of caseinophosphopeptides from αs–and β–casein on iron bioavailability in HuH7 cells. J. Agric. Food Chem. 2015, 63, 6757–6763. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Song, K.B. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem. 2009, 44, 378–381. [Google Scholar] [CrossRef]
- Bonsmann, S.; Storcksdieck, S.; Genannt, B.; Hurrell, R.F. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J. Food Sci. 2010, 72, S019–S029. [Google Scholar] [CrossRef]
- Pérès, J.M.; Bouhallab, S.D.; Bureau, F.; Neuville, D.; Maubois, J.L.; Devroede, G.; Arhan, P.; Bouglé, D. Mechanisms of absorption of caseinophosphopeptide bound iron. J. Nutr. Biochem. 1999, 10, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Liao, W.; Pan, Z.; Wang, Q.; Duan, S.; Xiao, S.; Yang, Z.; Cao, Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019, 10, 2372–2381. [Google Scholar] [CrossRef]
- Pomastowski, P.; Sprynskyy, M.; Buszewski, B. The study of zinc ions binding to casein. Colloids Surf. B Biointerfaces 2014, 120, 21–27. [Google Scholar] [CrossRef]
- Srinivas, S.; Prakash, V. Interaction of Zn (II) with bovine milk-casein: Structure-function study. J. Food Biochem. 2011, 35, 1311–1326. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Hoffman, B.; Hurley, L.S. Zinc and copper binding proteins in human milk. Am. J. Clin. Nutr. 1982, 36, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Pabón, M.L.; Lönnerdal, B. Bioavailability of zinc and its binding to casein in milks and formulas. J. Trace Elem. Med. Biol. 2000, 14, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Pérès, J.M.; Bouhallab, S.; Petit, C.; Bureau, F.; Maubois, J.L.; Arhan, P.; Bouglé, D. Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of β-casein. Reprod. Nutr. Dev. 1998, 38, 465–472. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhu, W.Z.; Lu, B.Y.; Wei, Z.H.; Ren, D.X. Effect of feed selenium supplementation on milk selenium distribution and mozzarella quality. J. Dairy Sci. 2015, 98, 8359–8367. [Google Scholar] [CrossRef]
- Fantuz, F.; Ferraro, S.; Todini, L.; Spurio, R.; Fatica, A.; Marcantoni, F.; Salimei, E. Distribution of selected trace elements in the major fractions of donkey milk. J. Dairy Sci. 2022, 105, 6422–6430. [Google Scholar] [CrossRef] [PubMed]
- Cámara-Martos, F.; Ramírez-Ojeda, A.M.; Jiménez-Mangas, M.; Sevillano-Morales, J.; Moreno-Rojas, R. Selenium and cadmium in bioaccessible fraction of organic weaning food: Risk assessment and influence of dietary component. J. Trace Elem. Med. Biol. 2019, 56, 116–123. [Google Scholar] [CrossRef]
- Daniels, L.A. Selenium metabolism and bioavailability. Biol. Trace Elem. Res. 1996, 54, 185–199. [Google Scholar] [CrossRef]
- Yan, L.; Reeves, P.G.; Johnson, L.K. Assessment of selenium bioavailability from naturally produced high–selenium soy foods in selenium–deficient rats. J. Trace Elem. Med. Biol. 2010, 24, 223–229. [Google Scholar] [CrossRef]
- Kilara, A.; Vaghela, M.N. Whey proteins. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Elsevier—Academic Press: Kidlington, UK, 2018; pp. 93–126. [Google Scholar] [CrossRef]
- Permyakov, E.A. α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020, 10, 1210. [Google Scholar] [CrossRef]
- Kelleher, S.L.; Chatterton, D.; Nielsen, K.; Lönnerdal, B. Glycomacropeptide and α-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 2003, 77, 1261–1268. [Google Scholar] [CrossRef]
- Szymlek–Gay, E.A.; Lönnerdal, B.; Abrams, S.A.; Kvistgaard, A.S.; Domellöf, M.; Hernell, O. α-Lactalbumin and Casein-Glycomacropeptide Do Not Affect Iron Absorption from Formula in Healthy Term Infants. J. Nutr. 2012, 142, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ai, T.; Meng, X.L.; Zhou, J.; Mao, X.Y. In vitro absorption of α–lactalbumin hydrolysate–iron and β–lactoglobulin hydrolysate–iron complexes. J. Dairy Sci. 2014, 97, 2559–2566. [Google Scholar] [CrossRef]
- Milani, R.F.; Mauri, A.A.; Sanches, V.L.; Morgano, M.A.; Cadore, S. Trace Elements in Soy-Based Beverages: A Comprehensive Study of Total Content and In Vitro Bioaccessibility. Int. J. Environ. Res. Public Health 2023, 20, 4986. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Y. Soybean: Soy concentrates and isolates. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Faubion, J., Eds.; Elsevier—Academic Press: Kidlington, UK, 2016; Volume 3, pp. 482–488. [Google Scholar]
- Alfaia, C.; Lopes, A.; Prates, J. Cooking and diet quality: A focus on meat. In Diet Quality; Preddy, V.R., Hunter, L.A., Patel, V.B., Eds.; Springer: Berlin, Germany, 2013; pp. 257–284. [Google Scholar]
- Herrera–Agudelo, M.A.; Miró, M.; Arruda, M.A.Z. In vitro oral bioaccessibility and total content of Cu, Fe, Mn and Zn from transgenic (through cp4 EPSPS gene) and non transgenic precursor/successor soybean seeds. Food Chem. 2017, 225, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Koplík, R.; Borková, M.; Mestek, O.; Komínkova, J.; Suchánek, M. Application of size exclusion chromatography–Inductively coupled plasma mass spectrometry for fractionation of element species in seeds of legumes. J. Chromatogr. B 2002, 775, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.K.; Harinder, P.S.M.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Lacerda–Sánchez, V.; Peixoto, R.R.; Cadore, S. Phosphorus and zinc are less bioaccessible in soy-based beverages in comparison to bovine milk. J. Funct. Foods 2020, 65, 103728. [Google Scholar] [CrossRef]
- Theodoropoulos, V.C.T.; Turatti, M.A.; Greiner, R.; Macedo, G.A.; Pallone, J.A. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink. Food Res. Int. 2018, 108, 68–73. [Google Scholar] [CrossRef]
Element | Certified References Material (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bovine Liver ERM-BB185 | White Cabbage BCR-679 | Peach Leaves NIST-1547 | |||||||
Certified | Found | Recovery (%) | Certified | Found | Recovery (%) | Certified | Found | Recovery (%) | |
Fe | 55.0 ± 2.5 | 59.1 ± 1.1 | 107 | 219.8 ± 6.8 | 197.0 ± 0.2 | 90 | |||
Mn | 13.3 ± 0.5 | 13.2 ± 0.8 | 99 | 97.8 ± 1.8 | 92.1 ± 2.3 | 94 | |||
Ni | 27.0 ± 0.8 | 29.6 ± 0.2 | 109 | 0.689 ± 0.095 | 0.681 ± 0.101 | 99 | |||
Se | 2.99 ± 0.18 | 2.69 ± 0.40 | 90 | ||||||
Zn | 79.7 ± 2.7 | 79.7 ± 0.2 | 100 | 17.97 ± 0.53 | 16.90 ± 0.46 | 94 |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 a | 21.9 ± 3.9 a | 1.05 ± 0.07 b | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% pectin | 44.0 ± 2.9 b | 21.0 ± 1.4 a | 0.87 ± 0.18 b | 21.3 ± 4.6 b | 19.1 ± 4.0 a |
Turnip tops + 15% pectin | 46.5 ± 2.7 b | 21.3 ± 0.3 a | 0.78 ± 0.08 b | 16.4 ± 3.4 b | 24.2 ± 6.4 a,b |
Turnip tops + 25% pectin | 47.5 ± 1.3 b | 26.5 ± 3.1 b | 0.11 ± 0.03 a | 38.0 ± 2.9 c | 35.4 ± 9.4 b |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 a | 21.9 ± 3.9 a | 1.05 ± 0.07 b | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% gum arabic | 34.0 ± 2.9 a | 26.1 ± 2.2 a,b | 0.38 ± 0.06 a | 21.4 ± 4.0 a,b | 23.9 ± 1.2 b |
Turnip tops + 15% gum arabic | 33.7 ± 3.2 a | 27.6 ± 1.1 b | 0.18 ± 0.05 a | 34.6 ± 11.5 c | 26.6 ± 0.8 c |
Turnip tops + 25% gum arabic | 34.5 ± 1.6 a | 29.1 ± 0.9 b | 0.20 ± 0.06 a | 25.7 ± 5.5 b,c | 25.5 ± 0.3 c |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 b | 21.9 ± 3.9 a | 1.05 ± 0.07 b | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% cellulose | 15.3 ± 9.2 a,b | 19.0 ± 0.5 a | 0.32 ± 0.08 a | 10.2 ± 3.4 a | 17.7 ± 1.3 a |
Turnip tops + 15% cellulose | 11.2 ± 1.3 a | 18.3 ± 1.8 a | 0.35 ± 0.14 a | 9.7 ± 1.2 a | 16.4 ± 1.1 a |
Turnip tops + 25% cellulose | 8.1 ± 0.5 a | 17.0 ± 0.2 a | 0.63 ± 0.06 a | 9.8 ± 2.0 a | 16.1 ± 0.4 a |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 a | 21.9 ± 3.9 a | 1.05 ± 0.07 b | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% casein | 24.0 ± 2.7 a | 22.6 ± 2.3 a | 0.52 ± 0.09 a | 50.8 ± 4.0 b | 19.3 ± 1.5 a |
Turnip tops + 15% casein | 26.3 ± 6.9 a | 24.1 ± 1.2 a | 0.53 ± 0.14 a | 50.8 ± 2.3 b | 24.3 ± 5.3 a,b |
Turnip tops + 25% casein | 34.3 ± 3.6 a | 27.2 ± 0.8 a | 0.59 ± 0.16 a | 49.5 ± 0.5 b | 32.4 ± 0.1 b |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 a | 21.9 ± 3.9 a | 1.05 ± 0.07 b | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% lactalbumin | 27.4 ± 4.6 a | 29.7 ± 0.5 a | 0.55 ± 0.06 a | 45.8 ± 2.4 b | 21.3 ± 2.1 a |
Turnip tops + 15% lactalbumin | 26.6 ± 0.1 a | 25.1 ± 1.1 a | 0.59 ± 0.02 a | 46.2 ± 5.4 b | 23.6 ± 2.0 a |
Turnip tops + 25% lactalbumin | 37.4 ± 8.6 a | 26.8 ± 2.2 a | 0.67 ± 0.01 a | 47.6 ± 3.6 b | 27.5 ± 7.1 a |
Fe (mg/Kg) | Mn (mg/Kg) | Ni (mg/Kg) | Se (µg/Kg) | Zn (mg/Kg) | |
---|---|---|---|---|---|
Turnip tops | 28.4 ± 6.2 a | 21.9 ± 3.9 a | 1.05 ± 0.07 a | 9.2 ± 2.4 a | 16.7 ± 0.7 a |
Turnip tops + 5% soy protein | 81.8 ± 3.0 b | 38.5 ± 4.5 b | 1.12 ± 0.51 a,b | 28.7 ± 2.4 b | 25.7 ± 4.2 a,b |
Turnip tops + 15% soy protein | 75.6 ± 7.3 b | 30.2 ± 2.5 a,b | 0.88 ± 0.16 a | 52.7 ± 2.4 c | 34.4 ± 6.6 b |
Turnip tops + 25% soy protein | 82.6 ± 2.1 b | 32.1 ± 3.0 a,b | 1.20 ± 0.09 b | 51.8 ± 1.8 c | 46.3 ± 1.6 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cámara-Martos, F. Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops (Brassica rapa) Growing under Mediterranean Conditions. Foods 2024, 13, 462. https://doi.org/10.3390/foods13030462
Cámara-Martos F. Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops (Brassica rapa) Growing under Mediterranean Conditions. Foods. 2024; 13(3):462. https://doi.org/10.3390/foods13030462
Chicago/Turabian StyleCámara-Martos, Fernando. 2024. "Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops (Brassica rapa) Growing under Mediterranean Conditions" Foods 13, no. 3: 462. https://doi.org/10.3390/foods13030462
APA StyleCámara-Martos, F. (2024). Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops (Brassica rapa) Growing under Mediterranean Conditions. Foods, 13(3), 462. https://doi.org/10.3390/foods13030462